Stay Ahead, Stay ONMINE

Why Data Scientists Should Care about Containers — and Stand Out with This Knowledge

“I train models, analyze data and create dashboards — why should I care about Containers?” Many people who are new to the world of data science ask themselves this question. But imagine you have trained a model that runs perfectly on your laptop. However, error messages keep popping up in the cloud when others access […]

“I train models, analyze data and create dashboards — why should I care about Containers?”

Many people who are new to the world of data science ask themselves this question. But imagine you have trained a model that runs perfectly on your laptop. However, error messages keep popping up in the cloud when others access it — for example because they are using different library versions.

This is where containers come into play: They allow us to make machine learning models, data pipelines and development environments stable, portable and scalable — regardless of where they are executed.

Let’s take a closer look.

Table of Contents
1 — Containers vs. Virtual Machines: Why containers are more flexible than VMs
2 — Containers & Data Science: Do I really need Containers? And 4 reasons why the answer is yes.
3 — First Practice, then Theory: Container creation even without much prior knowledge
4 — Your 101 Cheatsheet: The most important Docker commands & concepts at a glance
Final Thoughts: Key takeaways as a data scientist
Where Can You Continue Learning?

1 — Containers vs. Virtual Machines: Why containers are more flexible than VMs

Containers are lightweight, isolated environments. They contain applications with all their dependencies. They also share the kernel of the host operating system, making them fast, portable and resource-efficient.

I have written extensively about virtual machines (VMs) and virtualization in ‘Virtualization & Containers for Data Science Newbiews’. But the most important thing is that VMs simulate complete computers and have their own operating system with their own kernel on a hypervisor. This means that they require more resources, but also offer greater isolation.

Both containers and VMs are virtualization technologies.

Both make it possible to run applications in an isolated environment.

But in the two descriptions, you can also see the 3 most important differences:

  • Architecture: While each VM has its own operating system (OS) and runs on a hypervisor, containers share the kernel of the host operating system. However, containers still run in isolation from each other. A hypervisor is the software or firmware layer that manages VMs and abstracts the operating system of the VMs from the physical hardware. This makes it possible to run multiple VMs on a single physical server.
  • Resource consumption: As each VM contains a complete OS, it requires a lot of memory and CPU. Containers, on the other hand, are more lightweight because they share the host OS.
  • Portability: You have to customize a VM for different environments because it requires its own operating system with specific drivers and configurations that depend on the underlying hardware. A container, on the other hand, can be created once and runs anywhere a container runtime is available (Linux, Windows, cloud, on-premise). Container runtime is the software that creates, starts and manages containers — the best-known example is Docker.
Created by the author

You can experiment faster with Docker — whether you’re testing a new ML model or setting up a data pipeline. You can package everything in a container and run it immediately. And you don’t have any “It works on my machine”-problems. Your container runs the same everywhere — so you can simply share it.

2 — Containers & Data Science: Do I really need Containers? And 4 reasons why the answer is yes.

As a data scientist, your main task is to analyze, process and model data to gain valuable insights and predictions, which in turn are important for management.

Of course, you don’t need to have the same in-depth knowledge of containers, Docker or Kubernetes as a DevOps Engineer or a Site Reliability Engineer (SRE). Nevertheless, it is worth having container knowledge at a basic level — because these are 4 examples of where you will come into contact with it sooner or later:

Model deployment

You are training a model. You not only want to use it locally but also make it available to others. To do this, you can pack it into a container and make it available via a REST API.

Let’s look at a concrete example: Your trained model runs in a Docker container with FastAPI or Flask. The server receives the requests, processes the data and returns ML predictions in real-time.

Reproducibility and easier collaboration

ML models and pipelines require specific libraries. For example, if you want to use a deep learning model like a Transformer, you need TensorFlow or PyTorch. If you want to train and evaluate classic machine learning models, you need Scikit-Learn, NumPy and Pandas. A Docker container now ensures that your code runs with exactly the same dependencies on every computer, server or in the cloud. You can also deploy a Jupyter Notebook environment as a container so that other people can access it and use exactly the same packages and settings.

Cloud integration

Containers include all packages, dependencies and configurations that an application requires. They therefore run uniformly on local computers, servers or cloud environments. This means you don’t have to reconfigure the environment.

For example, you write a data pipeline script. This works locally for you. As soon as you deploy it as a container, you can be sure that it will run in exactly the same way on AWS, Azure, GCP or the IBM Cloud.

Scaling with Kubernetes

Kubernetes helps you to orchestrate containers. But more on that below. If you now get a lot of requests for your ML model, you can scale it automatically with Kubernetes. This means that more instances of the container are started.

3 — First Practice, then Theory: Container creation even without much prior knowledge

Let’s take a look at an example that anyone can run through with minimal time — even if you haven’t heard much about Docker and containers. It took me 30 minutes.

We’ll set up a Jupyter Notebook inside a Docker container, creating a portable, reproducible Data Science environment. Once it’s up and running, we can easily share it with others and ensure that everyone works with the exact same setup.

0 — Install Docker Dekstop and create a project directory

To be able to use containers, we need Docker Desktop. To do this, we download Docker Desktop from the official website.

Now we create a new folder for the project. You can do this directly in the desired folder. I do this via Terminal — on Windows with Windows + R and open CMD.

We use the following command:

Screenshot taken by the author

1. Create a Dockerfile

Now we open VS Code or another editor and create a new file with the name ‘Dockerfile’. We save this file without an extension in the same directory. Why doesn’t it need an extension?

We add the following code to this file:

# Use the official Jupyter notebook image with SciPy
FROM jupyter/scipy-notebook:latest  

# Set the working directory inside the container
WORKDIR /home/jovyan/work  

# Copy all local files into the container
COPY . .

# Start Jupyter Notebook without token
CMD ["start-notebook.sh", "--NotebookApp.token=''"]

We have thus defined a container environment for Jupyter Notebook that is based on the official Jupyter SciPy Notebook image.

First, we define with FROM on which base image the container is built. jupyter/scipy-notebook:latest is a preconfigured Jupyter notebook image and contains libraries such as NumPy, SiPy, Matplotlib or Pandas. Alternatively, we could also use a different image here.

With WORKDIR we set the working directory within the container. /home/jovyan/work is the default path used by Jupyter. User jovyan is the default user in Jupyter Docker images. Another directory could also be selected — but this directory is best practice for Jupyter containers.

With COPY . . we copy all files from the local directory — in this case the Dockerfile, which is located in the jupyter-docker directory — to the working directory /home/jovyan/work in the container.

With CMD [“start-notebook.sh”, “ — NotebookApp.token=‘’’”] we specify the default start command for the container, specify the start script for Jupyter Notebook and define that the notebook is started without a token — this allows us to access it directly via the browser.

2. Create the Docker image

Next, we will build the Docker image. Make sure you have the previously installed Docker desktop open. We now go back to the terminal and use the following command:

cd jupyter-docker
docker build -t my-jupyter .

With cd jupyter-docker we navigate to the folder we created earlier. With docker build we create a Docker image from the Dockerfile. With -t my-jupyter we give the image a name. The dot means that the image will be built based on the current directory. What does that mean? Note the space between the image name and the dot.

The Docker image is the template for the container. This image contains everything needed for the application such as the operating system base (e.g. Ubuntu, Python, Jupyter), dependencies such as Pandas, Numpy, Jupyter Notebook, the application code and the startup commands. When we “build” a Docker image, this means that Docker reads the Dockerfile and executes the steps that we have defined there. The container can then be started from this template (Docker image).

We can now watch the Docker image being built in the terminal.

Screenshot taken by the author

We use docker images to check whether the image exists. If the output my-jupyter appears, the creation was successful.

docker images

If yes, we see the data for the created Docker image:

Screenshot taken by the author

3. Start Jupyter container

Next, we want to start the container and use this command to do so:

docker run -p 8888:8888 my-jupyter

We start a container with docker run. First, we enter the specific name of the container that we want to start. And with -p 8888:8888 we connect the local port (8888) with the port in the container (8888). Jupyter runs on this port. I do not understand.

Alternatively, you can also perform this step in Docker desktop:

Screenshot taken by the author

4. Open Jupyter Notebook & create a test notebook

Now we open the URL [http://localhost:8888](http://localhost:8888/) in the browser. You should now see the Jupyter Notebook interface.

Here we will now create a Python 3 notebook and insert the following Python code into it.

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 10, 100)
y = np.sin(x)

plt.plot(x, y)
plt.title("Sine Wave")
plt.show()

Running the code will display the sine curve:

Screenshot taken by the author

5. Terminate the container

At the end, we end the container either with ‘CTRL + C’ in the terminal or in Docker Desktop.

With docker ps we can check in the terminal whether containers are still running and with docker ps -a we can display the container that has just been terminated:

Screenshot taken by the author

6. Share your Docker image

If you now want to upload your Docker image to a registry, you can do this with the following command. This will upload your image to Docker Hub (you need a Docker Hub account for this). You can also upload it to a private registry of AWS Elastic Container, Google Container, Azure Container or IBM Cloud Container.

docker login

docker tag my-jupyter your-dockerhub-name/my-jupyter:latest

docker push dein-dockerhub-name/mein-jupyter:latest

If you then open Docker Hub and go to your repositories in your profile, the image should be visible.

This was a very simple example to get started with Docker. If you want to dive a little deeper, you can deploy a trained ML model with FastAPI via a container.

4 — Your 101 Cheatsheet: The most important Docker commands & concepts at a glance

You can actually think of a container like a shipping container. Regardless of whether you load it onto a ship (local computer), a truck (cloud server) or a train (data center) — the content always remains the same.

The most important Docker terms

  • Container: Lightweight, isolated environment for applications that contains all dependencies.
  • Docker: The most popular container platform that allows you to create and manage containers.
  • Docker Image: A read-only template that contains code, dependencies and system libraries.
  • Dockerfile: Text file with commands to create a Docker image.
  • Kubernetes: Orchestration tool to manage many containers automatically.

The basic concepts behind containers

  • Isolation: Each container contains its own processes, libraries and dependencies
  • Portability: Containers run wherever a container runtime is installed.
  • Reproducibility: You can create a container once and it runs exactly the same everywhere.

The most basic Docker commands

docker --version # Check if Docker is installed
docker ps # Show running containers
docker ps -a # Show all containers (including stopped ones)
docker images # List of all available images
docker info # Show system information about the Docker installation

docker run hello-world # Start a test container
docker run -d -p 8080:80 nginx # Start Nginx in the background (-d) with port forwarding
docker run -it ubuntu bash # Start interactive Ubuntu container with bash

docker pull ubuntu # Load an image from Docker Hub
docker build -t my-app . # Build an image from a Dockerfile

Final Thoughts: Key takeaways as a data scientist

👉 With Containers you can solve the “It works on my machine” problem. Containers ensure that ML models, data pipelines, and environments run identically everywhere, independent of OS or dependencies.

👉 Containers are more lightweight and flexible than virtual machines. While VMs come with their own operating system and consume more resources, containers share the host operating system and start faster.

👉 There are three key steps when working with containers: Create a Dockerfile to define the environment, use docker build to create an image, and run it with docker run — optionally pushing it to a registry with docker push.

And then there’s Kubernetes.

A term that comes up a lot in this context: An orchestration tool that automates container management, ensuring scalability, load balancing and fault recovery. This is particularly useful for microservices and cloud applications.

Before Docker, VMs were the go-to solution (see more in ‘Virtualization & Containers for Data Science Newbiews’.) VMs offer strong isolation, but require more resources and start slower.

So, Docker was developed in 2013 by Solomon Hykes to solve this problem. Instead of virtualizing entire operating systems, containers run independently of the environment — whether on your laptop, a server or in the cloud. They contain all the necessary dependencies so that they work consistently everywhere.

I simplify tech for curious minds🚀 If you enjoy my tech insights on Python, data science, Data Engineering, machine learning and AI, consider subscribing to my substack.

Where Can You Continue Learning?

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chinese cyberspies target VMware vSphere for long-term persistence

Designed to work in virtualized environments The CISA, NSA, and Canadian Cyber Center analysts note that some of the BRICKSTORM samples are virtualization-aware and they create a virtual socket (VSOCK) interface that enables inter-VM communication and data exfiltration. The malware also checks the environment upon execution to ensure it’s running

Read More »

IBM boosts DNS protection for multicloud operations

“In addition to this DNS synchronization, you can publish DNS configurations to your Amazon Simple Storage Service (S3) bucket. As you implement DNS changes, the S3 bucket will automatically update. The ability to store multiple configurations in your S3 bucket allows you to choose the most appropriate restore point if

Read More »

Cloudflare firewall reacts badly to React exploit mitigation

During the same window, Downdetector saw a spike in problem reports for enterprise services including Shopify, Zoom, Claude AI, and Amazon Web Services, and a host of consumer services from games to dating apps. Cloudflare explained the outage on its service status page: “A change made to how Cloudflare’s Web

Read More »

Eni to Supply LNG to Thailand for 10 Years

Eni SpA has signed a 10-year deal to supply Thailand’s Gulf Development Co 800,000 metric tons a year of liquefied natural gas (LNG). “The LNG will be delivered at regasification terminals located in the country starting from 2027”, the Italian state-backed integrated energy company said in an online statement. The new contract is on top of a two-year agreement signed 2024 under which Eni is to supply Gulf, a multi-sector company, about 500,000 metric tons per annum of LNG starting 2025. “The agreement is Eni’s first long-term LNG supply to Thailand, in a move designed to strengthen its presence in Asia”, Eni said. A day earlier Eni said it had won a deal to supply Turkiye’s state-owned Boru Hatlari ile Petrol Tasima AS (BOTAS) around 400,000 metric tons per year of LNG for 10 years. The deal is on top of an earlier one signed September under which BOTAS committed to buying 400,0000 metric tons a year for three years from Eni, Eni said in a press release. BOTAS said September 12 it had signed agreements with Eni, BP PLC, Cheniere Energy Inc, Equinor ASA, Hartree Partners LP, JERA Co Inc, SEFE Securing Energy for Europe GmbH and Shell PLC for around 15 billion cubic meters (529.72 billion cubic feet) of LNG. The volumes are to be delivered to Turkiye in 2025-28.   Eni said of the 10-year contract, “The agreement is Eni’s first long-term LNG sale to Turkiye, confirming the growing role of LNG in supporting the country’s energy needs, and is in line with Eni’s strategy to diversify its global LNG footprint, expanding its customer base in markets with high potential and growing its LNG portfolio to approximately 20 million metric tons per annum [MMtpa]”. On December 2 Eni said the second phase of Congo LNG in the Republic of the Congo had started up. The project now

Read More »

Eco Atlantic, Navitas Ink Portfolio Partnership

Eco (Atlantic) Oil & Gas Ltd has signed a binding “framework agreement” to bring in Navitas Petroleum LP as a partner in Guyana’s Orinduik and South Africa’s Block 1 CBK, both offshore exploration blocks, and potentially expand the partnership across Eco’s current and future assets. The companies agreed to enter into a deal for Navitas, an Israeli oil and gas exploration and production company mainly operating in the United States, to buy an 80 percent operating stake in Orinduik for $2.5 million, Eco said in an online statement. Eco, a Canadian oil and gas explorer focused on the Atlantic Margin, will retain 20 percent. Orinduik, in the proven Suriname-Guyana basin, has yielded two discoveries to date, Jethro-1 and Joe-1 in 2019, Eco says on its website. The license area sits 11 kilometers (6.84 miles) up-dip the Liza discovery and six kilometers up-dip the Hammerhead discovery in the Exxon Mobil Corp-operated Stabroek block, according to Eco. Orinduik spans 1,354 square kilometers (522.78 square miles). It sits 170 kilometers from shore, according to Eco. “Eco’s remaining 20 percent working interest will be carried in respect of the work to be performed in the Orinduik Block, which may include drilling the first exploration well or performing an appraisal program over the existing Jethro-1 and Joe-1 heavy oil discoveries”, the statement said. “The Orinduik carry is capped at $11 million net to Eco and excludes mobilization costs, if any”. In South Africa Navitas will obtain a maximum 47.5 percent operating interest in Block 1 CBK for $4 million. Eco said it has concurrently entered into an “option agreement” with OrangeBasin Energies Pty Ltd, formerly Tosaco Energy Pty Ltd, to purchase 20 percent from the current partner. This would raise Eco’s ownership to 95 percent before Navitas’ acquisition. “Under the option agreement, if exercised in full by Eco, OrangeBasin Energies

Read More »

Equinor Starts Production at Norway’s Verdande

Equinor ASA and its partners have started up the Verdande field in the Norwegian Sea, the second project to be tied back to the Norne floating production, storage and offloading vessel (FPSO) this year. “With reserves of 36 million barrels of oil, Verdande helps extend Norne’s production beyond 2030”, the Norwegian majority state-owned company said in an online statement. “The Norwegian continental shelf is changing, and many of the fields being developed are smaller subsea fields tied back to existing infrastructure”, Equinor said. “This approach reduces both costs and environmental footprint”. Verdande mainly contains oil, with associated gas, according to Equinor. It holds the Cape Vulture and Alve Nord East discoveries, proven in 2017 and 2020 respectively. Three wells have been tied back to the Norne field via a pipeline, Equinor said. Authorities approved the development plan 2023. Verdande sits about seven kilometers (4.35 miles) north of Norne and around 200 kilometers from the town of Sandnessjøen, according to Equinor. Equinor operates Verdande with a 59.27 percent stake via Equinor Energy AS. Petoro AS, also owned by the Norwegian government, holds 22.41 percent. DNO ASA owns 10.5 percent through DNO Norge AS, Aker BP ASA 3.5 percent, Japan Petroleum Exploration Co Ltd 3.5 percent through Japex Norge AS and Poland’s state-backed Orlen SA 0.83 percent through Orlen Upstream Norway AS. “Investments in Verdande amount to just over NOK 6 billion [$593.84 million], and the project has generated significant ripple effects for the Norwegian supplier industry”, Equinor noted. “TechnipFMC, headquartered in Kongsberg, supplied subsea production equipment”, it said. “Engineering and project management were carried out in Kongsberg, where the subsea control module was also built. The template and manifold were manufactured by Agility in Tønsberg, with suction anchors from Westcon Helgeland in Nesna. “Modifications to Norne enabling the FPSO to receive

Read More »

New Fortress Energy Seals Deal to Continue Supplying Gas to Puerto Rico

New Fortress Energy Inc (NFE) has received approval from local authorities to continue delivering natural gas for Puerto Rico’s power system for seven more years. The consent from the Financial Oversight and Management Board for Puerto Rico provides for the supply of about 75 trillion British thermal units (TBtu), New York City-based NFE said in an online statement. “Under the terms of the agreement, NFE will supply reliable, lower-emission natural gas to help enhance grid stability and support cleaner power generation across Puerto Rico’s energy system”, NFE said. According to NFE’s September 16 announcement about the agreed contract terms, the agreement involved “minimum annual take-or-pay volumes of 40 TBtu, increasing to up to 50 TBtu if certain conditions are met”. “This landmark agreement provides two critical benefits to the island. First, it establishes security of supply in San Juan for the next seven years for power plants currently running on LNG”, NFE chief executive Wes Edens said then. “Second, it provides for incremental LNG volumes to be delivered, allowing for the conversion of additional gas-ready plants currently burning diesel, resulting in hundreds of millions of dollars in energy savings for Puerto Ricans”. NFE said at the time, “Pricing of the volumes supplied through the GSA [Gas Supply Agreement] is set at a blend of 115 percent of Henry Hub plus $7.95/million Btu, excluding natural gas supplied to the units at San Juan 5 & 6 (which has historically consumed ~20 TBtu per year). Instead, these volumes are priced at 115 percent of Henry Hub plus $6.50/MMBtu”. According to the September statement, NFE expects to source the LNG under the new GSA from its Fast LNG facility in Altamira, Mexico. With a capacity of 1.4 million metric tons per annum, the project started operations in the fourth quarter of 2024, according to NFE. On March 17 NFE said it had amended the

Read More »

BGN Plans Global Gas Push Ahead of New Supplies

Energy trader BGN is set to expand its fledgling natural gas business into a global portfolio with stakes in plants, vessels and pipelines.  The push comes as the market for liquefied natural gas is set to boom, with US exports ramping up and Qatar, another major producer, also adding output. While that’s likely to push prices lower, the wave of extra supplies is poised to create new trading opportunities. The firm is in talks to buy LNG on contracts as long as 15 years, as well as equity in U.S. export plants, the company’s co-heads of LNG, Ruben Mosquera Arias and Maria Eugenia Suardiaz, said in an interview in Istanbul on Thursday. BGN got its start in the market for liquefied petroleum gas and has amassed a fleet of about 40 ships. In recent years, it has expanded rapidly into crude, oil products and metals.    “In LNG, we would like to be present globally as well, from the Atlantic basin to Asia Pacific,” said Suardiaz, declining to provide details on the volume they plan to handle.  Producers are set to add a record 300 billion cubic meters of annual export capacity by 2030, the International Energy Agency wrote last month in a report. That’s poised to reshape the market after years of scarcity. “We want to capture this wave,” said Mosquera Arias.  The company is also applying for licenses to buy capacity in European pipelines. It expects to take delivery of its first newbuild LNG carriers in the next two years, although the executives declined to provide more details.  BGN started its LNG team in 2024 and sold spot cargoes to both Egypt and Germany earlier this year. In the summer, it struck a deal to supply as many as 42 shipments to the North African country, where it’s already a major

Read More »

Crude Finishes Higher on Short Covering

Oil gained, finishing the week positive as investors assessed the murky outlook for a cease-fire in Ukraine and as the commodity pushed past an important technical level. West Texas Intermediate rose 0.7% to settle above $60 a barrel, signaling that a risk premium persists as a peace deal between Russia and Ukraine remains elusive. Ukrainian negotiators continued talks with US officials in Florida for a second day, with Russia objecting to some of the points in a US-backed plan. The market is watching for progress on a settlement that could lower prices by potentially easing sanctions and boosting Russian oil flows just as an expected oversupply in the market starts to materialize. But an agreement appears distant: Ukraine took credit for an overnight attack on Russia’s Syzran refinery and the Temryuk seaport. Meanwhile, Washington reportedly lobbied European countries in an effort to block a plan to use Moscow’s frozen assets to back a massive loan for Ukraine. Adding to bullish momentum, WTI on Friday settled above its 50-day moving average, a key level of support for the commodity. Prices have also received a boost from algorithmic traders covering some of their bearish positions in recent sessions — and analysts say more buying could materialize in coming weeks. “This session should mark the first notable short covering program since algo selling activity exhausted itself, and the bar is low for subsequent CTA buying activity to hit the tapes over the coming week,” said Dan Ghali, a commodity strategist at TD Securities. Countering geopolitical risks, oversupply is putting downward pressure on prices globally. Saudi Aramco will reduce the price of its flagship Arab Light crude grade to the lowest level since 2021 for January, while Canadian oil has tumbled. And the number of crude oil rigs in the US rose by 6

Read More »

At the Crossroads of AI and the Edge: Inside 1623 Farnam’s Rising Role as a Midwest Interconnection Powerhouse

That was the thread that carried through our recent conversation for the DCF Show podcast, where Severn walked through the role Farnam now plays in AI-driven networking, multi-cloud connectivity, and the resurgence of regional interconnection as a core part of U.S. digital infrastructure. Aggregation, Not Proximity: The Practical Edge Severn is clear-eyed about what makes the edge work and what doesn’t. The idea that real content delivery could aggregate at the base of cell towers, he noted, has never been realistic. The traffic simply isn’t there. Content goes where the network already concentrates, and the network concentrates where carriers, broadband providers, cloud onramps, and CDNs have amassed critical mass. In Farnam’s case, that density has grown steadily since the building changed hands in 2018. At the time an “underappreciated asset,” the facility has since become a meeting point for more than 40 broadband providers and over 60 carriers, with major content operators and hyperscale platforms routing traffic directly through its MMRs. That aggregation effect feeds on itself; as more carrier and content traffic converges, more participants anchor themselves to the hub, increasing its gravitational pull. Geography only reinforces that position. Located on the 41st parallel, the building sits at the historical shortest-distance path for early transcontinental fiber routes. It also lies at the crossroads of major east–west and north–south paths that have made Omaha a natural meeting point for backhaul routes and hyperscale expansions across the Midwest. AI and the New Interconnection Economy Perhaps the clearest sign of Farnam’s changing role is the sheer volume of fiber entering the building. More than 5,000 new strands are being brought into the property, with another 5,000 strands being added internally within the Meet-Me Rooms in 2025 alone. These are not incremental upgrades—they are hyperscale-grade expansions driven by the demands of AI traffic,

Read More »

Schneider Electric’s $2.3 Billion in AI Power and Cooling Deals Sends Message to Data Center Sector

When Schneider Electric emerged from its 2025 North American Innovation Summit in Las Vegas last week with nearly $2.3 billion in fresh U.S. data center commitments, it didn’t just notch a big sales win. It arguably put a stake in the ground about who controls the AI power-and-cooling stack over the rest of this decade. Within a single news cycle, Schneider announced: Together, the deals total about $2.27 billion in U.S. data center infrastructure, a number Schneider confirmed in background with multiple outlets and which Reuters highlighted as a bellwether for AI-driven demand.  For the AI data center ecosystem, these contracts function like early-stage fuel supply deals for the power and cooling systems that underpin the “AI factory.” Supply Capacity Agreements: Locking in the AI Supply Chain Significantly, both deals are structured as supply capacity agreements, not traditional one-off equipment purchase orders. Under the SCA model, Schneider is committing dedicated manufacturing lines and inventory to these customers, guaranteeing output of power and cooling systems over a multi-year horizon. In return, Switch and Digital Realty are providing Schneider with forecastable volume and visibility at the scale of gigawatt-class campus build-outs.  A Schneider spokesperson told Reuters that the two contracts are phased across 2025 and 2026, underscoring that this arrangement is about pipeline, as opposed to a one-time backlog spike.  That structure does three important things for the market: Signals confidence that AI demand is durable.You don’t ring-fence billions of dollars of factory output for two customers unless you’re highly confident the AI load curve runs beyond the current GPU cycle. Pre-allocates power & cooling the way the industry pre-allocated GPUs.Hyperscalers and neoclouds have already spent two years locking up Nvidia and AMD capacity. These SCAs suggest power trains and thermal systems are joining chips on the list of constrained strategic resources.

Read More »

The Data Center Power Squeeze: Mapping the Real Limits of AI-Scale Growth

As we all know, the data center industry is at a crossroads. As artificial intelligence reshapes the already insatiable digital landscape, the demand for computing power is surging at a pace that outstrips the growth of the US electric grid. As engines of the AI economy, an estimated 1,000 new data centers1 are needed to process, store, and analyze the vast datasets that run everything from generative models to autonomous systems. But this transformation comes with a steep price and the new defining criteria for real estate: power. Our appetite for electricity is now the single greatest constraint on our expansion, threatening to stall the very innovation we enable. In 2024, US data centers consumed roughly 4% of the nation’s total electricity, a figure that is projected to triple by 2030, reaching 12% or more.2 For AI-driven hyperscale facilities, the numbers are even more staggering. With the largest planned data centers requiring gigawatts of power, enough to supply entire cities, the cumulative demand from all data centers is expected to reach 134 gigawatts by 2030, nearly three times the current load.​3 This presents a systemic challenge. The U.S. power grid, built for a different era, is struggling to keep pace. Utilities are reporting record interconnection requests, with some regions seeing demand projections that exceed their total system capacity by fivefold.4 In Virginia and Texas, the epicenters of data center expansion, grid operators are warning of tight supply-demand balances and the risk of blackouts during peak periods.5 The problem is not just the sheer volume of power needed, but the speed at which it must be delivered. Data center operators are racing to secure power for projects that could be online in as little as 18 months, but grid upgrades and new generation can take years, if not decades. The result

Read More »

The Future of Hyperscale: Neoverse Joins NVLink Fusion as SC25 Accelerates Rack-Scale AI Architectures

Neoverse’s Expanding Footprint and the Power-Efficiency Imperative With Neoverse deployments now approaching roughly 50% of all compute shipped into top hyperscalers in 2025 (representing more than a billion Arm cores) and with nation-scale AI campuses such as the Stargate project already anchored on Arm compute, the addition of NVLink Fusion becomes a pivotal extension of the Neoverse roadmap. Partners can now connect custom Arm CPUs to their preferred NVIDIA accelerators across a coherent, high-bandwidth, rack-scale fabric. Arm characterized the shift as a generational inflection point in data-center architecture, noting that “power—not FLOPs—is the bottleneck,” and that future design priorities hinge on maximizing “intelligence per watt.” Ian Buck, vice president and general manager of accelerated computing at NVIDIA, underscored the practical impact: “Folks building their own Arm CPU, or using an Arm IP, can actually have access to NVLink Fusion—be able to connect that Arm CPU to an NVIDIA GPU or to the rest of the NVLink ecosystem—and that’s happening at the racks and scale-up infrastructure.” Despite the expanded design flexibility, this is not being positioned as an open interconnect ecosystem. NVIDIA continues to control the NVLink Fusion fabric, and all connections ultimately run through NVIDIA’s architecture. For data-center planners, the SC25 announcement translates into several concrete implications: 1.   NVIDIA “Grace-style” Racks Without Buying Grace With NVLink Fusion now baked into Neoverse, hyperscalers and sovereign operators can design their own Arm-based control-plane or pre-processing CPUs that attach coherently to NVIDIA GPU domains—such as NVL72 racks or HGX B200/B300 systems—without relying on Grace CPUs. A rack-level architecture might now resemble: Custom Neoverse SoC for ingest, orchestration, agent logic, and pre/post-processing NVLink Fusion fabric Blackwell GPU islands and/or NVLink-attached custom accelerators (Marvell, MediaTek, others) This decouples CPU choice from NVIDIA’s GPU roadmap while retaining the full NVLink fabric. In practice, it also opens

Read More »

Flex’s Integrated Data Center Bet: How a Manufacturing Giant Plans to Reshape AI-Scale Infrastructure

At this year’s OCP Global Summit, Flex made a declaration that resonated across the industry: the era of slow, bespoke data center construction is over. AI isn’t just stressing the grid or forcing new cooling techniques—it’s overwhelming the entire design-build process. To meet this moment, Flex introduced a globally manufactured, fully integrated data center platform aimed directly at multi-gigawatt AI campuses. The company claims it can cut deployment timelines by as much as 30 percent by shifting integration upstream into the factory and unifying power, cooling, compute, and lifecycle services into pre-engineered modules. This is not a repositioning on the margins. Flex is effectively asserting that the future hyperscale data center will be manufactured like a complex industrial system, not built like a construction project. On the latest episode of The Data Center Frontier Show, we spoke with Rob Campbell, President of Flex Communications, Enterprise & Cloud, and Chris Butler, President of Flex Power, about why Flex believes this new approach is not only viable but necessary in the age of AI. The discussion revealed a company leaning heavily on its global manufacturing footprint, its cross-industry experience, and its expanding cooling and power technology stack to redefine what deployment speed and integration can look like at scale. AI Has Broken the Old Data Center Model From the outset, Campbell and Butler made clear that Flex’s strategy is a response to a structural shift. AI workloads no longer allow power, cooling, and compute to evolve independently. Densities have jumped so quickly—and thermals have risen so sharply—that the white space, gray space, and power yard are now interdependent engineering challenges. Higher chip TDPs, liquid-cooled racks approaching one to two megawatts, and the need to assemble entire campuses in record time have revealed deep fragility in traditional workflows. As Butler put it, AI

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Data Center Facility Technician (All Shifts Available) Impact, TX This position is also available in: Ashburn, VA; Abilene, TX; Needham, MA and New York, NY. Navy Nuke / Military Vets leaving service accepted!  This opportunity is working with a leading mission-critical data center provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients, colo providers and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Montvale, NJ This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »