Stay Ahead, Stay ONMINE

Training Large Language Models: From TRPO to GRPO

Deepseek has recently made quite a buzz in the AI community, thanks to its impressive performance at relatively low costs. I think this is a perfect opportunity to dive deeper into how Large Language Models (LLMs) are trained. In this article, we will focus on the Reinforcement Learning (RL) side of things: we will cover […]

Deepseek has recently made quite a buzz in the AI community, thanks to its impressive performance at relatively low costs. I think this is a perfect opportunity to dive deeper into how Large Language Models (LLMs) are trained. In this article, we will focus on the Reinforcement Learning (RL) side of things: we will cover TRPO, PPO, and, more recently, GRPO (don’t worry, I will explain all these terms soon!) 

I have aimed to keep this article relatively easy to read and accessible, by minimizing the math, so you won’t need a deep Reinforcement Learning background to follow along. However, I will assume that you have some familiarity with Machine Learning, Deep Learning, and a basic understanding of how LLMs work.

I hope you enjoy the article!

The 3 steps of LLM training

The 3 steps of LLM training [1]

Before diving into RL specifics, let’s briefly recap the three main stages of training a Large Language Model:

  • Pre-training: the model is trained on a massive dataset to predict the next token in a sequence based on preceding tokens.
  • Supervised Fine-Tuning (SFT): the model is then fine-tuned on more targeted data and aligned with specific instructions.
  • Reinforcement Learning (often called RLHF for Reinforcement Learning with Human Feedback): this is the focus of this article. The main goal is to further refine responses’ alignments with human preferences, by allowing the model to learn directly from feedback.

Reinforcement Learning Basics

A robot trying to exit a maze! [2]

Before diving deeper, let’s briefly revisit the core ideas behind Reinforcement Learning.

RL is quite straightforward to understand at a high level: an agent interacts with an environment. The agent resides in a specific state within the environment and can take actions to transition to other states. Each action yields a reward from the environment: this is how the environment provides feedback that guides the agent’s future actions. 

Consider the following example: a robot (the agent) navigates (and tries to exit) a maze (the environment).

  • The state is the current situation of the environment (the robot’s position in the maze).
  • The robot can take different actions: for example, it can move forward, turn left, or turn right.
  • Successfully navigating towards the exit yields a positive reward, while hitting a wall or getting stuck in the maze results in negative rewards.

Easy! Now, let’s now make an analogy to how RL is used in the context of LLMs.

RL in the context of LLMs

Simplified RLHF Process [3]

When used during LLM training, RL is defined by the following components:

  • The LLM itself is the agent
  • Environment: everything external to the LLM, including user prompts, feedback systems, and other contextual information. This is basically the framework the LLM is interacting with during training.
  • Actions: these are responses to a query from the model. More specifically: these are the tokens that the LLM decides to generate in response to a query.
  • State: the current query being answered along with tokens the LLM has generated so far (i.e., the partial responses).
  • Rewards: this is a bit more tricky here: unlike the maze example above, there is usually no binary reward. In the context of LLMs, rewards usually come from a separate reward model, which outputs a score for each (query, response) pair. This model is trained from human-annotated data (hence “RLHF”) where annotators rank different responses. The goal is for higher-quality responses to receive higher rewards.

Note: in some cases, rewards can actually get simpler. For example, in DeepSeekMath, rule-based approaches can be used because math responses tend to be more deterministic (correct or wrong answer)

Policy is the final concept we need for now. In RL terms, a policy is simply the strategy for deciding which action to take. In the case of an LLM, the policy outputs a probability distribution over possible tokens at each step: in short, this is what the model uses to sample the next token to generate. Concretely, the policy is determined by the model’s parameters (weights). During RL training, we adjust these parameters so the LLM becomes more likely to produce “better” tokens— that is, tokens that produce higher reward scores.

We often write the policy as:

where a is the action (a token to generate), s the state (the query and tokens generated so far), and θ (model’s parameters).

This idea of finding the best policy is the whole point of RL! Since we don’t have labeled data (like we do in supervised learning) we use rewards to adjust our policy to take better actions. (In LLM terms: we adjust the parameters of our LLM to generate better tokens.)

TRPO (Trust Region Policy Optimization)

An analogy with supervised learning

Let’s take a quick step back to how supervised learning typically works. you have labeled data and use a loss function (like cross-entropy) to measure how close your model’s predictions are to the true labels.

We can then use algorithms like backpropagation and gradient descent to minimize our loss function and update the weights θ of our model.

Recall that our policy also outputs probabilities! In that sense, it is analogous to the model’s predictions in supervised learning… We are tempted to write something like:

where s is the current state and a is a possible action.

A(s, a) is called the advantage function and measures how good is the chosen action in the current state, compared to a baseline. This is very much like the notion of labels in supervised learning but derived from rewards instead of explicit labeling. To simplify, we can write the advantage as:

In practice, the baseline is calculated using a value function. This is a common term in RL that I will explain later. What you need to know for now is that it measures the expected reward we would receive if we continue following the current policy from the state s.

What is TRPO?

TRPO (Trust Region Policy Optimization) builds on this idea of using the advantage function but adds a critical ingredient for stability: it constrains how far the new policy can deviate from the old policy at each update step (similar to what we do with batch gradient descent for example).

  • It introduces a KL divergence term (see it as a measure of similarity) between the current and the old policy:
  • It also divides the policy by the old policy. This ratio, multiplied by the advantage function, gives us a sense of how beneficial each update is relative to the old policy.

Putting it all together, TRPO tries to maximize a surrogate objective (which involves the advantage and the policy ratio) subject to a KL divergence constraint.

PPO (Proximal Policy Optimization)

While TRPO was a significant advancement, it’s no longer used widely in practice, especially for training LLMs, due to its computationally intensive gradient calculations.

Instead, PPO is now the preferred approach in most LLMs architecture, including ChatGPT, Gemini, and more.

It is actually quite similar to TRPO, but instead of enforcing a hard constraint on the KL divergence, PPO introduces a “clipped surrogate objective” that implicitly restricts policy updates, and greatly simplifies the optimization process.

Here is a breakdown of the PPO objective function we maximize to tweak our model’s parameters.

Image by the Author

GRPO (Group Relative Policy Optimization)

How is the value function usually obtained?

Let’s first talk more about the advantage and the value functions I introduced earlier.

In typical setups (like PPO), a value model is trained alongside the policy. Its goal is to predict the value of each action we take (each token generated by the model), using the rewards we obtain (remember that the value should represent the expected cumulative reward).

Here is how it works in practice. Take the query “What is 2+2?” as an example. Our model outputs “2+2 is 4” and receives a reward of 0.8 for that response. We then go backward and attribute discounted rewards to each prefix:

  • “2+2 is 4” gets a value of 0.8
  • “2+2 is” (1 token backward) gets a value of 0.8γ
  • “2+2” (2 tokens backward) gets a value of 0.8γ²
  • etc.

where γ is the discount factor (0.9 for example). We then use these prefixes and associated values to train the value model.

Important note: the value model and the reward model are two different things. The reward model is trained before the RL process and uses pairs of (query, response) and human ranking. The value model is trained concurrently to the policy, and aims at predicting the future expected reward at each step of the generation process.

What’s new in GRPO

Even if in practice, the reward model is often derived from the policy (training only the “head”), we still end up maintaining many models and handling multiple training procedures (policy, reward, value model). GRPO streamlines this by introducing a more efficient method.

Remember what I said earlier?

In PPO, we decided to use our value function as the baseline. GRPO chooses something else: Here is what GRPO does: concretely, for each query, GRPO generates a group of responses (group of size G) and uses their rewards to calculate each response’s advantage as a z-score:

where rᵢ is the reward of the i-th response and μ and σ are the mean and standard deviation of rewards in that group.

This naturally eliminates the need for a separate value model. This idea makes a lot of sense when you think about it! It aligns with the value function we introduced before and also measures, in a sense, an “expected” reward we can obtain. Also, this new method is well adapted to our problem because LLMs can easily generate multiple non-deterministic outputs by using a low temperature (controls the randomness of tokens generation).

This is the main idea behind GRPO: getting rid of the value model.

Finally, GRPO adds a KL divergence term (to be exact, GRPO uses a simple approximation of the KL divergence to improve the algorithm further) directly into its objective, comparing the current policy to a reference policy (often the post-SFT model).

See the final formulation below:

Image by the Author

And… that’s mostly it for GRPO! I hope this gives you a clear overview of the process: it still relies on the same foundational ideas as TRPO and PPO but introduces additional improvements to make training more efficient, faster, and cheaper — key factors behind DeepSeek’s success.

Conclusion

Reinforcement Learning has become a cornerstone for training today’s Large Language Models, particularly through PPO, and more recently GRPO. Each method rests on the same RL fundamentals — states, actions, rewards, and policies — but adds its own twist to balance stability, efficiency, and human alignment:

TRPO introduced strict policy constraints via KL divergence

PPO eased those constraints with a clipped objective

GRPO took an extra step by removing the value model requirement and using group-based reward normalization. Of course, DeepSeek also benefits from other innovations, like high-quality data and other training strategies, but that is for another time!

I hope this article gave you a clearer picture of how these methods connect and evolve. I believe that Reinforcement Learning will become the main focus in training LLMs to improve their performance, surpassing pre-training and SFT in driving future innovations. 

If you’re interested in diving deeper, feel free to check out the references below or explore my previous posts.

Thanks for reading, and feel free to leave a clap and a comment!


Want to learn more about Transformers or dive into the math behind the Curse of Dimensionality? Check out my previous articles:

Transformers: How Do They Transform Your Data?
Diving into the Transformers architecture and what makes them unbeatable at language taskstowardsdatascience.com

The Math Behind “The Curse of Dimensionality”
Dive into the “Curse of Dimensionality” concept and understand the math behind all the surprising phenomena that arise…towardsdatascience.com



References:

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

RFID boosts Amazon’s autonomous retail tech

The new RFID lanes are built for merchandise and apparel. These items are much harder to track with camera-based systems since they can be folded, stacked, or carried out of a store in bulk. RFID tags solve that problem by identifying every item. The lanes combine several systems working together

Read More »

Cisco extends Nexus 9000 support to Intel Gaudi 3 AI accelerators

Partnerships, validated designs strengthen Cisco offerings Cisco’s AI offerings also include Nvidia technologies, such as Spectrum-X-based switches that are part of Cisco Secure AI Factory with Nvidia.  Cisco also works with AMD and its Instinct AI GPUs for networking and compute stack in large AI clusters. In addition, Cisco integrates

Read More »

Russia Says Ukraine Attacked Afipsky Refinery Overnight

Russia said Ukrainian drones targeted the Afipsky refinery in the Krasnodar region overnight, in the latest attack on the nation’s energy infrastructure. Debris of the unmanned aerial vehicle fell on the territory of the facility and caused a fire, which “was quickly extinguished,” regional emergencies authorities said in a Telegram post. “There were no casualties or damage to infrastructure.” Bloomberg couldn’t independently verify the claim. ForteInvest, which operates the Afipsky refinery, didn’t immediately respond to a request for comment on the potential impact on processing rates.  Ukraine and Russia have been trading attacks on energy infrastructure as Kremlin’s full-scale invasion of its neighbor is about to enter a fifth year, with Kyiv and Moscow remaining at an impasse over a proposed peace plan. While Kyiv has reduced the intensity of attacks on Russian refineries and oil export facilities so far this month compared with the end of last year, Moscow has stepped up strikes on Ukraine’s power sector, leaving millions of people without heating and water amid freezing temperatures. The Afipsky refinery has a processing capacity of as much as 9.1 million tons of crude oil annually, or some 180,000 barrels per day. The facility, which has been a target for repeated Ukrainian attacks, was last hit in December.  WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

EIA Sees USA Crude Oil Production Dropping in 2026, 2027

In its latest short term energy outlook (STEO), which was released on January 13, the U.S. Energy Information Administration (EIA) projected that total U.S. crude oil production will drop in 2026 and 2027. According to this STEO, the EIA sees U.S. crude oil output, including lease condensate, averaging 13.59 million barrels per day in 2026 and 13.25 million barrels per day in 2027. This production averaged 13.61 million barrels per day in 2025, the STEO showed. The STEO projected that Lower 48 States production, excluding the Gulf of America, will come in at 11.11 million barrels per day in 2026 and 10.87 million barrels per day in 2027. In the report, Federal Gulf of America production is forecast to average 2.00 million barrels per day in 2026 and 1.89 million barrels per day in 2027 and Alaska output is projected to come in at 0.47 million barrels per day in 2026 and 0.50 million barrels per day in 2027. In 2025, Lower 48 States production averaged 11.28 million barrels per day, Federal Gulf of America production came in at 1.91 million barrels per day, and Alaska output averaged 0.42 million barrels per day, the STEO showed. A quarterly breakdown included in the EIA’s latest STEO projected that U.S. crude oil production will come in at 13.73 million barrels per day in the first quarter of this year, 13.65 million barrels per day in the second quarter, 13.47 million barrels per day in the third quarter, 13.50 million barrels per day in the fourth quarter, 13.43 million barrels per day in the first quarter of 2027, 13.31 million barrels per day in the second quarter, and 13.13 million barrels per day across the third and fourth quarter of next year. “We forecast U.S. crude oil production will remain close to the

Read More »

Western Midstream Secures New Deals with Occidental,ConocoPhillips

Western Midstream Partners LP (WES) announced Tuesday it has amended its natural gas gathering and processing contracts in the Delaware Basin with Occidental Petroleum Corp and expanded its partnership with ConocoPhillips in the same basin. The new agreements with ConocoPhillips and Occidental advance WES’ transition to fixed-fee arrangements in the maturing basin, The Woodlands, Texas-based company said in a statement on its website. The previous agreement with Occidental already provided for a transition to a fixed-fee structure; the new agreement speeds up that transition, according to WES. Houston, Texas-based oil, gas and chemicals producer Occidental agreed to reduce its ownership in WES from about 42 percent to around 40 percent under the renegotiated gathering and processing contracts, “further positioning WES as a standalone midstream enterprise”, WES said. “Following this amendment, approximately nine percent of WES’ total revenue will remain subject to cost-of-service rates, with approximately one percent of total revenue subject to cost-of-service rates expiring in the late 2020s”, WES said. “The remaining cost-of-service rate provisions extend into the mid-to-late 2030s and include provisions to convert to fixed-fee structures at that time. “All significant fixed-fee contracts with Occidental, including the contracts being amended, are effective through the mid-to-late 2030s”. The new gas gathering contract provides “volumetric protection via substantial minimum volume commitments (MVCs) through the original cost-of-service term, and from that point forward, the existing acreage dedication and fixed-fee structure continues through the duration of the contract”, WES added. The new gas processing contract “continues to provide volumetric protection via MVCs through 2035”, WES said. As part of the renegotiated contracts, Occidental will surrender to WES 15.3 million common units currently owned by Occidental. The volume represents around $610 million of limited partnership interests, according to WES. “This transfer was structured on terms intended to represent a value-neutral exchange for the economic concessions reflected in

Read More »

Why Are USA NatGas Prices Rising Today?

U.S. natural gas prices are rising today due to a combination of weather risk, production softness, and positioning, rather than any single structural shift. That’s what Ole R. Hvalbye, a commodities analyst at Skandinaviska Enskilda Banken AB (SEB), told Rigzone in an exclusive interview on Wednesday. “First, the weather premium has kicked in hard,” Hvalbye said. “Forecasts now show temperatures in the Lower-48 turning well below normal from around January 23 and extending into early February, particularly across the eastern half of the United States,” he added. “That directly lifts heating demand expectations at a time of year when the market is already sensitive(!). As a result, Henry Hub has surged from … [around] $3 per MMBtu [million British thermal units] last week to nearly $5 per MMBtu intraday today!” he noted. “Second, supply has tightened at the margin. Lower-48 dry gas production has dipped to around 110.5 Bcfpd [billion cubic feet per day], down from over 112 Bcfpd earlier this week, partly reflecting cold-weather disruptions,” Hvalbye continued. “At the same time, LNG feedgas demand remains elevated at just over 18 Bcfpd, even though flows at Sabine Pass eased slightly today, partly offset by higher intake at Elba Island,” he stated. “Third, positioning and short covering are amplifying the move,” Hvalbye highlighted. The SEB commodities analyst told Rigzone that trading volumes in Henry Hub futures hit a record high earlier this week and added that today’s rally has been pushed by hedge funds covering short positions built up during the recent sell-off. “That adds momentum once prices start moving,” he pointed out. Looking at the demand side, Hvalbye told Rigzone that U.S. gas consumption “has eased back toward ~108 Bcfpd from very high cold-weather levels earlier this week” but added that “that hasn’t been enough to offset the weather risk

Read More »

EU Hydrogen Matchmaking Platform Opens for Buyer Expressions of Interest

The European Commission on Tuesday made the first call for buyer expressions of interest for hydrogen supply offers under a matchmaking platform launched last year. In a call to suppliers that closed earlier this month, European and international companies placed offers from over 260 projects, the Commission’s Directorate-General for Energy said in an online statement. Buyers now have until March 20, 2026 to indicate interest in the offers, according to the statement. “As part of the EU Energy and Raw Materials Platform, the Hydrogen Mechanism connects potential off-takers in Europe with suppliers of renewable and low-carbon hydrogen or derivatives, including ammonia, methanol, eMethane and electro-sustainable aviation fuel”, the Directorate-General said. “Hydrogen plays an important role in decarbonizing industrial processes and industries for which reducing carbon emissions is both urgent and hard to achieve”, it added. “At the same time, it can strengthen the competitiveness of Europe’s industry and leverage the EU market towards more security of supply, diversification and decarbonization”. European Energy and Housing Commissioner Dan Jørgensen said, “The EU’s Hydrogen Mechanism is a new, innovative tool to help develop the market. With strong interest shown from suppliers across Europe and beyond, the initiative is off to a very promising start”. The broader European Union Energy and Raw Materials Platform lets buyers in the 27-member bloc offer demand for biomethane, hydrogen, natural gas and raw materials. The online platform seeks to give EU companies cost-effective and efficient access to such commodities by enabling negotiations with competing suppliers, according to the Commission. The Hydrogen Mechanism will operate until 2029 under the European Hydrogen Bank, as specified under the EU’s “Regulation on the Internal Markets for Renewable Gas, Natural Gas and Hydrogen”. The Hydrogen Bank is an EU Innovation Fund financing platform to scale up the renewable hydrogen value chain. The platform’s user

Read More »

Bulgaria Acquires 10 Percent in Han Asparuh Block

OMV Petrom SA and NewMed Energy LP have signed a deal to sell 10 percent in the Han Asparuh exploration block on Bulgaria’s side of the Black Sea to state-owned Bulgarian Energy Holding EAD (BEH) following a government order. The Bulgarian parliament had directed the Energy Ministry to have up to 20 percent of the license transferred to a government-owned corporation, NewMed Energy said in a stock filing. Operator OMV Petrom, an integrated energy company with investments from Austria’s state-backed OMV AG and the Romanian government, and equal co-owner NewMed Energy, an Israeli natural gas-focused explorer and producer, have now agreed to sell five percent each to BEH, according to the regulatory disclosure. The Bulgarian government still needs to approve the sale agreement and the companies need to amend the “joint operating agreement” for Han Asparuh before the sale could be completed, NewMed Energy said. Under the sale agreement, “the parties agreed to work jointly vis-à-vis the Bulgarian government and the Bulgarian Ministry of Energy in connection with amendments to the ordinance for determining the concession royalty payments for the production of underground resources and extension of the period of the appraisal drillings in the project to two years in lieu of one year”, NewMed Energy said. “It is noted in this context that on 8 December 2025, the Bulgarian Ministry of Energy released a draft of new regulations for determining royalty payments to the Bulgarian government, which are determined by multiplying the economic value of annual production by the royalty rate payable to the government”. “It is further proposed to establish in the draft regulations a minimum annual royalty payment obligation”, NewMed Energy added. BEH has agreed to pay NewMed Energy and OMV Petrom its proportionate share of the cost of drilling preparations, NewMed Energy said. A two-well campaign

Read More »

CyrusOne Hones AI-Era Data Center Strategy for Power, Pace, and Reliability

In the second half of 2025, CyrusOne was racing to secure buildable power and faster time-to-market capacity for AI-era customers. At the same time, its reputation for mission-critical reliability took a very public hit when a disruption at a CyrusOne facility helped knock CME trading offline. The incident forced the company into an unusually open conversation about redundancy, cooling systems, and operational discipline: systems that are meant to disappear in normal operation, and dominate the story when they malfunction. From Projects to a Playbook Which projects, missteps, and strategic moves from 2025 are now shaping how CyrusOne enters 2026? Nowhere is that view clearer than in Texas. There, CyrusOne has been leaning hard into a “power + land + interconnect” model: treating deliverable power and grid position as part of the product, not just a prerequisite. If you map the company’s announcements since late July, Texas reveals the playbook. Secure power, secure substations and grid position, then build multi-phase campuses designed to scale quickly as demand materializes. The Calpine “Powered Land” Deal: From 190 MW to 400 MW in Three Months On July 30, 2025, CyrusOne and Calpine announced a 190-MW agreement tied to a hyperscale campus (DFW10) adjacent to Calpine’s Thad Hill Energy Center in Bosque County, Texas. The structure bundled power, grid connection, and land into a single development package, with CyrusOne saying the site was already under construction and targeting operation by Q4 2026. Just three months later, on November 3–4, the partners announced a second phase, adding 210 MW and taking the campus to 400 MW. The update emphasized coordination to support grid reliability during scarcity; such curtailment and operational-coordination concepts are becoming table stakes for ERCOT-scale megaprojects. Together, the two announcements show CyrusOne placing a large bet on an emerging model: power-ready campuses, or “powered

Read More »

Forrester study quantifies benefits of Cisco Intersight

If IT groups are to be the strategic business partners their companies need, they require solutions that can improve infrastructure life cycle management in the age of artificial intelligence (AI) and heightened security threats. To quantify the value of such solutions, Cisco recently commissioned Forrester Consulting to conduct a Total Economic Impact™ analysis of Cisco Intersight. The comprehensive study found that for a composite organization, Intersight delivered 192% return on investment (ROI) and a payback period of less than six months, along with significant tangible benefits to IT and businesses. Cisco Intersight overview Cisco Intersight is a cloud-native IT operations platform for infrastructure life cycle management. It provides IT teams with comprehensive visibility, control, and automation capabilities for Cisco’s portfolio of compute solutions for data centers, colocation facilities, and edge environments based on the Cisco Unified Computing System (Cisco UCS). Intersight also integrates with leading operating systems, storage providers, hypervisors, and third-party IT service management and security tools. Intersight’s unified, policy-driven approach to infrastructure management helps IT groups automate numerous tasks and, as Forrester found, free up time to dedicate to strategic projects. Forrester study quantifies the benefits of Cisco Intersight  A composite organization using Cisco Intersight achieved:192% ROI and payback in less than six months$3.3M net present value over three years$2.7M from improved uptime and resilience 50% reduction in mean time to resolution $1.7M from increased IT productivity$267K benefit from decreased time to value due to faster project execution and earlier return on infrastructure investments Forrester Total Economic Impact study findings The analyst firm conducted detailed interviews with IT decision-makers and Intersight users at six organizations, from which it created one composite organization: a multinational technology-driven company with $10 billion in annual revenue, 120 branch locations, and a team of six engineers managing its 1,000 servers deployed in several

Read More »

SoftBank launches software stack for AI data center operations

Addressing enterprise challenges The software provides two main services, according to SoftBank. The Kubernetes-as-a-Service component automates the stack from BIOS and RAID settings through the OS, GPU drivers, networking, Kubernetes controllers, and storage, the company said. It reconfigures physical connectivity using Nvidia NVLink and memory allocation as users create, update, or delete clusters, according to the announcement. The system allocates nodes based on GPU proximity and NVLink domain configuration to reduce latency, SoftBank said. Enterprises currently face complex GPU cluster provisioning, Kubernetes lifecycle management, inference scaling, and infrastructure tuning challenges that require deep expertise, according to Dai. SoftBank’s automated approach addresses these pain points by handling BIOS-to-Kubernetes configuration, optimizing GPU interconnects, and abstracting inference into API-based services, he said. This allows teams to focus on model development rather than infrastructure maintenance, Dai said. The Inference-as-a-Service component lets users deploy inference services by selecting large language models without configuring Kubernetes or underlying infrastructure, according to the company. It provides OpenAI-compatible APIs and scales across multiple nodes on platforms including the GB200 NVL72, SoftBank said. The software includes tenant isolation through encrypted communications, automated system monitoring and failover, and APIs for connecting to portal, customer management, and billing systems, according to the announcement.

Read More »

OpenAI shifts AI data center strategy toward power-first design

The shift to ‘energy sovereignty’  Analysts say the move reflects a fundamental shift in data center strategy, moving from “fiber-first” to “power-first” site selection. “Historically, data centers were built near internet exchange points and urban centers to minimize latency,” said Ashish Banerjee, senior principal analyst at Gartner. “However, as AI training requirements reach the gigawatt scale, OpenAI is signaling that they will prioritize regions with ‘energy sovereignty’, places where they can build proprietary generation and transmission, rather than fighting for scraps on an overtaxed public grid.” For network architecture, this means a massive expansion of the “middle mile.” By placing these behemoth data centers in energy-rich but remote locations, the industry will have to invest heavily in long-haul, high-capacity dark fiber to connect these “power islands” back to the edge. “We should expect a bifurcated network: a massive, centralized core for ‘cold’ model training located in the wilderness, and a highly distributed edge for ‘hot’ real-time inference located near the users,” Banerjee added. Manish Rawat, a semiconductor analyst at TechInsights, also noted that the benefits may come at the cost of greater architectural complexity. “On the network side, this pushes architectures toward fewer mega-hubs and more regionally distributed inference and training clusters, connected via high-capacity backbone links,” Rawat said. “The trade-off is higher upfront capex but greater control over scalability timelines, reducing dependence on slow-moving utility upgrades.”

Read More »

CleanArc’s Virginia Hyperscale Bet Meets the Era of Pay-Your-Way Power

What CleanArc’s Project Really Signals About Scaling in Virginia The more important story is what the project signals about how developers believe they can still scale in Virginia at hyperscale magnitude. To wit: 1) The campus is sized like a grid project, not a real estate project At 900 MW, CleanArc is not simply building a few facilities. It is effectively planning a utility-interface program that will require staged substation, transmission, and interconnection work over many years. The company describes the campus as a “flagship” designed for scalable demand and sustainability-focused procurement. Power delivery is planned in three 300 MW phases: the first targeted for 2027, the second for 2030, and the final block sometime between 2033 and 2035. That scale changes what “site selection” really means. For projects of this magnitude, the differentiator is no longer “Can we entitle buildings?” but “Can we secure a credible path for large power blocks, with predictable commercial terms, while regulators are rewriting the rules?” 2) It’s being marketed as sustainability-forward in a market that increasingly requires it CleanArc frames the campus as aligned with sustainability-focused infrastructure: a posture that is no longer optional for hyperscale procurement teams. That does not mean the grid power itself is automatically carbon-free. It means the campus is being positioned to support the modern contracting stack, involving renewables, clean-energy attributes, and related structures, while still delivering what hyperscalers buy first: capacity, reliability, and delivery certainty. 3) The timing is strategic as Virginia tightens around very large load CleanArc is launching its flagship in the nation’s premier data center corridor at the same moment Virginia has moved to formalize a large-customer category that explicitly includes data centers. The implication is not that Virginia has become anti-data center. It is that the state is entering a phase where it

Read More »

xAI’s AI Factories: From Colossus to MACROHARDRR in the Gigawatt Era

Colossus: The Prototype For much of the past year, xAI’s infrastructure story did not unfold across a portfolio of sites. It unfolded inside a single building in Memphis, where the company first tested what an “AI factory” actually looks like in physical form. That building had a name that matched the ambition: Colossus. The Memphis-area facility, carved out of a vacant Electrolux factory, became shorthand for a new kind of AI build: fast, dense, liquid-cooled, and powered on a schedule that often ran ahead of the grid. It was an “AI factory” in the literal sense: not a cathedral of architecture, but a machine for turning electricity into tokens. Colossus began as an exercise in speed. xAI took over a dormant industrial building in Southwest Memphis and turned it into an AI training plant in months, not years. The company has said the first major system was built in about 122 days, and then doubled in roughly 92 more, reaching around 200,000 GPUs. Those numbers matter less for their bravado than for what they reveal about method. Colossus was never meant to be bespoke. It was meant to be repeatable. High-density GPU servers, liquid cooling at the rack, integrated CDUs, and large-scale Ethernet networking formed a standardized building block. The rack, not the room, became the unit of design. Liquid cooling was not treated as a novelty. It was treated as a prerequisite. By pushing heat removal down to the rack, xAI avoided having to reinvent the data hall every time density rose. The building became a container; the rack became the machine. That design logic, e.g. industrial shell plus standardized AI rack, has quietly become the template for everything that followed. Power: Where Speed Met Reality What slowed the story was not compute, cooling, or networking. It was power.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »