Stay Ahead, Stay ONMINE

➡️ Start Asking Your Data ‘Why?’ — A Gentle Intro To Causality

Correlation does not imply causation. It turns out, however, that with some simple ingenious tricks one can, potentially, unveil causal relationships within standard observational data, without having to resort to expensive randomised control trials. This post is targeted towards anyone making data driven decisions. The main takeaway message is that causality may be possible by […]

Correlation does not imply causation. It turns out, however, that with some simple ingenious tricks one can, potentially, unveil causal relationships within standard observational data, without having to resort to expensive randomised control trials.

This post is targeted towards anyone making data driven decisions. The main takeaway message is that causality may be possible by understanding that the story behind the data is as important as the data itself.

By introducing Simpson’s and Berkson’s Paradoxes, situations where the outcome of a population is in conflict with that of its cohorts, I shine a light on the importance of using causal reasoning to identify these paradoxes in data and avoid misinterpretation. Specifically I introduce causal graphs as a method to visualise the story behind the data point out that by adding this to your arsenal you are likely to conduct better analyses and experiments.

My ultimate objective is to whet your appetite to explore more on causality, as I believe that by asking data “Why?” you will be able to go beyond correlation calculations and extract more insights, as well as avoid common misjudgement pitfalls.

Note that throughout this gentle intro I do not use equations but demonstrate using accessible intuitive visuals. That said I provide resources for you to take your next step in adding Causal Inference to your statistical toolbox so that you may get more value from your data.

The Era of Data Driven Decision Making

In [Deity] We Trust, All Others Bring Data! — William E. Deming

In this digital age it is common to put a lot of faith in data. But this raises an overlooked question: Should we trust data on its own?

Judea Pearl, who is considered the godfather of Causality, articulated best:

“The collection of information is as important as the information itself “ — Judea Pearl

In other words the story behind the data is as important as the data itself.

Judea Pearl is considered the Godfather of Causality. Credit: Aleksander Molak

This manifests in a growing awareness of the importance of identifying bias in datasets. By the end of this post I hope that you will appreciate that causality pertains the fundamental tools to best express, quantify and attempt to correct for these biases.

In causality introductions it is customary to demonstrate why “correlation does not imply causation” by highlighting limitations of association analysis due to spurious correlations (e.g, shark attacks 🦈 and ice-cream sales 🍦). In an attempt to reduce the length of this post I defer this aspect to an older one of mine. Here I focus on two mind boggling paradoxes 🤯 and their resolution via causal graphs to make a similar point.

Paradoxes in Analysis

To understand the importance of the story behind the data we will examine two counter-intuitive (but nonetheless true) paradoxes which are classical situations of data misinterpretation.

In the first we imagine a clinical trial in which patients are given a treatment and that results in a health score. Our objective is to assess the average impact of increased treatment to the health outcome. For pedagogical purposes in these examples we assume that samples are representative (i.e, the sample size is not an issue) and that variances in measurements are minimal.

Population outcome of imaginary clinical trial. Each dot is one patient and the red line indicates the naïve population trend.

In the figure above we learn that on average increasing the treatment appears to be beneficial since it results in a better outcome.

Now we’ll color code by age and gender groupings and examine how the treatment increases impacts each cohort.

Same data as before where each symbol represents an age-gender cohort.

Track any cohort (e.g, “Girls” representing young females) and you immediately realise that increase in treatment appears adverse.

What is the conclusion of the study? On the one hand increasing the treatment appears to be better for the population at large, but when examining gender-age cohorts it seems disadvantageous. This is Simpson’s Paradox which may be stated:

“Trends can exist in subgroups but reverse for the whole”

Below we will resolve this paradox using causality tools, but beforehand let’s explore another interesting one, which also examines made up data.

Imagine that we quantify for the general population their attractiveness and how talented they are as in this figure:

General population. Source: Wikipedia, created by Cmglee

We find no apparent correlation.

Now we’ll focus on an unusual subset — famous people:

A subset of celebrities. Source: Wikipedia created by Cmglee

Here we clearly see an anti-correlation that doesn’t exist in the general population.

Should we conclude that Talent and Attractiveness are independent variables as per the first plot of the general population or that they are correlated as per that of celebrities?

This is Berkson’s Paradox where one population has a trait trend that another lacks.

Whereas an algorithm would identify these correlations, resolving these paradoxes requires a full understanding of the context which normally is not fed to a computer. In other words without knowing the story behind the data results may be misinterpreted and wrong conclusions may be inferred.

Mastering identification and resolution these paradoxes is an important first step to elevating one’s analyses from correlations to causal inference.

Whereas these simple examples may be explained away logically, for the purposes of learning causal tools in the next section I’ll introduce Causal Graphs.

Causal Graphs— Visualising The Story Behind The Data

“[From the Simpson’s and Berkson’s Paradoxes we learn that] certain decisions cannot be made based on the basis of data alone, but instead depend on the story behind the data. … Graph Theory enables these stories to be conveyed” — Judea Pearl

Causal graph models are probabilistic graphical models used to visualise the story behind the data. They are perhaps one of the most powerful tools for analysts that is not taught in most statistics curricula. They are both elegant and highly informative. Hopefully by the end of this post you will appreciate it when Judea Pearl says that this is the missing vocabulary to communicate causality.

To understand causal graph models (or causal graphs for short) we start with the following illustration of an example undirected graph with four nodes/vertices and three edges.

An undirected graph with four nodes/vertices and three edges

Each node is a variable and the edges communicate “who is related to whom?” (i.e, correlations, joint probabilities).A directed graph is one in which we add arrows as in this figure.

A directed graph with four nodes/vertices and five directed edges

A directed edge communicates “who listens to whom?” which is the essence of causation.

In this specific example you can notice a cyclical relationship between the C and D nodes.A useful subset of directed graphs are the directed acyclic graphs (DAG), which have no cycles as in the next figure.

A directed acyclic graph with four nodes/vertices and four directed edges

Here we see that when starting from any node (e.g, A) there isn’t a path that gets back to it.

DAGs are the go-to choice in causality for simplicity as the fact that parameters do not have feedback highly simplifies the flow of information. (For mechanisms that have feedback, e.g temporal systems, one may consider rolling out nodes as a function of time, but that is beyond the scope of this intro.)

Causal graphs are powerful at conveying the cause/effect relationships between the parameter and hence how data was generated (the story behind the data).

From a practical point of view, graphs enable us to understand which parameters are confounders that need to be controlled for, and, as important, which not to control for, because doing so causes spurious correlations. This will be demonstrated below.

The practice of attempting to build a causal graph enables:

  • Design of better experiments.
  • Draw causal conclusions (go beyond correlations by means of representing interventions, counterfactuals and encoding conditional independence relationships; all beyond the scope of this post).

To further motivate the usage of causal graph models we will use them to resolve the Simpson’s and Berkson’s paradoxes introduced above.

💊 Causal Graph Resolution of Simpson’s Paradox

For simplicity we’ll examine Simpson’s paradox focusing on two cohorts, male and female adults.

Outcome of the imaginary therapeutic trial, similar to the previous but focusing on the adults. Each symbol is one patient from the respective age-gender cohort and the red line indicates the naïve population trend.

Examining this data we can make three statements about three variables of interest:

  • Gender is an independent variable (it does not “listen to” the other two)
  • Treatment depends on Gender (as we can see, in this setting the level given depends on Gender — women have been given, for some reason, a higher dosage.)
  • Outcome depends on both Gender and Treatment

According to these we can draw the causal graph as the following:

Simpson’s paradox Graphic Model where Gender is a confounding variable between Treatment and Outcome

Notice how each arrow contributes to communicate the statements above. As important, the lack of an arrow pointing into Gender conveys that it is an independent variable.

We also notice that by having arrows pointing from Gender to Treatment and Outcome it is considered a common cause between them.

The essence of the Simpson’s paradox is that although the Outcome is effected by changes in Treatment, as expected, there is also a backdoor path flow of information via Gender.

As you may have guessed by this stage, the solution to this paradox is that the common cause Gender is a confounding variable that needs to be controlled.

Controlling for a variable, in terms of a causal graph, means eliminating the relationship between Gender and Treatment.

This may be done in two manners:

  • Pre data collection: Setting up a Randomised Control Trial (RCT) in which participants will be given dosage regardless of their Gender.
  • Post data collection: E.g, in this made up scenario the data has already been collected and hence we need to deal with what is referred to as Observational Data.

In both pre- and post- data collection the elimination of the Treatment dependency of Gender (i.e, controlling for the Gender) may be done by modifying the graph such that the arrow between them is removed as in the following:

A modified version of the Simpson’s paradox Graphic Model. The dark node means we control for Gender.

Applying this “graphical surgery” means that the last two statements need to be modified (for convenience I’ll write all three):

  • Gender is an independent variable
  • Treatment is an independent variable
  • Outcome depends on Gender and Treatment (but with no backdoor path).

This enables obtaining the causal relationship of interest : we can assess the direct impact of modification Treatment on the Outcome.

The process of controlling for a confounder, i.e manipulation of the data generation process, is formally referred to as applying an intervention. That is to say we are no longer passive observers of the data, but we are taking an active role in modification it to assess the causal impact.

How is this manifested in practice?

In the case of RCTs the researcher needs to control for important confounding variables. Here we limit the discussion to Gender (but in real world settings you can imagine other variables such as Age, Social Status and anything else that might be relevant to one’s health).

RCTs are considered the golden standard for causal analysis in many experimental settings thanks to its practice of confounding variables. That said, it has many setbacks:

  • It may be expensive to recruit individuals and may be complicated logistically
  • The intervention under investigation may not be physically possible or ethical to conduct (e.g, one can’t ask randomly selected people to smoke or not for ten years)
  • Artificial setting of a laboratory — not a true natural habitat of the population.

Observational data on the other hand is much more readily available in the industry and academia and hence much cheaper and could be more representative of actual habits of the individuals. But as illustrated in the Simpson’s diagram it may have confounding variables that need to be controlled.

This is where ingenious solutions developed in the causal community in the past few decades are making headway. Detailing them are beyond the scope of this post, but I briefly mention how to learn more at the end.

To resolve for this Simpson’s paradox with the given observational data one

  1. Calculates for each cohort the impact of the change of the treatment on the outcome
  2. Calculates a weighted average contribution of each cohort on the population.

Here we will focus on intuition, but in a future post we will describe the maths behind this solution.

I am sure that many analysts, just like myself, have noticed Simpson’s at some stage in their data and hopefully have corrected for it. Now you know the name of this effect and hopefully start to appreciate how causal tools are useful.

That said … being confused at this stage is OK 😕

I’ll be the first to admit that I struggled to understand this concept and it took me three weekends of deep diving into examples to internalised it. This was the gateway drug to causality for me. Part of my process to understanding statistics is playing with data. For this purpose I created an interactive web application hosted in Streamlit which I call Simpson’s Calculator 🧮. I’ll write a separate post for this in the future.

Even if you are confused the main takeaways of Simpson’s paradox is that:

  • It is a situation where trends can exist in subgroups but reverse for the whole.
  • It may be resolved by identifying confounding variables between the treatment and the outcome variables and controlling for them.

This raises the question — should we just control for all variables except for the treatment and outcome? Let’s keep this in mind when resolving for the Berkson’s paradox.

🦚 Causal Graph Resolution of Berkson’s Paradox

As in the previous section we are going to make clear statements about how we believe the data was generated and then draw these in a causal graph.

Let’s examine the case of the general population, for convenience I’m copying the image from above:

General population. Source: Wikipedia, created by Cmglee

Here we understand that:

  • Talent is an independent variable
  • Attractiveness is an independent variable

A causal graph for this is quite simple, two nodes without an edge.

In the general population ones Talent and Attractiveness are independent

Let’s examine the plot of the celebrity subset.

A subset of celebrities. Source: Wikipedia created by Cmglee

The cheeky insight from this mock data is that the more likely one is attractive the less they need to be talented to be a celebrity. Hence we can deduce that:

  • Talent is an independent variable
  • Attractiveness is an independent variable
  • Celebrity variable depends on both Talent and Attractiveness variables. (Imagine this variable is boolean as in: true for celebrities or false for not).

Hence we can draw the causal graph as:

Being a celebrity depends on Talent and Attractiveness

By having arrows pointing into it Celebrity is a collider node between Talent and Attractiveness.

Berkson’s paradox is the fact that when controlling for celebrities we see an interesting trend (anti correlation between Attractiveness and Talent) not seen in the general population.

This can be visualised in the causal graph that by confounding for the Celebrity parameter we are creating a spurious correlation between the otherwise independent variables Talent and Attractiveness. We can draw this as the following:

Berkson’s paradox Graphic Model. The dark node means we control for Celebrity. Controlling this collider variable generates a spurious correlation (dashed line) between Talent and Attractiveness.

The solution of this Berkson’s paradox should be apparent here: Talent and Attractiveness are independent variables in general, but by controlling for the collider Celebrity node causes a spurious correlation in the data.

Let’s compare the resolution of both paradoxes:

  • Resolving Simpson’s Paradox is by controlling for common cause (Gender)
  • Resolving Berkson’s Paradox is by not controlling for the collider (Celebrity)

The next figure combines both insights in the form of their causal graphs:

Graph models show how to resolve the paradoxes. Dark nodes are controlled for. Left: Modified graph to resolve Simpson’s paradox by controlling for Gender. Right: To resolve for Berkson’s paradox the collider should not be controlled.

The main takeaway from the resolution of these paradoxes is that controlling for parameters requires a justification. Common causes should be controlled for but colliders should not.

Even though this is common knowledge for those who study causality (e.g, Economics majors), it is unfortunate that most analysts and machine learning practitioners are not aware of this (including myself in 2020 after over 15 years of analysis and predictive modelling experience).

Oddly, statisticians both over- and underrate the importance of confounders — Judea Pearl

Summary

The main takeaway from this post is that the story behind the data is as important as the data itself.

Appreciating this will help you avoid result misinterpretation as spurious correlations and, as demonstrated here, in Simpson’s and Berskon’s paradoxes.

Causal Graphs are an essential tool to visualise the story behind the data. By using them to solve for the paradoxes we learnt that controlling for variables requires justification (common causes ✅, colliders ⛔️).

For those interested in taking the next step in their causal journey I highly suggest mastering Simpson’s paradox. One great way is by playing with data. Feel free to do so with my interactive “Simpson-calculator” 🧮.

Loved this post? 💌 Join me on LinkedIn or ☕ Buy me a coffee!

Credits

Unless otherwise noted, all images were created by the author.

Many thanks to Jim Parr, Will Reynolds, Hedva Kazin and Betty Kazin for their useful comments.

Wondering what your next step should be in your causal journey? Check out my new article on mastering Simpson’s Paradox — you will never look at data the same way. 🔎

Useful Resources

Here I provide resources that I find useful as well as a shopping list of topics for beginners to learn.

📚 Books

Credit: Gaelle Marcel
  • The Book of Why — popular science reading (NY Times level)
  • Causal Inference in Statistics A Primer — excellent short technical book (site)
  • Causal Inference and Discovery in Python by Aleksander Molak (Packt, github) — clearly explained with python applications 🐍.
  • What If? — a cohesive presentation of concepts of, and methods for, causal inference (site, github)
  • Causal Inference The Mixtape — Social Science focused using Python, R and Strata (site, resources, mooc)
  • Counterfactuals and Causal Inference — Methods and Principles (Social Science focused)

This list is far from comprehensive, but I’m glad to add to it if anyone has suggestions (please mention why the book stands out from the pack).

🔏 Courses

Credit: Austrian National Library

There are probably a few courses online. I love the 🆓 one of Brady Neil bradyneal.com/causal-inference-course.

  • Clearly explained
  • Covers many aspects
  • Thorough
  • Provides memorable examples
  • F.R.E.E

One paid course 💰 that is targeted to practitioners is Altdeep.

💾 Software

Credit: Artturi Jalli

This list is far from comprehensive because the space is rapidly growing:

Causal Wizard app also have an article about Causal Diagram tools.

🐾 Suggested Next Steps In The Causal Journey

Here I highlight a list of topics which I would have found useful when I started my learnings in the field. If I’m missing anything I’d be more than glad to get feedback and adding. I bold face the ones which were briefly discussed here.

Pearl’s Causal Hierarchy of seeing, doing, imagining and their applications. This is an approved modification of the original illustration by Maayan Harel from MaayanVisuals.com in The Book of Why.
  • Pearl’s Causal Hierarchy of seeing, doing and imagining (figure above)
  • Observational data vs. Randomised Control Trials
  • d-separation, common causes, colliders, mediators, instrumental variables
  • Causal Graphs
  • Structural Causal Models
  • Assumptions: Ignorability, SUTVA, Consistency, Positivity
  • “Do” Algebra — assessing impact on cohorts by intervention
  • Counterfactuals — assessing impact on individuals by comparing real outcomes to potential ones
  • The fundamental problem of causality
  • Estimand, Estimator, Estimate, Identifiability — relating causal definitions to observable statistics (e.g, conditional probabilities)
  • Causal Discovery — finding causal graphs with data (e.g, Markov Equivalence)
  • Causal Machine Learning (e.g, Double Machine Learning)

For completeness it is useful to know that there are different streams of causality. Although there is a lot of overlap you may find that methods differ in naming convention due to development in different fields of research: Computer Science, Social Sciences, Health, Economics

Here I used definitions mostly from the Pearlian perspective (as developed in the field of computer science).

The Story Behind This Post

This narrative is a result of two study groups that I have conducted in a previous role to get myself and colleagues to learn about causality, which I felt missing in my skill set. If there is any interest I’m glad to write a post about the study group experience.

This intro was created as the one I felt that I needed when I started my journey in causality.

In the first iteration of this post I wrote and presented the limitations of spurious correlations and Simpson’s paradox. The main reason for this revision to focus on two paradoxes is that, whereas most causality intros focus on the limitations of correlations, I feel that understanding the concept of justification of confounders is important for all analysts and machine learning practitioners to be aware of.

On September 5th 2024 I have presented this content in a contributed talk at the Royal Statistical Society Annual Conference in Brighton, England (abstract link).

Unfortunately there is no recording but there are of previous talks of mine:

The slides are available at bit.ly/start-ask-why. Presenting this material for the first time at PyData Global 2021

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Cisco routers knocked out due to Cloudflare DNS change

Exposes architectural fragility Networking consultant Yvette Schmitter, CEO of the Fusion Collective consulting firm, said the Cloudflare change “exposed Cisco’s architectural fragility when [some Cisco] switches worldwide entered fatal reboot loops every 10-30 minutes.” What happened? “Cloudflare changed record ordering. Cisco’s firmware, instead of handling unexpected DNS responses gracefully, treated

Read More »

Venezuela Oil Being Held at Sea Swells

The volume of Venezuelan crude floating at sea has spiked to the highest level in more than three years after the US seized the country’s leader, Nicolas Maduro, and asserted control over its energy resources. More than 29 million barrels of Venezuelan oil are now on vessels stationary at sea, up from about 20 million barrels earlier this week, according to data from Kpler. Most of the increase has been seen in waters in Asia, where China has long been the largest importer of the South American nation’s output. “Chinese teapots are already bracing for the possibility that the barrels now in transit will be their last,” said Muyu Xu, a senior crude analyst at Kpler, referring to independent Chinese processors. The oil market has been rocked this week by the US intervention into OPEC member Venezuela, which sits on the world’s largest proven crude reserves. The Trump administration has said it plans to control future sales of Venezuelan oil and hold the proceeds, with the new arrangement to last “indefinitely,” according to Energy Secretary Chris Wright. It has also maintained a naval blockade on flows, although US-bound cargoes have been allowed. The upheaval has cast doubt on where the Venezuelan oil that’s now in transit or floating storage will end up. Still, Wright also said Washington would not prevent China from accessing Venezuelan oil, according to comments to Fox News. “We’re not going to cut off China,” he said. “The illicit trade in oil with Iran and Russia, the illegal gun-running stuff, that’s going to be cut off.” WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Iran Turmoil Pushes Oil to Weekly Gain Streak

Oil notched its longest streak of weekly gains since June as Iran intensified a crackdown on protests across the country and US President Donald Trump threatened repercussions if demonstrators were targeted. West Texas Intermediate futures settled near $59 a barrel after rising more than 5% over the prior two sessions. Tehran said that “rioters” who damage public property or clash with security forces will face the death penalty, just a day after the US president warned the country’s regime would “pay hell” if protesters were killed. The unrest is the most significant challenge to Supreme Leader Ayatollah Ali Khamenei since a nationwide uprising in 2022. Protests are disrupting air travel in and out of the country, which produces more than 3 million barrels a day of crude. The scale of risk shows up clearest in options markets, where the skew toward bullish calls is the biggest for US crude futures since July. The Iranian turmoil shifted the focus away from Venezuela, where Trump said further attacks were canceled, citing improved cooperation from the country, leading to a brief dip in oil prices earlier. An energy quarantine is still in effect, though, and the US continues to have its military in position for further action in the region after the capture of Venezuelan President Nicolas Maduro last week. Trump met with oil executives at the White House on Friday and said the US intends to decide which companies will be allowed to go into Venezuela. “We’re dealing with the country, so we’re empowered to make that deal,” he said, adding that “giant” oil companies will spend $100 billion of their own money in investment. Venezuela’s acting President Delcy Rodriguez, for her part, issued a statement Friday saying the country is a victim of an “illegitimate and illegal criminal aggression” by the

Read More »

Russia’s Crude Output in December Made Deep Plunge

Russia’s crude oil production plunged by the most in 18 months in December, pincered by western sanctions that are causing the nation’s barrels to pile up at sea and a surge of Ukrainian drone attacks on its energy infrastructure. The nation pumped an average 9.326 million barrels a day of crude oil last month, according to people with knowledge of government data, who asked not to be identified discussing classified information. The figure — which doesn’t include output of condensate — is more than 100,000 barrels a day below November, and almost 250,000 barrels a day lower than Russia is allowed to pump under agreement with the Organization of the Petroleum Exporting Countries and allies. The slump comes at a time when Ukraine has been carrying out wide ranging drone attacks on Russian oil infrastructure — directly curbing output and affecting refineries that consume the barrels. At the same time, Russian cargoes are amassing at sea amid signs of reticence among some buyers to take them following sweeping US sanctions targeting the nation’s two largest producers, Rosneft PJSC and Lukoil PJSC. Russia’s Energy Ministry didn’t immediately respond to a Bloomberg request for comment on the December crude production figures. It’s a public holiday in Russia. The December decline was also the deepest since June 2024 — a period when Russia was supposed to be cutting its production anyway under an agreement with OPEC+. The producer group agreed to return barrels to the market between April and December 2025, and then hold output steady in the first quarter of 2026.  Until December, Russia’s output had been rising, even if growth had been petering out before year end. Russia’s required level of production for the final month of 2025 was 9.574 million barrels a day, according to OPEC data. Historically, Russia had been a laggard in complying with

Read More »

Burgum Says VEN Oil Revival Won’t Rely on Funding From USA

The Trump administration is unlikely to provide financial support to help US oil companies revitalize Venezuela’s oil sector, Interior Secretary Doug Burgum said Friday, throwing cold water on hopes the multibillion-dollar effort would be subsidized by the US government.  “The capital is going to come from the capital markets and come from the energy companies,” Burgum, who also leads the White House’s National Energy Dominance Council, told Bloomberg Television. “I don’t see that these companies are going to need support from the US, other than things around security. If we can provide a secure, stable environment, the resource here is so significant and so large that it’s going to be attractive for people to go in and develop.”  Burgum’s remarks come after President Donald Trump previously suggested the effort, estimated to cost upwards of $100 billion over the next decade, could be reimbursed by the US. The president on Monday told NBC News “a tremendous amount of money will have to be spent and the oil companies will spend it, and then they’ll get reimbursed by us or through revenue.” Oil companies, which are set to meet with Trump, Burgum and other administration officials at the White House later Friday, have been wary of committing tens of billions of dollars to Venezuela over the next decade. Executives have sought assurances on physical and financial security amid concerns about the stability of a post-Nicolás Maduro government.  Energy Secretary Chris Wright said on Fox News Friday the US Export-Import Bank could be used to provide credit support.  “I have been deluged with companies interested to go to Venezuela, and so far, no one’s asked for money,” Wright said in response to a question about providing direct grants to oil firms. “What they want is the US to use our leverage to make

Read More »

Texas Oil, Gas Industry Employed Nearly 500K Texans in 2025

The Texas oil and natural gas industry employed 495,501 Texans last year, according to the Texas Oil & Gas Association’s (TXOGA) 2025 Energy and Economic Impact report, which was released this week. The sector that employed the most workers in 2025 was ‘support activities for oil and gas operations’, with 110,612 employees, followed by ‘gasoline stations with convenience stores’, with 81,268 employees, and ‘oil and gas pipeline and related structures construction’, with 50,667 employees, the report showed. ‘Crude petroleum extraction’ ranked as the oil and gas sector with the fourth most employees in 2025, with 49,187, and ‘oil and gas field machinery and equipment’ ranked fifth, with 29,280, the report revealed. TXOGA stated in the report that “every direct job in the Texas oil and natural gas industry creates approximately two additional jobs”, outlining that “1.4 million total jobs [were] supported across the Texas economy” in 2025. Texas oil and natural gas employers paid an average of $133,095 per job in 2025, according to the report, which noted that this was 68 percent more than the average paid by the rest of Texas’ private sector. The report showed that oil and gas taxes came in at $54,481 per employee last year, while “all other sector taxes” were $7,225 per employee. “Based on the combined state and local taxes and state royalties attributable to the industry, the oil and natural gas industry pays far more per employee than the average across all other Texas private-sector industries,” TXOGA stated in its report. According to TXOGA’s latest report, in 2025, the Texas oil and natural gas industry paid state and local taxes and state royalties totaling $27.0 billion. TXOGA pointed out in the report that this equates to nearly $74 million every day. A statement sent to Rigzone by the TXOGA team this

Read More »

Nodal Hits Record Annual Volumes in Power, Environmental Markets

Nodal Exchange LLC, a derivatives trading platform for North American commodity markets, saw 3.1 billion megawatt hours (MWh) of power futures and 749,222 lots of environmental futures and options traded in 2025, achieving new annual highs. Power futures traded last year on the Tysons, Virginia-based exchange rose four percent year-on-year to 3.1 billion MWh. The December volume of 235 million MWh was up 29 percent from December 2024, Nodal said in an online statement Thursday. “Nodal continues to be the market leader in North American monthly power futures having 56 percent of the open interest with 1.51 billion MWh at the end of 2025”, Nodal said. “The open interest represents over $166 billion of notional value (both sides)”. Meanwhile environmental market open interest ended 2025 at a record 391,264 lots, up one percent from 2024. “December deliveries of 37,173 lots marked the fifth-largest delivery month for environmental products on Nodal”, Nodal said. “Renewable energy certificate futures and options posted volume of 465,189 lots in 2025, up 11 percent from a year earlier and ended the year with open interest of 323,591 lots, up 10 percent. “Nodal continues to expand environmental offerings having over 68 percent of the North American Renewable Energy Certificate market measured in clean MWh generation. “Nodal, in collaboration with IncubEx, launched several new environmental futures contracts in 2025, including Auction Clearing Price contracts for California, Washington and RGGI carbon allowances.  Nodal was the first exchange to launch PJM Emission Free Energy Certificate Futures, which allow for delivery of nuclear energy certificates alongside hydro. Other new launches included Virginia In-State Compliance REC Futures, New York Environmental Disclosure Program REC Futures and Alberta TIER EPC Options”. For natural gas, traded volumes last year totaled 958 trillion British thermal units (TBtu), Nodal said. Traded gas volumes in January-November 2025 reached a

Read More »

DCF Poll: Analyzing AI Data Center Growth

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #1796c1 !important; border-color: #1796c1 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #1796c1 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #1796c1 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #1796c1 !important; border-color: #1796c1 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #1796c1 !important; border-color: #1796c1 !important; } Coming out of 2025, AI data center development remains defined by momentum. But momentum is not the same as certainty. Behind the headlines, operators, investors, utilities, and policymakers are all testing the assumptions that carried projects forward over the past two years, from power availability and capital conditions to architecture choices and community response. Some will hold. Others may not. To open our 2026 industry polling, we’re taking a closer look at which pillars of AI data center growth are under the most pressure. What assumption about AI data center growth feels most fragile right now?

Read More »

JLL’s 2026 Global Data Center Outlook: Navigating the AI Supercycle, Power Scarcity and Structural Market Transformation

Sovereign AI and National Infrastructure Policy JLL frames artificial intelligence infrastructure as an emerging national strategic asset, with sovereign AI initiatives representing an estimated $8 billion in cumulative capital expenditure by 2030. While modest relative to hyperscale investment totals, this segment carries outsized strategic importance. Data localization mandates, evolving AI regulation, and national security considerations are increasingly driving governments to prioritize domestic compute capacity, often with pricing premiums reaching as high as 60%. Examples cited across Europe, the Middle East, North America, and Asia underscore a consistent pattern: digital sovereignty is no longer an abstract policy goal, but a concrete driver of data center siting, ownership structures, and financing models. In practice, sovereign AI initiatives are accelerating demand for locally controlled infrastructure, influencing where capital is deployed and how assets are underwritten. For developers and investors, this shift introduces a distinct set of considerations. Sovereign projects tend to favor jurisdictional alignment, long-term tenancy, and enhanced security requirements, while also benefiting from regulatory tailwinds and, in some cases, direct state involvement. As AI capabilities become more tightly linked to economic competitiveness and national resilience, policy-driven demand is likely to remain a durable (if specialized) component of global data center growth. Energy and Sustainability as the Central Constraint Energy availability emerges as the report’s dominant structural constraint. In many major markets, average grid interconnection timelines now extend beyond four years, effectively decoupling data center development schedules from traditional utility planning cycles. As a result, operators are increasingly pursuing alternative energy strategies to maintain project momentum, including: Behind-the-meter generation Expanded use of natural gas, particularly in the United States Private-wire renewable energy projects Battery energy storage systems (BESS) JLL points to declining battery costs, seen falling below $90 per kilowatt-hour in select deployments, as a meaningful enabler of grid flexibility, renewable firming, and

Read More »

SoftBank, DigitalBridge, and Stargate: The Next Phase of OpenAI’s Infrastructure Strategy

OpenAI framed Stargate as an AI infrastructure platform; a mechanism to secure long-duration, frontier-scale compute across both training and inference by coordinating capital, land, power, and supply chain with major partners. When OpenAI announced Stargate in January 2025, the headline commitment was explicit: an intention to invest up to $500 billion over four to five years to build new AI infrastructure in the U.S., with $100 billion targeted for near-term deployment. The strategic backdrop in 2025 was straightforward. OpenAI’s model roadmap—larger models, more agents, expanded multimodality, and rising enterprise workloads—was driving a compute curve increasingly difficult to satisfy through conventional cloud procurement alone. Stargate emerged as a form of “control plane” for: Capacity ownership and priority access, rather than simply renting GPUs. Power-first site selection, encompassing grid interconnects, generation, water access, and permitting. A broader partner ecosystem beyond Microsoft, while still maintaining a working relationship with Microsoft for cloud capacity where appropriate. 2025 Progress: From Launch to Portfolio Buildout January 2025: Stargate Launches as a National-Scale Initiative OpenAI publicly launched Project Stargate on Jan. 21, 2025, positioning it as a national-scale AI infrastructure initiative. At this early stage, the work was less about construction and more about establishing governance, aligning partners, and shaping a public narrative in which compute was framed as “industrial policy meets real estate meets energy,” rather than simply an exercise in buying more GPUs. July 2025: Oracle Partnership Anchors a 4.5-GW Capacity Step On July 22, 2025, OpenAI announced that Stargate had advanced through a partnership with Oracle to develop 4.5 gigawatts of additional U.S. data center capacity. The scale of the commitment marked a clear transition from conceptual ambition to site- and megawatt-level planning. A figure of this magnitude reshaped the narrative. At 4.5 GW, Stargate forced alignment across transformers, transmission upgrades, switchgear, long-lead cooling

Read More »

Lenovo unveils purpose-built AI inferencing servers

There is also the Lenovo ThinkSystem SR650i, which offers high-density GPU computing power for faster AI inference and is intended for easy installation in existing data centers to work with existing systems. Finally, there is the Lenovo ThinkEdge SE455i for smaller, edge locations such as retail outlets, telecom sites, and industrial facilities. Its compact design allows for low-latency AI inference close to where data is generated and is rugged enough to operate in temperatures ranging from -5°C to 55°C. All of the servers include Lenovo’s Neptune air- and liquid-cooling technology and are available through the TruScale pay-as-you-go pricing model. In addition to the new hardware, Lenovo introduced new AI Advisory Services with AI Factory Integration. This service gives access to professionals for identifying, deploying, and managing best-fit AI Inferencing servers. It also launched Premier Support Plus, a service that gives professional assistance in data center management, freeing up IT resources for more important projects.

Read More »

Samsung warns of memory shortages driving industry-wide price surge in 2026

SK Hynix reported during its October earnings call that its HBM, DRAM, and NAND capacity is “essentially sold out” for 2026, while Micron recently exited the consumer memory market entirely to focus on enterprise and AI customers. Enterprise hardware costs surge The supply constraints have translated directly into sharp price increases across enterprise hardware. Samsung raised prices for 32GB DDR5 modules to $239 from $149 in September, a 60% increase, while contract pricing for DDR5 has surged more than 100%, reaching $19.50 per unit compared to around $7 earlier in 2025. DRAM prices have already risen approximately 50% year to date and are expected to climb another 30% in Q4 2025, followed by an additional 20% in early 2026, according to Counterpoint Research. The firm projected that DDR5 64GB RDIMM modules, widely used in enterprise data centers, could cost twice as much by the end of 2026 as they did in early 2025. Gartner forecast DRAM prices to increase by 47% in 2026 due to significant undersupply in both traditional and legacy DRAM markets, Chauhan said. Procurement leverage shifts to hyperscalers The pricing pressures and supply constraints are reshaping the power dynamics in enterprise procurement. For enterprise procurement, supplier size no longer guarantees stability. “As supply becomes more contested in 2026, procurement leverage will hinge less on volume and more on strategic alignment,” Rawat said. Hyperscale cloud providers secure supply through long-term commitments, capacity reservations, and direct fab investments, obtaining lower costs and assured availability. Mid-market firms rely on shorter contracts and spot sourcing, competing for residual capacity after large buyers claim priority supply.

Read More »

Eight Trends That Will Shape the Data Center Industry in 2026

For much of the past decade, the data center industry has been able to speak in broad strokes. Growth was strong. Demand was durable. Power was assumed to arrive eventually. And “the data center” could still be discussed as a single, increasingly important, but largely invisible, piece of digital infrastructure. That era is ending. As the industry heads into 2026, the dominant forces shaping data center development are no longer additive. They are interlocking and increasingly unforgiving. AI drives density. Density drives cooling. Cooling and density drive power. Power drives site selection, timelines, capital structure, and public response. And once those forces converge, they pull the industry into places it has not always had to operate comfortably: utility planning rooms, regulatory hearings, capital committee debates, and community negotiations. The throughline of this year’s forecast is clarity: Clarity about workload classes. Clarity about physics. Clarity about risk. And clarity about where the industry’s assumptions may no longer hold. One of the most important shifts entering 2026 is that it may increasingly no longer be accurate, or useful, to talk about “data centers” as a single category. What public discourse often lumps together now conceals two very different realities: AI factories built around sustained, power-dense GPU utilization, and general-purpose data centers supporting a far more elastic mix of cloud, enterprise, storage, and interconnection workloads. That distinction is no longer academic. It is shaping how projects are financed, how power is delivered, how facilities are cooled, and how communities respond. It’s also worth qualifying a line we’ve used before, and still stand by in spirit: that every data center is becoming an AI data center. In 2026, we feel that statement is best understood more as a trajectory, and less a design brief. AI is now embedded across the data center stack: in

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »