Stay Ahead, Stay ONMINE

Why Data Scientists Should Care about Containers — and Stand Out with This Knowledge

“I train models, analyze data and create dashboards — why should I care about Containers?” Many people who are new to the world of data science ask themselves this question. But imagine you have trained a model that runs perfectly on your laptop. However, error messages keep popping up in the cloud when others access […]

“I train models, analyze data and create dashboards — why should I care about Containers?”

Many people who are new to the world of data science ask themselves this question. But imagine you have trained a model that runs perfectly on your laptop. However, error messages keep popping up in the cloud when others access it — for example because they are using different library versions.

This is where containers come into play: They allow us to make machine learning models, data pipelines and development environments stable, portable and scalable — regardless of where they are executed.

Let’s take a closer look.

Table of Contents
1 — Containers vs. Virtual Machines: Why containers are more flexible than VMs
2 — Containers & Data Science: Do I really need Containers? And 4 reasons why the answer is yes.
3 — First Practice, then Theory: Container creation even without much prior knowledge
4 — Your 101 Cheatsheet: The most important Docker commands & concepts at a glance
Final Thoughts: Key takeaways as a data scientist
Where Can You Continue Learning?

1 — Containers vs. Virtual Machines: Why containers are more flexible than VMs

Containers are lightweight, isolated environments. They contain applications with all their dependencies. They also share the kernel of the host operating system, making them fast, portable and resource-efficient.

I have written extensively about virtual machines (VMs) and virtualization in ‘Virtualization & Containers for Data Science Newbiews’. But the most important thing is that VMs simulate complete computers and have their own operating system with their own kernel on a hypervisor. This means that they require more resources, but also offer greater isolation.

Both containers and VMs are virtualization technologies.

Both make it possible to run applications in an isolated environment.

But in the two descriptions, you can also see the 3 most important differences:

  • Architecture: While each VM has its own operating system (OS) and runs on a hypervisor, containers share the kernel of the host operating system. However, containers still run in isolation from each other. A hypervisor is the software or firmware layer that manages VMs and abstracts the operating system of the VMs from the physical hardware. This makes it possible to run multiple VMs on a single physical server.
  • Resource consumption: As each VM contains a complete OS, it requires a lot of memory and CPU. Containers, on the other hand, are more lightweight because they share the host OS.
  • Portability: You have to customize a VM for different environments because it requires its own operating system with specific drivers and configurations that depend on the underlying hardware. A container, on the other hand, can be created once and runs anywhere a container runtime is available (Linux, Windows, cloud, on-premise). Container runtime is the software that creates, starts and manages containers — the best-known example is Docker.
Created by the author

You can experiment faster with Docker — whether you’re testing a new ML model or setting up a data pipeline. You can package everything in a container and run it immediately. And you don’t have any “It works on my machine”-problems. Your container runs the same everywhere — so you can simply share it.

2 — Containers & Data Science: Do I really need Containers? And 4 reasons why the answer is yes.

As a data scientist, your main task is to analyze, process and model data to gain valuable insights and predictions, which in turn are important for management.

Of course, you don’t need to have the same in-depth knowledge of containers, Docker or Kubernetes as a DevOps Engineer or a Site Reliability Engineer (SRE). Nevertheless, it is worth having container knowledge at a basic level — because these are 4 examples of where you will come into contact with it sooner or later:

Model deployment

You are training a model. You not only want to use it locally but also make it available to others. To do this, you can pack it into a container and make it available via a REST API.

Let’s look at a concrete example: Your trained model runs in a Docker container with FastAPI or Flask. The server receives the requests, processes the data and returns ML predictions in real-time.

Reproducibility and easier collaboration

ML models and pipelines require specific libraries. For example, if you want to use a deep learning model like a Transformer, you need TensorFlow or PyTorch. If you want to train and evaluate classic machine learning models, you need Scikit-Learn, NumPy and Pandas. A Docker container now ensures that your code runs with exactly the same dependencies on every computer, server or in the cloud. You can also deploy a Jupyter Notebook environment as a container so that other people can access it and use exactly the same packages and settings.

Cloud integration

Containers include all packages, dependencies and configurations that an application requires. They therefore run uniformly on local computers, servers or cloud environments. This means you don’t have to reconfigure the environment.

For example, you write a data pipeline script. This works locally for you. As soon as you deploy it as a container, you can be sure that it will run in exactly the same way on AWS, Azure, GCP or the IBM Cloud.

Scaling with Kubernetes

Kubernetes helps you to orchestrate containers. But more on that below. If you now get a lot of requests for your ML model, you can scale it automatically with Kubernetes. This means that more instances of the container are started.

3 — First Practice, then Theory: Container creation even without much prior knowledge

Let’s take a look at an example that anyone can run through with minimal time — even if you haven’t heard much about Docker and containers. It took me 30 minutes.

We’ll set up a Jupyter Notebook inside a Docker container, creating a portable, reproducible Data Science environment. Once it’s up and running, we can easily share it with others and ensure that everyone works with the exact same setup.

0 — Install Docker Dekstop and create a project directory

To be able to use containers, we need Docker Desktop. To do this, we download Docker Desktop from the official website.

Now we create a new folder for the project. You can do this directly in the desired folder. I do this via Terminal — on Windows with Windows + R and open CMD.

We use the following command:

Screenshot taken by the author

1. Create a Dockerfile

Now we open VS Code or another editor and create a new file with the name ‘Dockerfile’. We save this file without an extension in the same directory. Why doesn’t it need an extension?

We add the following code to this file:

# Use the official Jupyter notebook image with SciPy
FROM jupyter/scipy-notebook:latest  

# Set the working directory inside the container
WORKDIR /home/jovyan/work  

# Copy all local files into the container
COPY . .

# Start Jupyter Notebook without token
CMD ["start-notebook.sh", "--NotebookApp.token=''"]

We have thus defined a container environment for Jupyter Notebook that is based on the official Jupyter SciPy Notebook image.

First, we define with FROM on which base image the container is built. jupyter/scipy-notebook:latest is a preconfigured Jupyter notebook image and contains libraries such as NumPy, SiPy, Matplotlib or Pandas. Alternatively, we could also use a different image here.

With WORKDIR we set the working directory within the container. /home/jovyan/work is the default path used by Jupyter. User jovyan is the default user in Jupyter Docker images. Another directory could also be selected — but this directory is best practice for Jupyter containers.

With COPY . . we copy all files from the local directory — in this case the Dockerfile, which is located in the jupyter-docker directory — to the working directory /home/jovyan/work in the container.

With CMD [“start-notebook.sh”, “ — NotebookApp.token=‘’’”] we specify the default start command for the container, specify the start script for Jupyter Notebook and define that the notebook is started without a token — this allows us to access it directly via the browser.

2. Create the Docker image

Next, we will build the Docker image. Make sure you have the previously installed Docker desktop open. We now go back to the terminal and use the following command:

cd jupyter-docker
docker build -t my-jupyter .

With cd jupyter-docker we navigate to the folder we created earlier. With docker build we create a Docker image from the Dockerfile. With -t my-jupyter we give the image a name. The dot means that the image will be built based on the current directory. What does that mean? Note the space between the image name and the dot.

The Docker image is the template for the container. This image contains everything needed for the application such as the operating system base (e.g. Ubuntu, Python, Jupyter), dependencies such as Pandas, Numpy, Jupyter Notebook, the application code and the startup commands. When we “build” a Docker image, this means that Docker reads the Dockerfile and executes the steps that we have defined there. The container can then be started from this template (Docker image).

We can now watch the Docker image being built in the terminal.

Screenshot taken by the author

We use docker images to check whether the image exists. If the output my-jupyter appears, the creation was successful.

docker images

If yes, we see the data for the created Docker image:

Screenshot taken by the author

3. Start Jupyter container

Next, we want to start the container and use this command to do so:

docker run -p 8888:8888 my-jupyter

We start a container with docker run. First, we enter the specific name of the container that we want to start. And with -p 8888:8888 we connect the local port (8888) with the port in the container (8888). Jupyter runs on this port. I do not understand.

Alternatively, you can also perform this step in Docker desktop:

Screenshot taken by the author

4. Open Jupyter Notebook & create a test notebook

Now we open the URL [http://localhost:8888](http://localhost:8888/) in the browser. You should now see the Jupyter Notebook interface.

Here we will now create a Python 3 notebook and insert the following Python code into it.

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 100)
y = np.sin(x)

plt.plot(x, y)
plt.title("Sine Wave")
plt.show()

Running the code will display the sine curve:

Screenshot taken by the author

5. Terminate the container

At the end, we end the container either with ‘CTRL + C’ in the terminal or in Docker Desktop.

With docker ps we can check in the terminal whether containers are still running and with docker ps -a we can display the container that has just been terminated:

Screenshot taken by the author

6. Share your Docker image

If you now want to upload your Docker image to a registry, you can do this with the following command. This will upload your image to Docker Hub (you need a Docker Hub account for this). You can also upload it to a private registry of AWS Elastic Container, Google Container, Azure Container or IBM Cloud Container.

docker login

docker tag my-jupyter your-dockerhub-name/my-jupyter:latest

docker push dein-dockerhub-name/mein-jupyter:latest

If you then open Docker Hub and go to your repositories in your profile, the image should be visible.

This was a very simple example to get started with Docker. If you want to dive a little deeper, you can deploy a trained ML model with FastAPI via a container.

4 — Your 101 Cheatsheet: The most important Docker commands & concepts at a glance

You can actually think of a container like a shipping container. Regardless of whether you load it onto a ship (local computer), a truck (cloud server) or a train (data center) — the content always remains the same.

The most important Docker terms

  • Container: Lightweight, isolated environment for applications that contains all dependencies.
  • Docker: The most popular container platform that allows you to create and manage containers.
  • Docker Image: A read-only template that contains code, dependencies and system libraries.
  • Dockerfile: Text file with commands to create a Docker image.
  • Kubernetes: Orchestration tool to manage many containers automatically.

The basic concepts behind containers

  • Isolation: Each container contains its own processes, libraries and dependencies
  • Portability: Containers run wherever a container runtime is installed.
  • Reproducibility: You can create a container once and it runs exactly the same everywhere.

The most basic Docker commands

docker --version # Check if Docker is installed
docker ps # Show running containers
docker ps -a # Show all containers (including stopped ones)
docker images # List of all available images
docker info # Show system information about the Docker installation

docker run hello-world # Start a test container
docker run -d -p 8080:80 nginx # Start Nginx in the background (-d) with port forwarding
docker run -it ubuntu bash # Start interactive Ubuntu container with bash

docker pull ubuntu # Load an image from Docker Hub
docker build -t my-app . # Build an image from a Dockerfile

Final Thoughts: Key takeaways as a data scientist

👉 With Containers you can solve the “It works on my machine” problem. Containers ensure that ML models, data pipelines, and environments run identically everywhere, independent of OS or dependencies.

👉 Containers are more lightweight and flexible than virtual machines. While VMs come with their own operating system and consume more resources, containers share the host operating system and start faster.

👉 There are three key steps when working with containers: Create a Dockerfile to define the environment, use docker build to create an image, and run it with docker run — optionally pushing it to a registry with docker push.

And then there’s Kubernetes.

A term that comes up a lot in this context: An orchestration tool that automates container management, ensuring scalability, load balancing and fault recovery. This is particularly useful for microservices and cloud applications.

Before Docker, VMs were the go-to solution (see more in ‘Virtualization & Containers for Data Science Newbiews’.) VMs offer strong isolation, but require more resources and start slower.

So, Docker was developed in 2013 by Solomon Hykes to solve this problem. Instead of virtualizing entire operating systems, containers run independently of the environment — whether on your laptop, a server or in the cloud. They contain all the necessary dependencies so that they work consistently everywhere.

I simplify tech for curious minds🚀 If you enjoy my tech insights on Python, data science, Data Engineering, machine learning and AI, consider subscribing to my substack.

Where Can You Continue Learning?

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Fortinet speeds threat detection with improved FortiAnalyzer

The package also now integrates with FortiAI, the vendor’s genAI assistant, to better support analytics and telemetry to help security teams speed threat investigation and response, the vendor stated. “FortiAI identifies the threats that need analysis from the data collected by FortiAnalyzer, primarily collected from FortiGates. By automating the collection,

Read More »

Aryaka adds AI-powered observability to SASE platform

Nadkarni explained that Aryaka runs unsupervised machine learning models on the data to identify anomalies and outliers in the data. For example, the models may detect a sudden spike in traffic to a domain that has not been seen before. This unsupervised analysis helps surface potential issues or areas of

Read More »

Power Moves: SOWEC’s new co-chair and more

Claire Mack has joined the Scottish Offshore Wind Energy Council (SOWEC) as its new industry co-chair. Mack was appointed by minister for climate action Dr Alasdair Allan to represent Scotland’s offshore wind industry for a two-year term. She will provide strategic leadership to SOWEC and work alongside the partnership’s subgroups and developer forum to deliver sector growth. In addition to her new role, Mack has been chief executive of Scottish Renewables since 2017. She is responsible for leading the organisation’s work to grow Scotland’s renewable energy industry and maintaining its position as a global leader in clean power. She replaces Brian McFarlane, SSE Renewables head of offshore development, who announced his intention to step down as SOWEC industry co-chair late last year. Since SOWEC’s inception in 2019, he has acted on behalf of Scotland’s offshore wind industry to drive forward SOWEC’s mission to coordinate and grow the sector. Acting minister for climate action Allan said: “Offshore wind is at the heart of the Scottish Government’s economic development agenda and the SOWEC is vital to driving forward action in support of the sector.” Mack added: “Offshore wind is one of Scotland’s key assets and our ability to turn our 40GW pipeline into successfully delivered projects is pivotal to our environmental and economic aspirations. “As I step into the role of co-chair at SOWEC during this critical point for Scotland’s £4 billion offshore wind sector, I would like to express my sincere gratitude to my predecessor, Brian McFarlane, for his untiring dedication and contribution to the sector.” © Supplied by Offshore Energies UKOEUK operator and developer chair Doris Reiter. Doris Reiter, BP senior vice-president for the North, has taken over as operator and developer chair on the board of Offshore Energies UK (OEUK). Having previously served as vice chair to the board,

Read More »

Expansion of Corpus Christi LNG in Texas Starts Delivery

Cheniere Energy Inc. has produced the first liquefied natural gas (LNG) cargo from a project expanding the Corpus Christi LNG (CCL) terminal in the namesake Texan city. CCL Stage 3 has seven midscale trains with an expected production capacity of over 10 million metric tons per annum (MMtpa), raising CCL’s output capacity to over 25 MMtpa from 10 trains. “First LNG production from the first train of the CCL Stage 3 Project was achieved in December 2024, and the first cargo of LNG was produced in February 2025”, Houston, Texas-based Cheniere said in its quarterly report. It plans to build two more mid-scale trains adjacent to the Stage 3 project for a further capacity addition of about 3 MMtpa. “In June 2024, we received a positive Environmental Assessment from the FERC and anticipate receiving all remaining necessary regulatory approvals for the project in 2025”, the report said. Citing new capacity unlocked from the expansion, Cheniere expects to surpass last year’s earnings. Consolidated adjusted EBITDA guidance for 2025 is $6.5 billion-$7 billion, compared to the actual 2024 figure of $6.2 billion. Distributable cash flow this year is expected to be $4.1 billion-$4.6 billion, compared to the actual 2024 figure of $3.7 billion. “We expect 2025 to be another record year for LNG production as Stage 3 trains are completed, and we look forward to delivering financial results within these ranges and further enhancing the long-term value proposition of Cheniere”, commented president and chief executive Jack Fusco. Last year Cheniere exported a record 646 LNG cargoes, or 2.33 trillion British thermal units. Cheniere posted $977 million in net profit for the fourth quarter (Q4) of 2024 and $3.25 billion for the full year. The figures were down 29 percent and 67 percent by year-ago comparisons, respectively. On a diluted basis, Q4 earnings

Read More »

Leveraging surplus interconnection could unleash 800 GW of energy the US needs today

Cassady Craighill is the technical education director at GridLab. The challenges facing the grid can often feel intimidating and beyond grasp. How much of the load growth is hype and how much is real? How do we ensure the financial burden of updating our grid and leading the world in energy innovation does not disproportionally fall on residential customers? How do operators and utilities prepare for the next cataclysmic flood, fire, or storm? How do we ensure that our 21st energy grid serves everyone across the country amidst a patchwork of different state policies and resources?  Those are all big questions that will take years to get exactly right. Luckily, there is an out-of-the-box solution laying on the table today that will get hundreds of energy projects online in no time and will save consumers money. Surplus interconnection, which allows new energy projects to plug into existing interconnection infrastructure at plants with low capacity factors, could nearly double the generation in the United States by 2030 and at a fraction of the cost and time of a traditional interconnection process.  Affordable, clean, and abundant power is key to keeping businesses operating in the U.S. This sentiment dominates the rhetoric in Energy Secretary Chris Wright’s first Secretarial order issued this month and his message of “energy addition.” At its core, surplus interconnection is adding energy resources to the grid as quickly and cheaply as possible. In his order, Secretary Wright insists “we must expand energy production and reduce energy costs for American families and businesses.” Leveraging existing interconnection capacity at thermal plants is the fastest way to expand energy production by shaving years off the interconnection timeline, saving about $200 billion by avoiding costly new infrastructure and lengthy new buildouts, and adding reliable resources to the grid. We need this solution

Read More »

AR7 reform needs to go further, industry leader argues

The UK government has announced consultations to reform its flagship renewables funding scheme, the Allocation Round (AR). The changes to the initiative will see a relaxation of eligibility criteria on planning consent for fixed-bottom offshore wind while changing how budgets for the technology are set and published. This comes soon after the government unveiled plans to deliver up to £200 million of investment to offshore wind developers in this year’s bidding round for renewable energy. The “clean industry bonus” is set to support offshore wind developers, on the condition they prioritise their investment in places “that need it most”. The cash will be available to all offshore wind projects that come through the next auction, AR7, this year. This offers successful bidders a contract for difference (CfD), a fixed contract price on the energy produced. The bonus will come with an initial £27 million per gigawatt (GW) of offshore wind projects. Offering needed ‘certainty’ for wind developers Friday’s update sets out to unlock further investment in the UK’s green energy agenda as it gives wind firms “the certainty they need”. Energy secretary Ed Miliband said:  “Our bold new reforms will give developers the certainty they need to build clean energy in the UK, supporting our mission to become a clean energy superpower and bring down bills for good.” The UK government has touted last year’s AR6 as a success, following 2023’s AR5 which delivered no new offshore wind projects. Last year delivered 3.7GW of offshore wind capacity, despite this, the scheme still fell short of what was needed to deliver net zero ambitions. © Supplied by Flotation EnergyA floating wind turbine, similar to those that will make up the Green Volt development. Government figures, which clump together offshore wind and floating wind, claim that 5GW was unlocked in last year’s auction.

Read More »

Dan McGrail: What to know about the new interim CEO of GB Energy

The Labour government has appointed Dan McGrail, the chief executive of trade body RenewableUK, as the interim leader of its flagship state-owned GB Energy. McGrail will take up the Aberdeen-based role in March on a six-month secondment, amid concerns over the potential difficulty of finding a suitable permanent candidate. Announcing the appointment, UK energy secretary Ed Miliband and GB Energy’s startup chair, Juergen Maier, praised McGrail’s experience in renewable energy and his ability to drive investment and job creation in the sector. Meanwhile, McGrail said he “can’t wait to get stuck in” at GB Energy, where he will once again work under Maier, his former boss at Siemens UK. “There is no doubt at all that delivering the government’s Clean Power 2030 mission is a generational opportunity for the UK – and whilst it faces hurdles – some of them big, Great British Energy gives the people of the UK a stake in that opportunity and role to play to work alongside the amazing companies in this industry to achieve even more,” he said. Dan McGrail’s career McGrail joined RenewableUK as chief executive in May 2021 after a long career at Siemens UK, joining the company in 2004 as a commercial project manager. He rose through the ranks of the Siemens, holding roles in the company’s offshore wind turbine manufacturing unit and as director of strategy for north west Europe. During this time, RenewableUK said he led Siemens plans to develop the offshore wind turbine blade factory and port facility in Hull. McGrail was part of negotiations with the UK government and oversaw a £160m investment from Siemens in the facility, alongside a £150m investment from Associated British Ports to revitalise Hull’s Alexandra Dock. © Supplied by FTI ConsultingSiemens Gamesa’s base in Hull After his involvement in the Hull project,

Read More »

Miami Chosen by Saudi Arabia for Second USA Investment Office

Saudi Arabia will open an investment office in Miami, after the kingdom’s de-facto ruler pledged to boost US investment. In addition to US investments, Saudi Arabia will use Miami as a “gateway” to South America, Minister of Investment Khalid Bin Abdulaziz Al-Falih said Thursday at the Future Investment Initiative Institute’s summit in Miami Beach. The Invest Saudi outpost in the Florida city will be the second in the US after Washington. Miami has been raising its economic and political profile in recent years, as a string of investment and banking firms have boosted their presence there. Financial conglomerate Citadel is relocating to Miami while Goldman Sachs Group Inc. and Dan Sundheim’s D1 Capital Partners are among those that have expanded there.  “We want connectivity into the important hubs of where important business entities are converging, and Miami is emerging as one, certainly amongst some of the funds and family offices, and also in tech now,” Al-Falih said in an interview after his talk. “We also believe Miami gives us good connectivity into Latin America.” Saudi Crown Prince Mohammed Bin Salman has promised President Donald Trump that the oil-rich kingdom would boost trade and investment in the US by $600 billion over the next four years. Trump called for more. However, Saudi Arabia may not be the money spigot participants at the third FII forum want it to be. The kingdom is facing a budget deficit, and foreign investment may be at odds with its own “Saudi First” agenda to make the country a diversified economy fit for the coming decades. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed. MORE FROM THIS AUTHOR Bloomberg

Read More »

Ireland says there will be no computation without generation

Stanish said that, in 2023, she wrote a paper that predicted “by 2028, more than 70% of multinational enterprises will alter their data center strategies due to limited energy supplies and data center moratoriums, up from only about 5% in 2023. It has been interesting watching this trend evolve as expected, with Ireland being a major force in this conversation since the boycotts against data center growth started a few years ago.” Fair, equitable, and stable electricity allocation, she said, “means that the availability of electricity for digital services is not guaranteed in the future, and I expect these policies, data center moratoriums, and regional rejections will only continue and expand moving forward.” Stanish pointed out that this trend is not just occurring in Ireland. “Many studies show that, globally, enterprises’ digital technologies are consuming energy at a faster rate than overall growth in energy supply (though, to be clear, these studies mostly assume a static position on energy efficiency of current technologies, and don’t take into account potential for nuclear or hydrogen to assuage some of these supply issues).” If taken at face value, she said, this means that a lack of resources could cause widespread electricity shortages in data centers over the next several years. To mitigate this, Stanish said, “so far, data center moratoriums and related constraints (including reduced tax incentives) have been enacted in the US (specifically Virginia and Georgia), Denmark, Singapore, and other countries, in response to concerns about the excessive energy consumption of IT, particularly regarding compute-intense AI workloads and concerns regarding an IT energy monopoly in certain regions. As a result, governments (federal, state, county, etc.) are working to ensure that consumption does not outpace capacity.” Changes needed In its report, the CRU stated, “a safe and secure supply of energy is essential

Read More »

Perspective: Can We Solve the AI Data Center Power Crisis with Microgrids?

President Trump announced a$500 billion private sector investment in the nation’s Artificial Intelligence (AI) infrastructure last month. The investment will come from The Stargate Project, a joint venture between OpenAI, SoftBank, Oracle and MGX, which intends to build 20 new AI data centers in the U.S in the next four to five years. The Stargate Project committed$100 billion for immediate deployment and construction has already begun on its first data center in Texas. At approximately a half a million square feet each, the partners say these new facilities will cement America’s leadership in AI, create jobs and stimulate economic growth. Stargate is not the only game in town, either. Microsoft is expected to invest$80 billion in AI data center development in 2025, with Google, AWS and Meta also spending big. While all this investment in AI infrastructure is certainly exciting, experts say there’s one lingering question that’s yet to be answered and it’s a big one: How are we going to power all these AI data centers? This will be one of the many questions tackled duringMicrogrid Knowledge’s annual conference, which will be held in Texas April 15-17 at the Sheraton Dallas. “Powering Data Centers: Collaborative Microgrid Solutions for a Growing Market” will be one of the key sessions on April 16. Industry experts will gather to discuss how private entities, developers and utilities can work together to deploy microgrids and distributed energy technologies that address the data center industry’s power needs. The panel will share solutions, technologies and strategies that will favorably position data centers in the energy queue. In advance of this session, we sat down with two microgrid experts to learn more about the challenges facing the data center industry and how microgrids can address the sector’s growing energy needs. We spoke with Michael Stadler, co-founder and

Read More »

Data Center Tours: Iron Mountain VA-1, Manassas, Virginia

Iron Mountain Northern Virginia Overview Iron Mountain’s Northern Virginia data centers VA-1 through VA-7 are situated on a 142-acre highly secure campus in Prince William County, Virginia. Located at 11680 Hayden Road in Manassas, Iron Mountain VA-1 spans 167,958 sq. ft. and harbors 12.4 MW of total capacity to meet colocation needs. The 36 MW VA-2 facility stands nearby. The total campus features a mixture of single and multi-tenant facilities which together provide more than 2,000,000 SF of highly efficient green colocation space for enterprises, federal agencies, service providers and hyperscale clouds.  The company notes that its Manassas campus offers tax savings compared to Ashburn and exceptional levels of energy-efficiency as well as a diverse and accessible ecosystem of cloud, network and other service providers.  Iron Mountain’s Virginia campus has 9 total planned data centers, with 5 operational facilities to date and two more data centers coming soon. VA-2 recently became the first data center in the United States to achieve DCOS Maturity Level 3.    As we continued the tour, Kinra led the way toward the break room, an area where customers can grab coffee or catch up on work. Unlike the high-end aesthetic of some other colocation providers, Iron Mountain’s approach is more practical and focused on functionality. At the secure shipping and receiving area, Kinra explained the process for handling customer equipment. “This is where our customers ship their equipment into,” he said. “They submit a ticket, send their shipments in, and we’ll take it, put it aside for them, and let them know when it’s here. Sometimes they ask us to take it to their environment, which we’ll do for them via a smart hands ticket.” Power Infrastructure and Security Measures The VA-1 campus is supported by a single substation, providing the necessary power for its growing

Read More »

Land and Expand: DPO, Microsoft, JLL and BlackChamber, Prologis, Core Scientific, Overwatch Capital

Land and Expand is a periodic feature at Data Center Frontier highlighting the latest data center development news, including new sites, land acquisitions and campus expansions. Here are some of the new and notable developments from hyperscale and colocation data center developers and operators about which we’ve been reading lately. DPO to Develop $200 Million AI Data Center in Wisconsin Rapids; Strategic Partnership with Billerud’s CWPCo Unlocks Hydroelectric Power for High-Density AI Compute Digital Power Optimization (DPO) is moving forward with plans to build a $200 million high-performance computing (HPC) data center in Wisconsin Rapids, Wisconsin. The project, designed to support up to 20 megawatts (MW) of artificial intelligence (AI) computing, leverages an innovative partnership with Consolidated Water Power Company (CWPCo), a subsidiary of global packaging leader Billerud. DPO specializes in developing and operating data centers optimized for power-dense computing. By partnering with utilities and independent power producers, DPO colocates its facilities at energy generation sites, ensuring direct access to sustainable power for AI, HPC, and blockchain computing. The company is privately held. Leveraging Power Infrastructure for Speed-to-Energization CWPCo, a regulated utility subsidiary, has operated hydroelectric generation assets since 1894, reliably serving industrial and commercial customers in Wisconsin Rapids, Biron, and Stevens Point. Parent company Billerud is a global leader in high-performance packaging materials, committed to sustainability and innovation. The company operates nine production facilities across Sweden, the USA, and Finland, employing 5,800 people in over 19 countries.  The data center will be powered by CWPCo’s renewable hydroelectric assets, tapping into the utility’s existing 32 megawatts of generation capacity. The partnership grants DPO a long-term land lease—extending up to 50 years—alongside interconnection rights to an already-energized substation and a firm, reliable power supply. “AI infrastructure is evolving at an unprecedented pace, and access to power-dense sites is critical,” said Andrew

Read More »

Data center spending to top $1 trillion by 2029 as AI transforms infrastructure

His projections account for recent advances in AI and data center efficiency, he says. For example, the open-source AI model from Chinese company DeepSeek seems to have shown that an LLM can produce very high-quality results at a very low cost with some clever architectural changes to how the models work. These improvements are likely to be quickly replicated by other AI companies. “A lot of these companies are trying to push out more efficient models,” says Fung. “There’s a lot of effort to reduce costs and to make it more efficient.” In addition, hyperscalers are designing and building their own chips, optimized for their AI workloads. Just the accelerator market alone is projected to reach $392 billion by 2029, Dell’Oro predicts. By that time, custom accelerators will outpace commercially available accelerators such as GPUs. The deployment of dedicated AI servers also has an impact on networking, power and cooling. As a result, spending on data center physical infrastructure (DCPI) will also increase, though at a more moderate pace, growing by 14% annually to $61 billion in 2029.  “DCPI deployments are a prerequisite to support AI workloads,” says Tam Dell’Oro, founder of Dell’Oro Group, in the report. The research firm raised its outlook in this area due to the fact that actual 2024 results exceeded its expectations, and demand is spreading from tier one to tier two cloud service providers. In addition, governments and tier one telecom operators are getting involved in data center expansion, making it a long-term trend.

Read More »

The Future of Property Values and Power in Virginia’s Loudoun County and ‘Data Center Alley’

Loudoun County’s FY 2026 Proposed Budget Is Released This week, Virginia’s Loudoun County released its FY 2026 Proposed Budget. The document notes how data centers are a major driver of revenue growth in Loudoun County, contributing significantly to both personal and real property tax revenues. As noted above, data centers generate almost 50% of Loudoun County property tax revenues. Importantly, Loudoun County has now implemented measures such as a Revenue Stabilization Fund (RSF) to manage the risks associated with this revenue dependency. The FY 2026 budget reflects the strong growth in data center-related revenue, allowing for tax rate reductions while still funding critical services and infrastructure projects. But the county is mindful of the potential volatility in data center revenue and is planning for long-term fiscal sustainability. The FY 2026 Proposed Budget notes how Loudoun County’s revenue from personal property taxes, particularly from data centers, has grown significantly. From FY 2013 to FY 2026, revenue from this source has increased from $60 million to over $800 million. Additionally, the county said its FY 2026 Proposed Budget benefits from $150 million in new revenue from the personal property tax portfolio, with $133 million generated specifically from computer equipment (primarily data centers). The county said data centers have also significantly impacted the real property tax portfolio. In Tax Year (TY) 2025, 73% of the county’s commercial portfolio is composed of data centers. The county said its overall commercial portfolio experienced a 50% increase in value between TY 2024 and TY 2025, largely driven by the appreciation of data center properties. RSF Meets Positive Economic Outlook The Loudoun County Board of Supervisors created the aformentioned Revenue Stabilization Fund (RSF) to manage the risks associated with the county’s reliance on data center-related revenue. The RSF targets 10% of data center-related real and personal property tax

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »