Stay Ahead, Stay ONMINE

Why it’s so hard to bust the weather control conspiracy theory

It was October 2024, and Hurricane Helene had just devastated the US Southeast. Representative Marjorie Taylor Greene of Georgia found an abstract target on which to pin the blame: “Yes they can control the weather,” she posted on X. “It’s ridiculous for anyone to lie and say it can’t be done.”  There was no word on who “they” were, but maybe it was better that way.  She was repeating what’s by now a pretty familiar and popular conspiracy theory: that shadowy forces are out there, wielding unknown technology to control the weather and wreak havoc on their supposed enemies. This claim, fundamentally preposterous from a scientific standpoint, has grown louder and more common in recent years. It pops up over and over when extreme weather strikes: in Dubai in April 2024, in Australia in July 2022, in the US after California floods and hurricanes like Helene and Milton. In the UK, conspiracy theorists claimed that the government had fixed the weather to be sunny and rain-free during the first covid lockdown in March 2020. Most recently, the theories spread again when disastrous floods hit central Texas this past July. The idea has even inspired some antigovernment extremists to threaten and try to destroy weather radar towers.  This story is part of MIT Technology Review’s series “The New Conspiracy Age,” on how the present boom in conspiracy theories is reshaping science and technology. But here’s the thing: While Greene and other believers are not correct, this conspiracy theory—like so many others—holds a kernel of much more modest truth behind the grandiose claims.  Sure, there is no current way for humans to control the weather. We can’t cause major floods or redirect hurricanes or other powerful storm systems, simply because the energy involved is far too great for humans to alter significantly.  But there are ways we can modify the weather. The key difference is the scale of what is possible.  The most common weather modification practice is called cloud seeding, and it involves injecting small amounts of salts or other materials into clouds with the goal of juicing levels of rain or snow. This is typically done in dry areas that lack regular precipitation. Research shows that it can in fact work, though advances in technology reveal that its impact is modest—coaxing maybe 5% to 10% more moisture out of otherwise stubborn clouds. But the fact that humans can influence weather at all gives conspiracy theorists a foothold in the truth. Add to this a spotty history of actual efforts by governments and militaries to control major storms, as well as other emerging but not-yet-deployed-at-any-scale technologies that aim to address climate change … and you can see where things get confusing.  So while more sweeping claims of weather control are ultimately ridiculous from a scientific standpoint, they can’t be dismissed as entirely stupid. This all helped make the conspiracy theories swirling after the recent Texas floods particularly loud and powerful. Just days earlier, 100 miles away from the epicenter of the floods, in a town called Runge, the cloud-seeding company Rainmaker had flown a single-engine plane and released about 70 grams of silver iodide into some clouds; a modest drizzle of less than half a centimeter of rain followed. But once the company saw a storm front in the forecast, it suspended its work; there was no need to seed with rain already on the way. “We conducted an operation on July 2, totally within the scope of what we were regulatorily permitted to do,” Augustus Doricko, Rainmaker’s founder and CEO, recently told me. Still, when as much as 20 inches of rain fell soon afterward not too far away, and more than 100 people died, the conspiracy theory machine whirred into action.  As Doricko told the Washington Post in the tragedy’s aftermath, he and his company faced “nonstop pandemonium” on social media; eventually someone even posted photos from outside Rainmaker’s office, along with its address. Doricko told me a few factors played into the pile-on, including a lack of familiarity with the specifics of cloud seeding, as well as what he called “deliberately inflammatory messaging from politicians.” Indeed, theories about Rainmaker and cloud seeding spread online via prominent figures including Greene and former national security advisor Mike Flynn.  Unfortunately, all this is happening at the same time as the warming climate is making heavy rainfall and the floods that accompany it more and more likely. “These events will become more frequent,” says Emily Yeh, a professor of geography at the University of Colorado who has examined approaches and reactions to weather modification around the world. “There is a large, vocal group of people who are willing to believe anything but climate change as the reason for Texas floods, or hurricanes.” Worsening extremes, increasing weather modification activity, improving technology, a sometimes shady track record—the conditions are perfect for an otherwise niche conspiracy theory to spread to anyone desperate for tidy explanations of increasingly disastrous events. Here, we break down just what’s possible and what isn’t—and address some of the more colorful reasons why people may believe things that go far beyond the facts.  What we can do with the weather—and who is doing it The basic concepts behind cloud seeding have been around for about 80 years, and government interest in the topic goes back even longer than that.  The primary practice involves using planes, drones, or generators on the ground to inject tiny particles of stuff, usually silver iodide, into existing clouds. The particles act as nuclei around which moisture can build up, forming ice crystals that can get heavy enough to fall out of the cloud as snow or rain. “Weather modification is an old field; starting in the 1940s there was a lot of excitement,” says David Delene, a research professor of atmospheric sciences at the University of North Dakota and an expert on cloud seeding. In a US Senate report from 1952 to establish a committee to study weather modification, authors noted that a small amount of extra rain could “produce electric power worth hundreds of thousands of dollars” and “greatly increase crop yields.” It also cited potential uses like “reducing soil erosion,” “breaking up hurricanes,” and even “cutting holes in clouds so that aircraft can operate.”  LIBRARY OF CONGRESS But, as Delene adds, “that excitement … was not realized.” Through the 1980s, extensive research often funded or conducted by Washington yielded a much better understanding of atmospheric science and cloud physics, though it proved extremely difficult to actually demonstrate the efficacy of the technology itself. In other words, scientists learned the basic principles behind cloud seeding, and understood on a theoretical level that it should work—but it was hard to tell how big an impact it was having on rainfall. There is huge variability between one cloud and another, one storm system and another, one mountain or valley and another; for decades, the tools available to researchers did not really allow for firm conclusions on exactly how much extra moisture, if any, they were getting out of any given operation. Interest in the practice died down to a low hum by the 1990s. But over the past couple of decades, the early excitement has returned. Cloud seeding can enhance levels of rain and snow  While the core technology has largely stayed the same, several projects launched in the US and abroad starting in the 2000s have combined statistical modeling with new and improved aircraft-based measurements, ground-based radar, and more to provide better answers on what results are actually achievable when seeding clouds. “I think we’ve identified unequivocally that we can indeed modify the cloud,” says Jeff French, an associate professor and head of the University of Wyoming’s Department of Atmospheric Science, who has worked for years on the topic. But even as scientists have come to largely agree that the practice can have an impact on precipitation, they also largely recognize that the impact probably has some fairly modest upper limits—far short of massive water surges.  “There is absolutely no evidence that cloud seeding can modify a cloud to the extent that would be needed to cause a flood,” French says. Floods require a few factors, he adds—a system with plenty of moisture available that stays localized to a certain spot for an extended period. “All of these things which cloud seeding has zero effect on,” he says.  The technology simply operates on a different level. “Cloud seeding really is looking at making an inefficient system a little bit more efficient,” French says.  As Delene puts it: “Originally [researchers] thought, well, we could, you know, do 50%, 100% increases in precipitation,” but “I think if you do a good program you’re not going to get more than a 10% increase.”  Asked for his take on a theoretical limit, French was hesitant—“I don’t know if I’m ready to stick my neck out”—but agreed on “maybe 10-ish percent” as a reasonable guess. Another cloud seeding expert, Katja Friedrich from the University of Colorado–Boulder, says that any grander potential would be obvious by this point: We wouldn’t have “spent the last 100 years debating—within the scientific community—if cloud seeding works,” she writes in an email. “It would have been easy to separate the signal (from cloud seeding) from the noise (natural precipitation).” It can also (probably) suppress precipitation Sometimes cloud seeding is used not to boost rain and snow but rather to try to reduce its severity—or, more specifically, to change the size of individual rain droplets or hailstones.  One of the most prominent examples has been in parts of Canada, where hailstorms can be devastating; a 2024 event in Calgary, for instance, was the country’s second-most-expensive disaster ever, with over $2 billion in damages.  Insurance companies in Alberta have been working together for nearly three decades on a cloud seeding program that’s aimed at reducing some of that damage. In these cases, the silver iodide or other particles are meant to act essentially as competition for other “embryos” inside the cloud, increasing the total number of hailstones and thus reducing each individual stone’s average size.  Smaller hailstones means less damage when they reach the ground. The insurance companies—which continue to pay for the program—say losses have been cut by 50% since the program started, though scientists aren’t quite as confident in its overall success. A 2023 study published in Atmospheric Research examined 10 years of cloud seeding efforts in the province and found that the practice did appear to reduce potential for damage in about 60% of seeded storms—while in others, it had no effect or was even associated with increased hail (though the authors said this could have been due to natural variation). Similar techniques are also sometimes deployed to try to improve the daily forecast just a bit. During the 2008 Olympics, for instance, China engaged in a form of cloud seeding aimed at reducing rainfall. As MIT Technology Review detailed back then, officials with the Beijing Weather Modification Office planned to use a liquid-nitrogen-based coolant that could increase the number of water droplets in a cloud while reducing their size; this can get droplets to stay aloft a little longer instead of falling out of the cloud. Though it is tough to prove that it definitively would have rained without the effort, the targeted opening ceremony did stay dry. So, where is this happening?  The United Nations’ World Meteorological Organization says that some form of weather modification is taking place in “more than 50 countries” and that “demand for these weather modification activities is increasing steadily due to the incidence of droughts and other calamities.” The biggest user of cloud-seeding tech is arguably China. Following the work around the Olympics, the country announced a huge expansion of its weather modification program in 2020, claiming it would eventually run operations for agricultural relief and other functions, including hail suppression, over an area about the size of India and Algeria combined. Since then, China has occasionally announced bits of progress—including updates to weather modification aircraft and the first use of drones for artificial snow enhancement. Overall, it spends billions on the practice, with more to come. Elsewhere, desert countries have taken an interest. In 2024, Saudi Arabia announced an expanded research program on cloud seeding—Delene, of the University of North Dakota, was part of a team that conducted experiments in various parts of that country in late 2023. Its neighbor the United Arab Emirates began “rain enhancement” activities back in 1990; this program too has faced outcry, especially after more than a typical year’s worth of rain fell in a single day in 2024, causing massive flooding. (Bloomberg recently published a story about persistent questions regarding the country’s cloud seeding program; in response to the story, French wrote in an email that the “best scientific understanding is still that cloud seeding CANNOT lead to these types of events.” Other experts we asked agreed.)  In the US, a 2024 Government Accountability Office report on cloud seeding said that at least nine states have active programs. These are sometimes run directly by the state and sometimes contracted out through nonprofits like the South Texas Weather Modification Association to private companies, including Doricko’s Rainmaker and North Dakota–based Weather Modification. In August, Doricko told me that Rainmaker had grown to 76 employees since it launched in 2023. It now runs cloud seeding operations in Utah, Idaho, Oregon, California, and Texas, as well as forecasting services in New Mexico and Arizona. And in an answer that may further fuel the conspiracy fire, he added they are also operating in one Middle Eastern country; when I asked which one, he’d only say, “Can’t tell you.” What we cannot do The versions of weather modification that the conspiracy theorists envision most often—significantly altering monsoons or hurricanes or making the skies clear and sunny for weeks at a time—have so far proved impossible to carry out. But that’s not necessarily for lack of trying. The US government attempted to alter a hurricane in 1947 as part of a program dubbed Project Cirrus. In collaboration with GE, government scientists seeded clouds with pellets of dry ice, the idea being that the falling pellets could induce supercooled liquid in the clouds to crystallize into ice. After they did this, the storm took a sharp left turn and struck the area around Savannah, Georgia. This was a significant moment for budding conspiracy theories, since a GE scientist who had been working with the government said he was “99% sure” the cyclone swerved because of their work. Other experts disagreed and showed that such storm trajectories are, in reality, perfectly possible without intervention. Perhaps unsurprisingly, public outrage and threats of lawsuits followed. It took some time for the hubbub to die down, after which several US government agencies continued—unsuccessfully—trying to alter and weaken hurricanes with a long-running cloud seeding program called Project Stormfury. Around the same time, the US military joined the fray with Operation Popeye, essentially trying to harness weather as a weapon in the Vietnam War—engaging in cloud seeding efforts over Vietnam, Cambodia, and Laos in the late 1960s and early 1970s, with an eye toward increasing monsoon rains and bogging down the enemy. Though it was never really clear whether these efforts worked, the Nixon administration tried to deny them, going so far as to lie to the public and even to congressional committees. More recently and less menacingly, there have been experiments with Dyn-O-Gel—a Florida company’s super-absorbent powder, intended to be dropped into storm clouds to sop up their moisture. In the early 2000s, the company carried out experiments with the stuff in thunderstorms, and it had grand plans to use it to weaken tropical cyclones. But according to one former NOAA scientist, you would need to drop almost 38,000 tons of it, requiring nearly 380 individual plane trips, in and around even a relatively small cyclone’s eyewall to really affect the storm’s strength. And then you would have to do that again an hour and a half later, and so on. Reality tends to get in the way of the biggest weather modification ideas. Beyond trying to control storms, there are some other potential weather modification technologies out there that are either just getting started or have never taken off. Swiss researchers have tried to use powerful lasers to induce cloud formation, for example; in Australia, where climate change is imperiling the Great Barrier Reef, artificial clouds created when ship-based nozzles spray moisture into the sky have been used to try to protect the vital ecosystem. In each case, the efforts remain small, localized, and not remotely close to achieving the kinds of control the conspiracy theorists allege. What is not weather modification—but gets lumped in with it Further worsening weather control conspiracies is that there is a tendency to conflate cloud seeding and other promising weather modification research with concepts such as chemtrails—a full-on conspiracist fever dream about innocuous condensation trails left by jets—and solar geoengineering, a theoretical stopgap to cool the planet that has been subject to much discussion and modeling research but has never been deployed in any large-scale way. One controversial form of solar geoengineering, known as stratospheric aerosol injection, would involve having high-altitude jets drop tiny aerosol particles—sulfur dioxide, most likely—into the stratosphere to act essentially as tiny mirrors. They would reflect a small amount of sunlight back into space, leaving less energy to reach the ground and contribute to warming. To date, attempts to launch physical experiments in this space have been shouted down, and only tiny—though still controversial—commercial efforts have taken place.  One can see why it gets lumped in with cloud seeding: bits of stuff, dumped into the sky, with the aim of altering what happens down below. But the aims are entirely separate; geoengineering would alter the global average temperature rather than having measurable effects on momentary cloudbursts or hailstorms. Some research has suggested that the practice could alter monsoon patterns, a significant issue given their importance to much of the world’s agriculture, but it remains a fundamentally different practice from cloud seeding. Still, the political conversation around supposed weather control often reflects this confusion. Greene, for instance, introduced a bill in July called the Clear Skies Act, which would ban all weather modification and geoengineering activities. (Greene’s congressional office did not respond to a request for comment.) And last year, Tennessee became the first state to enact a law to prohibit the “intentional injection, release, or dispersion, by any means, of chemicals, chemical compounds, substances, or apparatus … into the atmosphere with the express purpose of affecting temperature, weather, or the intensity of the sunlight.” Florida followed suit, with Governor Ron DeSantis signing SB 56 into law in June of this year for the same stated purpose. Also this year, lawmakers in more than 20 other states have also proposed some version of a ban on weather modification, often lumping it in with geoengineering, even though caution on the latter is more widely accepted or endorsed. “It’s not a conspiracy theory,” one Pennsylvania lawmaker who cosponsored a similar bill told NBC News. “All you have to do is look up.” Oddly enough, as Yeh of the University of Colorado points out, the places where bans have passed are states where weather modification isn’t really happening. “In a way, it’s easy for them to ban it, because, you know, nothing actually has to be done,” she says. In general, neither Florida nor Tennessee—nor any other part of the Southeast—needs any help finding rain. Basically, all weather modification activity in the US happens in the drier areas west of the Mississippi.  Finding a culprit Doricko told me that in the wake of the Texas disaster, he has seen more people become willing to learn about the true capabilities of cloud seeding and move past the more sinister theories about it.  I asked him, though, about some of his company’s flashier branding: Until recently, visitors to the Rainmaker website were greeted right up top with the slogan “Making Earth Habitable.” Might this level of hype contribute to public misunderstanding or fear?  He said he is indeed aware that Earth is, currently, habitable, and called the slogan a “tongue-in-cheek, deliberately provocative statement.” Still, in contrast to the academics who seem more comfortable acknowledging weather modification’s limits, he has continued to tout its revolutionary potential. “If we don’t produce more water, then a lot of the Earth will become less habitable,” he said. “By producing more water via cloud seeding, we’re helping to conserve the ecosystems that do currently exist, that are at risk of collapse.”  While other experts cited that 10% figure as a likely upper limit of cloud seeding’s effectiveness, Doricko said they could eventually approach 20%, though that might be years away. “Is it literally magic? Like, can I snap my fingers and turn the Sahara green? No,” he said. “But can it help make a greener, verdant, and abundant world? Yeah, absolutely.”  It’s not all that hard to see why people still cling to magical thinking here. The changing climate is, after all, offering up what’s essentially weaponized weather, only with a much broader and long-term mechanism behind it. There is no single sinister agency or company with its finger on the trigger, though it can be tempting to look for one; rather, we just have an atmosphere capable of holding more moisture and dropping it onto ill-prepared communities, and many of the people in power are doing little to mitigate the impacts. “Governments are not doing a good job of responding to the climate crisis; they are often captured by fossil-fuel interests, which drive policy, and they can be slow and ineffective when responding to disasters,” Naomi Smith, a lecturer in sociology at the University of the Sunshine Coast in Australia who has written about conspiracy theories and weather events, writes in an email. “It’s hard to hold all this complexity, and conspiracy theorizing is one way of making it intelligible and understandable.”   “Conspiracy theories give us a ‘big bad’ to point the finger at, someone to blame and a place to put our feelings of anger, despair, and grief,” she writes. “It’s much less satisfying to yell at the weather, or to engage in the sustained collective action we actually need to tackle climate change.” The sinister “they” in Greene’s accusations is, in other words, a far easier target than the real culprit.  Dave Levitan is an independent journalist, focused on science, politics, and policy. Find his work at davelevitan.com and subscribe to his newsletter at gravityisgone.com. 

It was October 2024, and Hurricane Helene had just devastated the US Southeast. Representative Marjorie Taylor Greene of Georgia found an abstract target on which to pin the blame: “Yes they can control the weather,” she posted on X. “It’s ridiculous for anyone to lie and say it can’t be done.” 

There was no word on who “they” were, but maybe it was better that way. 

She was repeating what’s by now a pretty familiar and popular conspiracy theory: that shadowy forces are out there, wielding unknown technology to control the weather and wreak havoc on their supposed enemies. This claim, fundamentally preposterous from a scientific standpoint, has grown louder and more common in recent years. It pops up over and over when extreme weather strikes: in Dubai in April 2024, in Australia in July 2022, in the US after California floods and hurricanes like Helene and Milton. In the UK, conspiracy theorists claimed that the government had fixed the weather to be sunny and rain-free during the first covid lockdown in March 2020. Most recently, the theories spread again when disastrous floods hit central Texas this past July. The idea has even inspired some antigovernment extremists to threaten and try to destroy weather radar towers. 


This story is part of MIT Technology Review’s series “The New Conspiracy Age,” on how the present boom in conspiracy theories is reshaping science and technology.


But here’s the thing: While Greene and other believers are not correct, this conspiracy theory—like so many others—holds a kernel of much more modest truth behind the grandiose claims. 

Sure, there is no current way for humans to control the weather. We can’t cause major floods or redirect hurricanes or other powerful storm systems, simply because the energy involved is far too great for humans to alter significantly. 

But there are ways we can modify the weather. The key difference is the scale of what is possible. 

The most common weather modification practice is called cloud seeding, and it involves injecting small amounts of salts or other materials into clouds with the goal of juicing levels of rain or snow. This is typically done in dry areas that lack regular precipitation. Research shows that it can in fact work, though advances in technology reveal that its impact is modest—coaxing maybe 5% to 10% more moisture out of otherwise stubborn clouds.

But the fact that humans can influence weather at all gives conspiracy theorists a foothold in the truth. Add to this a spotty history of actual efforts by governments and militaries to control major storms, as well as other emerging but not-yet-deployed-at-any-scale technologies that aim to address climate change … and you can see where things get confusing. 

So while more sweeping claims of weather control are ultimately ridiculous from a scientific standpoint, they can’t be dismissed as entirely stupid.

This all helped make the conspiracy theories swirling after the recent Texas floods particularly loud and powerful. Just days earlier, 100 miles away from the epicenter of the floods, in a town called Runge, the cloud-seeding company Rainmaker had flown a single-engine plane and released about 70 grams of silver iodide into some clouds; a modest drizzle of less than half a centimeter of rain followed. But once the company saw a storm front in the forecast, it suspended its work; there was no need to seed with rain already on the way.

“We conducted an operation on July 2, totally within the scope of what we were regulatorily permitted to do,” Augustus Doricko, Rainmaker’s founder and CEO, recently told me. Still, when as much as 20 inches of rain fell soon afterward not too far away, and more than 100 people died, the conspiracy theory machine whirred into action. 

As Doricko told the Washington Post in the tragedy’s aftermath, he and his company faced “nonstop pandemonium” on social media; eventually someone even posted photos from outside Rainmaker’s office, along with its address. Doricko told me a few factors played into the pile-on, including a lack of familiarity with the specifics of cloud seeding, as well as what he called “deliberately inflammatory messaging from politicians.” Indeed, theories about Rainmaker and cloud seeding spread online via prominent figures including Greene and former national security advisor Mike Flynn

Unfortunately, all this is happening at the same time as the warming climate is making heavy rainfall and the floods that accompany it more and more likely. “These events will become more frequent,” says Emily Yeh, a professor of geography at the University of Colorado who has examined approaches and reactions to weather modification around the world. “There is a large, vocal group of people who are willing to believe anything but climate change as the reason for Texas floods, or hurricanes.”

Worsening extremes, increasing weather modification activity, improving technology, a sometimes shady track record—the conditions are perfect for an otherwise niche conspiracy theory to spread to anyone desperate for tidy explanations of increasingly disastrous events.

Here, we break down just what’s possible and what isn’t—and address some of the more colorful reasons why people may believe things that go far beyond the facts. 

What we can do with the weather—and who is doing it

The basic concepts behind cloud seeding have been around for about 80 years, and government interest in the topic goes back even longer than that

The primary practice involves using planes, drones, or generators on the ground to inject tiny particles of stuff, usually silver iodide, into existing clouds. The particles act as nuclei around which moisture can build up, forming ice crystals that can get heavy enough to fall out of the cloud as snow or rain.

“Weather modification is an old field; starting in the 1940s there was a lot of excitement,” says David Delene, a research professor of atmospheric sciences at the University of North Dakota and an expert on cloud seeding. In a US Senate report from 1952 to establish a committee to study weather modification, authors noted that a small amount of extra rain could “produce electric power worth hundreds of thousands of dollars” and “greatly increase crop yields.” It also cited potential uses like “reducing soil erosion,” “breaking up hurricanes,” and even “cutting holes in clouds so that aircraft can operate.” 

weather balloon

LIBRARY OF CONGRESS

But, as Delene adds, “that excitement … was not realized.”

Through the 1980s, extensive research often funded or conducted by Washington yielded a much better understanding of atmospheric science and cloud physics, though it proved extremely difficult to actually demonstrate the efficacy of the technology itself. In other words, scientists learned the basic principles behind cloud seeding, and understood on a theoretical level that it should work—but it was hard to tell how big an impact it was having on rainfall.

There is huge variability between one cloud and another, one storm system and another, one mountain or valley and another; for decades, the tools available to researchers did not really allow for firm conclusions on exactly how much extra moisture, if any, they were getting out of any given operation. Interest in the practice died down to a low hum by the 1990s.

But over the past couple of decades, the early excitement has returned.

Cloud seeding can enhance levels of rain and snow 

While the core technology has largely stayed the same, several projects launched in the US and abroad starting in the 2000s have combined statistical modeling with new and improved aircraft-based measurements, ground-based radar, and more to provide better answers on what results are actually achievable when seeding clouds.

“I think we’ve identified unequivocally that we can indeed modify the cloud,” says Jeff French, an associate professor and head of the University of Wyoming’s Department of Atmospheric Science, who has worked for years on the topic. But even as scientists have come to largely agree that the practice can have an impact on precipitation, they also largely recognize that the impact probably has some fairly modest upper limits—far short of massive water surges. 

“There is absolutely no evidence that cloud seeding can modify a cloud to the extent that would be needed to cause a flood,” French says. Floods require a few factors, he adds—a system with plenty of moisture available that stays localized to a certain spot for an extended period. “All of these things which cloud seeding has zero effect on,” he says. 

The technology simply operates on a different level. “Cloud seeding really is looking at making an inefficient system a little bit more efficient,” French says. 

As Delene puts it: “Originally [researchers] thought, well, we could, you know, do 50%, 100% increases in precipitation,” but “I think if you do a good program you’re not going to get more than a 10% increase.” 

Asked for his take on a theoretical limit, French was hesitant—“I don’t know if I’m ready to stick my neck out”—but agreed on “maybe 10-ish percent” as a reasonable guess.

Another cloud seeding expert, Katja Friedrich from the University of Colorado–Boulder, says that any grander potential would be obvious by this point: We wouldn’t have “spent the last 100 years debating—within the scientific community—if cloud seeding works,” she writes in an email. “It would have been easy to separate the signal (from cloud seeding) from the noise (natural precipitation).”

It can also (probably) suppress precipitation

Sometimes cloud seeding is used not to boost rain and snow but rather to try to reduce its severity—or, more specifically, to change the size of individual rain droplets or hailstones. 

One of the most prominent examples has been in parts of Canada, where hailstorms can be devastating; a 2024 event in Calgary, for instance, was the country’s second-most-expensive disaster ever, with over $2 billion in damages. 

Insurance companies in Alberta have been working together for nearly three decades on a cloud seeding program that’s aimed at reducing some of that damage. In these cases, the silver iodide or other particles are meant to act essentially as competition for other “embryos” inside the cloud, increasing the total number of hailstones and thus reducing each individual stone’s average size. 

Smaller hailstones means less damage when they reach the ground. The insurance companies—which continue to pay for the program—say losses have been cut by 50% since the program started, though scientists aren’t quite as confident in its overall success. A 2023 study published in Atmospheric Research examined 10 years of cloud seeding efforts in the province and found that the practice did appear to reduce potential for damage in about 60% of seeded storms—while in others, it had no effect or was even associated with increased hail (though the authors said this could have been due to natural variation).

Similar techniques are also sometimes deployed to try to improve the daily forecast just a bit. During the 2008 Olympics, for instance, China engaged in a form of cloud seeding aimed at reducing rainfall. As MIT Technology Review detailed back then, officials with the Beijing Weather Modification Office planned to use a liquid-nitrogen-based coolant that could increase the number of water droplets in a cloud while reducing their size; this can get droplets to stay aloft a little longer instead of falling out of the cloud. Though it is tough to prove that it definitively would have rained without the effort, the targeted opening ceremony did stay dry.

So, where is this happening? 

The United Nations’ World Meteorological Organization says that some form of weather modification is taking place in “more than 50 countries” and that “demand for these weather modification activities is increasing steadily due to the incidence of droughts and other calamities.”

The biggest user of cloud-seeding tech is arguably China. Following the work around the Olympics, the country announced a huge expansion of its weather modification program in 2020, claiming it would eventually run operations for agricultural relief and other functions, including hail suppression, over an area about the size of India and Algeria combined. Since then, China has occasionally announced bits of progress—including updates to weather modification aircraft and the first use of drones for artificial snow enhancement. Overall, it spends billions on the practice, with more to come.

Elsewhere, desert countries have taken an interest. In 2024, Saudi Arabia announced an expanded research program on cloud seeding—Delene, of the University of North Dakota, was part of a team that conducted experiments in various parts of that country in late 2023. Its neighbor the United Arab Emirates began “rain enhancement” activities back in 1990; this program too has faced outcry, especially after more than a typical year’s worth of rain fell in a single day in 2024, causing massive flooding. (Bloomberg recently published a story about persistent questions regarding the country’s cloud seeding program; in response to the story, French wrote in an email that the “best scientific understanding is still that cloud seeding CANNOT lead to these types of events.” Other experts we asked agreed.) 

In the US, a 2024 Government Accountability Office report on cloud seeding said that at least nine states have active programs. These are sometimes run directly by the state and sometimes contracted out through nonprofits like the South Texas Weather Modification Association to private companies, including Doricko’s Rainmaker and North Dakota–based Weather Modification. In August, Doricko told me that Rainmaker had grown to 76 employees since it launched in 2023. It now runs cloud seeding operations in Utah, Idaho, Oregon, California, and Texas, as well as forecasting services in New Mexico and Arizona. And in an answer that may further fuel the conspiracy fire, he added they are also operating in one Middle Eastern country; when I asked which one, he’d only say, “Can’t tell you.”

What we cannot do

The versions of weather modification that the conspiracy theorists envision most often—significantly altering monsoons or hurricanes or making the skies clear and sunny for weeks at a time—have so far proved impossible to carry out. But that’s not necessarily for lack of trying.

The US government attempted to alter a hurricane in 1947 as part of a program dubbed Project Cirrus. In collaboration with GE, government scientists seeded clouds with pellets of dry ice, the idea being that the falling pellets could induce supercooled liquid in the clouds to crystallize into ice. After they did this, the storm took a sharp left turn and struck the area around Savannah, Georgia. This was a significant moment for budding conspiracy theories, since a GE scientist who had been working with the government said he was “99% sure” the cyclone swerved because of their work. Other experts disagreed and showed that such storm trajectories are, in reality, perfectly possible without intervention. Perhaps unsurprisingly, public outrage and threats of lawsuits followed.

It took some time for the hubbub to die down, after which several US government agencies continued—unsuccessfully—trying to alter and weaken hurricanes with a long-running cloud seeding program called Project Stormfury. Around the same time, the US military joined the fray with Operation Popeye, essentially trying to harness weather as a weapon in the Vietnam War—engaging in cloud seeding efforts over Vietnam, Cambodia, and Laos in the late 1960s and early 1970s, with an eye toward increasing monsoon rains and bogging down the enemy. Though it was never really clear whether these efforts worked, the Nixon administration tried to deny them, going so far as to lie to the public and even to congressional committees.

More recently and less menacingly, there have been experiments with Dyn-O-Gel—a Florida company’s super-absorbent powder, intended to be dropped into storm clouds to sop up their moisture. In the early 2000s, the company carried out experiments with the stuff in thunderstorms, and it had grand plans to use it to weaken tropical cyclones. But according to one former NOAA scientist, you would need to drop almost 38,000 tons of it, requiring nearly 380 individual plane trips, in and around even a relatively small cyclone’s eyewall to really affect the storm’s strength. And then you would have to do that again an hour and a half later, and so on. Reality tends to get in the way of the biggest weather modification ideas.

Beyond trying to control storms, there are some other potential weather modification technologies out there that are either just getting started or have never taken off. Swiss researchers have tried to use powerful lasers to induce cloud formation, for example; in Australia, where climate change is imperiling the Great Barrier Reef, artificial clouds created when ship-based nozzles spray moisture into the sky have been used to try to protect the vital ecosystem. In each case, the efforts remain small, localized, and not remotely close to achieving the kinds of control the conspiracy theorists allege.

What is not weather modification—but gets lumped in with it

Further worsening weather control conspiracies is that there is a tendency to conflate cloud seeding and other promising weather modification research with concepts such as chemtrails—a full-on conspiracist fever dream about innocuous condensation trails left by jets—and solar geoengineering, a theoretical stopgap to cool the planet that has been subject to much discussion and modeling research but has never been deployed in any large-scale way.

One controversial form of solar geoengineering, known as stratospheric aerosol injection, would involve having high-altitude jets drop tiny aerosol particles—sulfur dioxide, most likely—into the stratosphere to act essentially as tiny mirrors. They would reflect a small amount of sunlight back into space, leaving less energy to reach the ground and contribute to warming. To date, attempts to launch physical experiments in this space have been shouted down, and only tiny—though still controversial—commercial efforts have taken place. 

One can see why it gets lumped in with cloud seeding: bits of stuff, dumped into the sky, with the aim of altering what happens down below. But the aims are entirely separate; geoengineering would alter the global average temperature rather than having measurable effects on momentary cloudbursts or hailstorms. Some research has suggested that the practice could alter monsoon patterns, a significant issue given their importance to much of the world’s agriculture, but it remains a fundamentally different practice from cloud seeding.

Still, the political conversation around supposed weather control often reflects this confusion. Greene, for instance, introduced a bill in July called the Clear Skies Act, which would ban all weather modification and geoengineering activities. (Greene’s congressional office did not respond to a request for comment.) And last year, Tennessee became the first state to enact a law to prohibit the “intentional injection, release, or dispersion, by any means, of chemicals, chemical compounds, substances, or apparatus … into the atmosphere with the express purpose of affecting temperature, weather, or the intensity of the sunlight.” Florida followed suit, with Governor Ron DeSantis signing SB 56 into law in June of this year for the same stated purpose.

Also this year, lawmakers in more than 20 other states have also proposed some version of a ban on weather modification, often lumping it in with geoengineering, even though caution on the latter is more widely accepted or endorsed. “It’s not a conspiracy theory,” one Pennsylvania lawmaker who cosponsored a similar bill told NBC News. “All you have to do is look up.”

Oddly enough, as Yeh of the University of Colorado points out, the places where bans have passed are states where weather modification isn’t really happening. “In a way, it’s easy for them to ban it, because, you know, nothing actually has to be done,” she says. In general, neither Florida nor Tennessee—nor any other part of the Southeast—needs any help finding rain. Basically, all weather modification activity in the US happens in the drier areas west of the Mississippi. 

Finding a culprit

Doricko told me that in the wake of the Texas disaster, he has seen more people become willing to learn about the true capabilities of cloud seeding and move past the more sinister theories about it. 

I asked him, though, about some of his company’s flashier branding: Until recently, visitors to the Rainmaker website were greeted right up top with the slogan “Making Earth Habitable.” Might this level of hype contribute to public misunderstanding or fear? 

He said he is indeed aware that Earth is, currently, habitable, and called the slogan a “tongue-in-cheek, deliberately provocative statement.” Still, in contrast to the academics who seem more comfortable acknowledging weather modification’s limits, he has continued to tout its revolutionary potential. “If we don’t produce more water, then a lot of the Earth will become less habitable,” he said. “By producing more water via cloud seeding, we’re helping to conserve the ecosystems that do currently exist, that are at risk of collapse.” 

While other experts cited that 10% figure as a likely upper limit of cloud seeding’s effectiveness, Doricko said they could eventually approach 20%, though that might be years away. “Is it literally magic? Like, can I snap my fingers and turn the Sahara green? No,” he said. “But can it help make a greener, verdant, and abundant world? Yeah, absolutely.” 

It’s not all that hard to see why people still cling to magical thinking here. The changing climate is, after all, offering up what’s essentially weaponized weather, only with a much broader and long-term mechanism behind it. There is no single sinister agency or company with its finger on the trigger, though it can be tempting to look for one; rather, we just have an atmosphere capable of holding more moisture and dropping it onto ill-prepared communities, and many of the people in power are doing little to mitigate the impacts.

“Governments are not doing a good job of responding to the climate crisis; they are often captured by fossil-fuel interests, which drive policy, and they can be slow and ineffective when responding to disasters,” Naomi Smith, a lecturer in sociology at the University of the Sunshine Coast in Australia who has written about conspiracy theories and weather events, writes in an email. “It’s hard to hold all this complexity, and conspiracy theorizing is one way of making it intelligible and understandable.”  

“Conspiracy theories give us a ‘big bad’ to point the finger at, someone to blame and a place to put our feelings of anger, despair, and grief,” she writes. “It’s much less satisfying to yell at the weather, or to engage in the sustained collective action we actually need to tackle climate change.”

The sinister “they” in Greene’s accusations is, in other words, a far easier target than the real culprit. 

Dave Levitan is an independent journalist, focused on science, politics, and policy. Find his work at davelevitan.com and subscribe to his newsletter at gravityisgone.com

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Agentic AI: What now, what next?

Agentic AI burst onto the scene with its promises of streamliningoperations and accelerating productivity. But what’s real and what’s hype when it comes to deploying agentic AI? This Special Report examines the state of agentic AI, the challenges organizations are facing in deploying it, and the lessons learned from success

Read More »

AMD to build two more supercomputers at Oak Ridge National Labs

Lux is engineered to train, refine, and deploy AI foundation models that accelerate scientific and engineering progress. Its advanced architecture supports data-intensive and model-centric workloads, thereby enhancing AI-driven research capabilities. Discovery differs from Lux in that it uses Instinct MI430X GPUs instead of the 300 series. The MI400 Series is

Read More »

Xcel Energy rolls out $60 billion capital spending plan

By the Numbers: Xcel Energy Q3 2025 $524M Quarterly earnings, down 23% from 2024 on higher depreciation, interest charges and O&M expenses, partially offset by improved recovery from infrastructure investments. 3 GW Capacity of contracted or ‘high probability’ data center load. The utility says it is tracking additional deals that could exceed 20 GW in new load. $60B Five-year capital spending plan Accelerated Growth The Minneapolis-based utility serves about 3.9 million electric customers in parts of Colorado, Michigan, Minnesota, New Mexico, North Dakota, South Dakota, Texas and Wisconsin. The company expects retail sales to grow 5% through 2030. A 3 GW pipeline of contracted and “high probability” data center projects will drive the majority of that growth, according to the company. Leaders believe Xcel’s data center queue could exceed 20 GW if earlier-stage prospects materialize. Xcel Energy announced a $15 billion addition to its five-year capital plan on Thursday, which CEO Bob Frenzel said will now cover 7.5 GW of new renewable generation, 3 GW of new gas generation, 1.9 GW of energy storage, 1,500 miles of high-voltage transmission and $5 billion for wildfire mitigation. Xcel and two telecom companies agreed to a $640 million settlement with plaintiffs in a lawsuit over the 2021-2022 Marshall Fire in Colorado in September. The company excluded a $290 million charge from its share of the Marshall Wildfire settlement in Colorado from quarterly earnings metrics, it noted. Xcel’s long-term vision includes the addition of 4.5 GW of new natural gas capacity as well as 5 GW of energy storage, Frenzel said. “Making sure that we can deliver a cleaner energy product as well as a highly reliable and highly affordable product is very strategic as we approach economic development with data centers,” Frenzel said. New data center load represents about 60% of Xcel’s anticipated retail sales growth through

Read More »

Lukoil to Sell Assets to Gunvor Amid Sanctions

Russian oil producer Lukoil PJSC has agreed to sell its international assets to energy trader Gunvor Group, a week after being hit by US sanctions. The country’s No. 2 oil producer said it had accepted an offer from Gunvor and made a commitment not to negotiate with other potential buyers. If successful, the deal would involve the transfer of a sprawling global network of oil fields, refineries and gas stations to one of the world’s top independent commodity traders.  The US last week blacklisted oil giants Rosneft PJSC and Lukoil as part of a fresh bid to end the war in Ukraine by depriving Moscow of revenues. It was the first major package of sanctions on Russia’s petroleum industry since US President Donald Trump took office, and has left governments and business partners clambering to understand the impact. The offer — for which no value was disclosed — includes Lukoil International’s trading arm Litasco, but not the business units in Dubai which have recently become subject to sanctions, said a person familiar with the matter. Gunvor itself has had a long history with Russia. Its co-founder Gennady Timchenko was placed under US sanctions in the wake of the Kremlin’s annexation of Crimea in 2014, with the US government claiming at the time that Russian President Vladimir Putin had “investments in Gunvor,” which the company has consistently denied.  Since Timchenko sold his shares, it’s now majority-owned by co-founder and chief executive officer Torbjorn Tornqvist.  After making record profits from recent volatility in energy markets, cash-rich commodity traders are spending big on assets to help lock in better margins for the future. A potential deal could provide Gunvor with a system of upstream and downstream businesses akin to the trading units of majors like BP Plc and Shell Plc. The deal is subject to

Read More »

Energy Department Announces $100 Million to Restore America’s Coal Plants

WASHINGTON— The U.S. Department of Energy (DOE) today issued a Notice of Funding Opportunity (NOFO) for up to $100 million in federal funding to refurbish and modernize the nation’s existing coal power plants. It follows the Department’s September announcement of its intent to invest $625 million to expand and reinvigorate America’s coal industry. The effort will support practical, high-impact projects that improve efficiency, plant lifetimes, and performance of coal and natural gas use. “For years, the Biden and Obama administrations relentlessly targeted America’s coal industry and workers, resulting in the closure of reliable power plants and higher electricity costs,” said U.S. Secretary of Energy Chris Wright. “Thankfully, President Trump has ended the war on American coal and is restoring common sense energy policies that put Americans first. These projects will help keep America’s coal plants operating and ensure the United States has the reliable and affordable power it needs to keep the lights on and power our future.” This effort supports President Trump’s Executive Orders, Reinvigorating America’s Beautiful Clean Coal Industry and Strengthening the Reliability and Security of the United States Electric Grid, and advances his commitment to restore U.S. energy dominance. This NOFO seeks applications for projects to design, implement, test, and validate three strategic opportunities for refurbishment and retrofit of existing American coal power plants to make them operate more efficiently, reliably, and affordably: Development, engineering, and implementation of advanced wastewater management systems capable of cost-effective water recovery and other value-added byproducts from wastewater streams. Engineering, design, and implementation of retrofit systems that enable fuel switching between coal and natural gas without compromising critical operational parameters. Deployment, engineering, and implementation of advanced coal-natural gas co-firing systems and system components, including highly fuel-flexible burner designs and advanced control systems, to maximize gas co-firing capacity to provide a low cost retrofit option for coal plants while minimizing efficiency penalties. DOE’s National Energy

Read More »

USA Energy Sec Says Goal Is for Canada Trade Talks to Resume

(Update) October 31, 2025, 4:18 PM GMT: Adds comments from President Trump, starting in the first paragraph. US President Donald Trump said he received an apology from Canadian Prime Minister Mark Carney over a television ad that opposed tariffs, but suggested that trade talks between the two countries won’t restart.  Asked by reporters aboard Air Force One whether negotiations between the White House and Carney’s government would resume, Trump said: “No, but I have a very good relationship. I like him a lot, but you know, what they did was wrong. He was very nice. He apologized for what they did with the commercial.”  Earlier Friday, US Energy Secretary Chris Wright said the goal is for the US and Canada to return to the table after talks broke off last week, and for the countries to cooperate more closely on oil, gas and critical minerals. There has been friction in the talks between Canada and the US “for some good reasons,” Wright told reporters at the Group of Seven energy and environment ministers’ meeting in Toronto on Friday. Trump called off the negotiations last week after the province of Ontario aired an anti-tariff advertisement in the US that drew from a 1987 radio address by former President Ronald Reagan. Trump also threatened an additional 10% tariff on Canada. Before the breakdown, Carney said the two countries had been progressing on a deal on steel and aluminum sectoral tariffs, as well as energy. Carney had pitched Trump on reviving the Keystone XL pipeline project. “Unfortunately we’ve had some bumps on the road,” Wright said. “I would say the goal is to bring those back together and I think to see cooperation between the United States and Canada across critical minerals, across oil and gas.” Trump has also said recently that he’s satisfied with

Read More »

Exxon and Chevron Top Estimates With Oil Output Increases

Exxon Mobil Corp. and Chevron Corp. outperformed Wall Street expectations after new oilfield projects and acquisitions boosted crude output. Exxon’s adjusted third-quarter profit per-share was 7 cents higher than analysts forecast, while Chevron posted an almost 20-cent surprise on Friday. For Exxon, it was the sixth consecutive beat, buoyed by the startup of the explorer’s latest Guyana development. Chevron rose as much as 3.1% in New York. Exxon, meanwhile, dipped as much as 1.5% after a spate of acquisitions during the period pressured free cash flow. North America’s largest oil companies are pursuing divergent paths as global oil markets slip into what is widely expected to be a hefty supply glut. As Exxon presses head with a raft of expansion projects despite slumping crude prices, Chevron is positioning itself to wring cash from operations to weather the market downturn. This is all happening against the backdrop of efforts by the OPEC+ alliance to recapture market share by unleashing more crude onto global markets. Brent crude, the international benchmark, already is on pace for its worst annual decline in half a decade. The US supermajors followed European rival Shell Plc in posting stronger-than-expected results. TotalEnergies SE reported profit that was in-line with expectations. BP Plc is scheduled to disclose results next week. For Exxon, eight of the 10 new developments slated for this year have already started up and the remaining two are “on track,” Chief Executive Officer Darren Woods said in a statement.  Woods is betting Exxon’s low debt level means he has ample capacity to fund growth projects that span from crude in Brazil to chemicals in China while maintaining a $20 billion annual buyback program despite weak oil prices. His goal is to be ready to capitalize on an upturn in commodity prices, which analysts say could come

Read More »

Trump Says Canada Trade Talks Won’t Resume, Contradicting Energy Sec

(Update) October 31, 2025, 4:18 PM GMT: Adds comments from President Trump, starting in the first paragraph. US President Donald Trump said he received an apology from Canadian Prime Minister Mark Carney over a television ad that opposed tariffs, but suggested that trade talks between the two countries won’t restart.  Asked by reporters aboard Air Force One whether negotiations between the White House and Carney’s government would resume, Trump said: “No, but I have a very good relationship. I like him a lot, but you know, what they did was wrong. He was very nice. He apologized for what they did with the commercial.”  Earlier Friday, US Energy Secretary Chris Wright said the goal is for the US and Canada to return to the table after talks broke off last week, and for the countries to cooperate more closely on oil, gas and critical minerals. There has been friction in the talks between Canada and the US “for some good reasons,” Wright told reporters at the Group of Seven energy and environment ministers’ meeting in Toronto on Friday. Trump called off the negotiations last week after the province of Ontario aired an anti-tariff advertisement in the US that drew from a 1987 radio address by former President Ronald Reagan. Trump also threatened an additional 10% tariff on Canada. Before the breakdown, Carney said the two countries had been progressing on a deal on steel and aluminum sectoral tariffs, as well as energy. Carney had pitched Trump on reviving the Keystone XL pipeline project. “Unfortunately we’ve had some bumps on the road,” Wright said. “I would say the goal is to bring those back together and I think to see cooperation between the United States and Canada across critical minerals, across oil and gas.” Trump has also said recently that he’s satisfied with

Read More »

Supermicro Unveils Data Center Building Blocks to Accelerate AI Factory Deployment

Supermicro has introduced a new business line, Data Center Building Block Solutions (DCBBS), expanding its modular approach to data center development. The offering packages servers, storage, liquid-cooling infrastructure, networking, power shelves and battery backup units (BBUs), DCIM and automation software, and on-site services into pre-validated, factory-tested bundles designed to accelerate time-to-online (TTO) and improve long-term serviceability. This move represents a significant step beyond traditional rack integration; a shift toward a one-stop, data-center-scale platform aimed squarely at the hyperscale and AI factory market. By providing a single point of accountability across IT, power, and thermal domains, Supermicro’s model enables faster deployments and reduces integration risk—the modern equivalent of a “single throat to choke” for data center operators racing to bring GB200/NVL72-class racks online. What’s New in DCBBS DCBBS extends Supermicro’s modular design philosophy to an integrated catalog of facility-adjacent building blocks, not just IT nodes. By including critical supporting infrastructure—cooling, power, networking, and lifecycle software—the platform helps operators bring new capacity online more quickly and predictably. According to Supermicro, DCBBS encompasses: Multi-vendor AI system support: Compatibility with NVIDIA, AMD, and Intel architectures, featuring Supermicro-designed cold plates that dissipate up to 98% of component-level heat. In-rack liquid-cooling designs: Coolant distribution manifolds (CDMs) and CDUs rated up to 250 kW, supporting 45 °C liquids, alongside rear-door heat exchangers, 800 GbE switches (51.2 Tb/s), 33 kW power shelves, and 48 V battery backup units. Liquid-to-Air (L2A) sidecars: Each row can reject up to 200 kW of heat without modifying existing building hydronics—an especially practical design for air-to-liquid retrofits. Automation and management software: SuperCloud Composer for rack-scale and liquid-cooling lifecycle management SuperCloud Automation Center for firmware, OS, Kubernetes, and AI pipeline enablement Developer Experience Console for self-service workflows and orchestration End-to-end services: Design, validation, and on-site deployment options—including four-hour response service levels—for both greenfield builds

Read More »

Investments Anchor Vertiv’s Growth Strategy as AI-Driven Data Center Orders Surge 60% YoY

New Acquisitions and Partner Awards Vertiv’s third-quarter financial performance was underscored by a series of strategic acquisitions and ecosystem recognitions that expand the company’s technological capabilities and market reach amid AI-driven demand. Acquisition of Waylay NV: AI and Hyperautomation for Infrastructure Intelligence On August 26, Vertiv announced its acquisition of Waylay NV, a Belgium-based developer of generative AI and hyperautomation software. The move bolsters Vertiv’s portfolio with AI-driven monitoring, predictive services, and performance optimization for digital infrastructure. Waylay’s automation platform integrates real-time analytics, orchestration, and workflow automation across diverse connected assets and cloud services—enabling predictive maintenance, uptime optimization, and energy management across power and cooling systems. “With the addition of Waylay’s technology and software-focused team, Vertiv will accelerate its vision of intelligent infrastructure—data-driven, proactive, and optimized for the world’s most demanding environments,” said CEO Giordano Albertazzi. Completion of Great Lakes Acquisition: Expanding White Space Integration Just days earlier, as alluded to above, Vertiv finalized its $200 million acquisition of Great Lakes Data Racks & Cabinets, a U.S.-based manufacturer of enclosures and integrated rack systems. The addition expands Vertiv’s capabilities in high-density, factory-integrated white space solutions; bridging power, cooling, and IT enclosures for hyperscale and edge data centers alike. Great Lakes’ U.S. and European manufacturing footprint complements Vertiv’s global reach, supporting faster deployment cycles and expanded configuration flexibility.  Albertazzi noted that the acquisition “enhances our ability to deliver comprehensive infrastructure solutions, furthering Vertiv’s capabilities to customize at scale and configure at speed for AI and high-density computing environments.” 2024 Partner Awards: Recognizing the Ecosystem Behind Growth Vertiv also spotlighted its partner ecosystem in August with its 2024 North America Partner Awards. The company recognized 11 partners for 2024 performance, growth, and AI execution across segments: Partner of the Year – SHI for launching a customer-facing high-density AI & Cyber Labs featuring

Read More »

QuEra’s Quantum Leap: From Neutral-Atom Breakthroughs to Hybrid HPC Integration

The race to make quantum computing practical – and commercially consequential – took a major step forward this fall, as Boston-based QuEra Computing announced new research milestones, expanded strategic funding, and an accelerating roadmap for hybrid quantum-classical supercomputing. QuEra’s Chief Commercial Officer Yuval Boger joined the Data Center Frontier Show to discuss how neutral-atom quantum systems are moving from research labs into high-performance computing centers and cloud environments worldwide. NVIDIA Joins Google in Backing QuEra’s $230 Million Round In early September, QuEra disclosed that NVentures, NVIDIA’s venture arm, has joined Google and others in expanding its $230 million Series B round. The investment deepens what has already been one of the most active collaborations between quantum and accelerated-computing companies. “We already work with NVIDIA, pairing our scalable neutral-atom architecture with its accelerated-computing stack to speed the arrival of useful, fault-tolerant quantum machines,” said QuEra CEO Andy Ory. “The decision to invest in us underscores our shared belief that hybrid quantum-classical systems will unlock meaningful value for customers sooner than many expect.” The partnership spans hardware, software, and go-to-market initiatives. QuEra’s neutral-atom machines are being integrated into NVIDIA’s CUDA-Q software platform for hybrid workloads, while the two companies collaborate at the NVIDIA Accelerated Quantum Center (NVAQC) in Boston, linking QuEra hardware with NVIDIA’s GB200 NVL72 GPU clusters for simulation and quantum-error-decoder research. Meanwhile, at Japan’s AIST ABCI-Q supercomputing center, QuEra’s Gemini-class quantum computer now operates beside more than 2,000 H100 GPUs, serving as a national testbed for hybrid workflows. A jointly developed transformer-based decoder running on NVIDIA’s GPUs has already outperformed classical maximum-likelihood error-correction models, marking a concrete step toward practical fault-tolerant quantum computing. For NVIDIA, the move signals conviction that quantum processing units (QPUs) will one day complement GPUs inside large-scale data centers. For QuEra, it widens access to the

Read More »

How CoreWeave and Poolside Are Teaming Up in West Texas to Build the Next Generation of AI Data Centers

In the evolving landscape of artificial-intelligence infrastructure, a singular truth is emerging: access to cutting-edge silicon and massive GPU clusters is no longer enough by itself. For companies chasing the frontier of multi-trillion-parameter model training and agentic AI deployment, the bottleneck increasingly lies not just in compute, but in the seamless integration of compute + power + data center scale. The latest chapter in this story is the collaboration between CoreWeave and Poolside, culminating in the launch of Project Horizon, a 2-gigawatt AI-campus build in West Texas. Setting the Stage: Who’s Involved, and Why It Matters CoreWeave (NASDAQ: CRWV) has positioned itself as “The Essential Cloud for AI™” — a company founded in 2017, publicly listed in March 2025, and aggressively building out its footprint of ultra-high-performance infrastructure.  One of its strategic moves: in July 2025 CoreWeave struck a definitive agreement to acquire Core Scientific (NASDAQ: CORZ) in an all-stock transaction. Through that deal, CoreWeave gains grip over approximately 1.3 GW of gross power across Core Scientific’s nationwide data center footprint, plus more than 1 GW of expansion potential.  That acquisition underlines a broader trend: AI-specialist clouds are no longer renting space and power; they’re working to own or tightly control it. Poolside, founded in 2023, is a foundation-model company with an ambitious mission: building artificial general intelligence (AGI) and deploying enterprise-scale agents.  According to Poolside’s blog: “When people ask what it takes to build frontier AI … the focus is usually on the model … but that’s only half the story. The other half is infrastructure. If you don’t control your infrastructure, you don’t control your destiny—and you don’t have a shot at the frontier.”  Simply put: if you’re chasing multi-trillion-parameter models, you need both the compute horsepower and the power infrastructure; and ideally, tight vertical integration. Together, the

Read More »

Vantage Data Centers Pours $15B Into Wisconsin AI Campus as It Builds Global Giga-Scale Footprint

Expanding in Ohio: Financing Growth Through Green Capital In June 2025, Vantage secured $5 billion in green loan capacity, including $2.25 billion to fully fund its New Albany, Ohio (OH1) campus and expand its existing borrowing base. The 192 MW development will comprise three 64 MW buildings, with first delivery expected in December 2025 and phased completion through 2028. The OH1 campus is designed to come online as Vantage’s larger megasites ramp up, providing early capacity and regional proximity to major cloud and AI customers in the Columbus–New Albany corridor. The site also offers logistical and workforce advantages within one of the fastest-growing data center regions in the U.S. Beyond the U.S. – Vantage Expands Its Global Footprint Moving North: Reinforcing Canada’s Renewable Advantage In February 2025, Vantage announced a C$500 million investment to complete QC24, the fourth and final building at its Québec City campus, adding 32 MW of capacity by 2027. The project strengthens Vantage’s Montreal–Québec platform and reinforces its renewable-heavy power profile, leveraging abundant hydropower to serve sustainability-driven customers. APAC Expansion: Strategic Scale in Southeast Asia In September 2025, Vantage unveiled a $1.6 billion APAC expansion, led by existing investors GIC (Singapore’s sovereign wealth fund) and ADIA (Abu Dhabi Investment Authority). The investment includes the acquisition of Yondr’s Johor, Malaysia campus at Sedenak Tech Park. Currently delivering 72.5 MW, the Johor campus is planned to scale to 300 MW at full build-out, positioning it within one of Southeast Asia’s most active AI and cloud growth corridors. Analysts note that the location’s connectivity to Singapore’s hyperscale market and favorable development economics give Vantage a strong competitive foothold across the region. Italy: Expanding European Presence Under National Priority Status Vantage is also adding a second Italian campus alongside its existing Milan site, totaling 32 MW across two facilities. Phase

Read More »

Nvidia GTC show news you need to know round-up

In the case of Flex, it will use digital twins to unify inventory, labor, and freight operations, streamlining logistics across Flex’s worldwide network. Flex’s new 400,000 sq. ft. facility in Dallas is purpose-built for data center infrastructure, aiming to significantly shorten lead times for U.S. customers. The Flex/Nvidia partnership aims to address the country’s labor shortages and drive innovation in manufacturing, pharmaceuticals, and technology. The companies believe the partnership sets the stage for a new era of giga-scale AI factories. Nvidia and Oracle to Build DOE’s Largest AI Supercomputer Oracle continues its aggressive push into supercomputing with a deal to build the largest AI supercomputer for scientific discovery — Using Nvidia GPUs, obviously — at a Department of Energy facility. The system, dubbed Solstice, will feature an incredible 100,000 Nvidia Blackwell GPUs. A second system, dubbed Equinox, will include 10,000 Blackwell GPUs and is expected to be available in the first half of 2026. Both systems will be interconnected by Nvidia networking and deliver a combined 2,200 exaflops of AI performance. The Solstice and Equinox supercomputers will be located at Argonne National Laboratory, the home to the Aurora supercomputer, built using all Intel parts. They will enable scientists and researchers to develop and train new frontier models and AI reasoning models for open science using the Nvidia Megatron-Core library and scale them using the Nvidia TensorRT inference software stack.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »