Stay Ahead, Stay ONMINE

➡️ Start Asking Your Data ‘Why?’ — A Gentle Intro To Causality

Correlation does not imply causation. It turns out, however, that with some simple ingenious tricks one can, potentially, unveil causal relationships within standard observational data, without having to resort to expensive randomised control trials. This post is targeted towards anyone making data driven decisions. The main takeaway message is that causality may be possible by […]

Correlation does not imply causation. It turns out, however, that with some simple ingenious tricks one can, potentially, unveil causal relationships within standard observational data, without having to resort to expensive randomised control trials.

This post is targeted towards anyone making data driven decisions. The main takeaway message is that causality may be possible by understanding that the story behind the data is as important as the data itself.

By introducing Simpson’s and Berkson’s Paradoxes, situations where the outcome of a population is in conflict with that of its cohorts, I shine a light on the importance of using causal reasoning to identify these paradoxes in data and avoid misinterpretation. Specifically I introduce causal graphs as a method to visualise the story behind the data point out that by adding this to your arsenal you are likely to conduct better analyses and experiments.

My ultimate objective is to whet your appetite to explore more on causality, as I believe that by asking data “Why?” you will be able to go beyond correlation calculations and extract more insights, as well as avoid common misjudgement pitfalls.

Note that throughout this gentle intro I do not use equations but demonstrate using accessible intuitive visuals. That said I provide resources for you to take your next step in adding Causal Inference to your statistical toolbox so that you may get more value from your data.

The Era of Data Driven Decision Making

In [Deity] We Trust, All Others Bring Data! — William E. Deming

In this digital age it is common to put a lot of faith in data. But this raises an overlooked question: Should we trust data on its own?

Judea Pearl, who is considered the godfather of Causality, articulated best:

“The collection of information is as important as the information itself “ — Judea Pearl

In other words the story behind the data is as important as the data itself.

Judea Pearl is considered the Godfather of Causality. Credit: Aleksander Molak

This manifests in a growing awareness of the importance of identifying bias in datasets. By the end of this post I hope that you will appreciate that causality pertains the fundamental tools to best express, quantify and attempt to correct for these biases.

In causality introductions it is customary to demonstrate why “correlation does not imply causation” by highlighting limitations of association analysis due to spurious correlations (e.g, shark attacks 🦈 and ice-cream sales 🍦). In an attempt to reduce the length of this post I defer this aspect to an older one of mine. Here I focus on two mind boggling paradoxes 🤯 and their resolution via causal graphs to make a similar point.

Paradoxes in Analysis

To understand the importance of the story behind the data we will examine two counter-intuitive (but nonetheless true) paradoxes which are classical situations of data misinterpretation.

In the first we imagine a clinical trial in which patients are given a treatment and that results in a health score. Our objective is to assess the average impact of increased treatment to the health outcome. For pedagogical purposes in these examples we assume that samples are representative (i.e, the sample size is not an issue) and that variances in measurements are minimal.

Population outcome of imaginary clinical trial. Each dot is one patient and the red line indicates the naïve population trend.

In the figure above we learn that on average increasing the treatment appears to be beneficial since it results in a better outcome.

Now we’ll color code by age and gender groupings and examine how the treatment increases impacts each cohort.

Same data as before where each symbol represents an age-gender cohort.

Track any cohort (e.g, “Girls” representing young females) and you immediately realise that increase in treatment appears adverse.

What is the conclusion of the study? On the one hand increasing the treatment appears to be better for the population at large, but when examining gender-age cohorts it seems disadvantageous. This is Simpson’s Paradox which may be stated:

“Trends can exist in subgroups but reverse for the whole”

Below we will resolve this paradox using causality tools, but beforehand let’s explore another interesting one, which also examines made up data.

Imagine that we quantify for the general population their attractiveness and how talented they are as in this figure:

General population. Source: Wikipedia, created by Cmglee

We find no apparent correlation.

Now we’ll focus on an unusual subset — famous people:

A subset of celebrities. Source: Wikipedia created by Cmglee

Here we clearly see an anti-correlation that doesn’t exist in the general population.

Should we conclude that Talent and Attractiveness are independent variables as per the first plot of the general population or that they are correlated as per that of celebrities?

This is Berkson’s Paradox where one population has a trait trend that another lacks.

Whereas an algorithm would identify these correlations, resolving these paradoxes requires a full understanding of the context which normally is not fed to a computer. In other words without knowing the story behind the data results may be misinterpreted and wrong conclusions may be inferred.

Mastering identification and resolution these paradoxes is an important first step to elevating one’s analyses from correlations to causal inference.

Whereas these simple examples may be explained away logically, for the purposes of learning causal tools in the next section I’ll introduce Causal Graphs.

Causal Graphs— Visualising The Story Behind The Data

“[From the Simpson’s and Berkson’s Paradoxes we learn that] certain decisions cannot be made based on the basis of data alone, but instead depend on the story behind the data. … Graph Theory enables these stories to be conveyed” — Judea Pearl

Causal graph models are probabilistic graphical models used to visualise the story behind the data. They are perhaps one of the most powerful tools for analysts that is not taught in most statistics curricula. They are both elegant and highly informative. Hopefully by the end of this post you will appreciate it when Judea Pearl says that this is the missing vocabulary to communicate causality.

To understand causal graph models (or causal graphs for short) we start with the following illustration of an example undirected graph with four nodes/vertices and three edges.

An undirected graph with four nodes/vertices and three edges

Each node is a variable and the edges communicate “who is related to whom?” (i.e, correlations, joint probabilities).A directed graph is one in which we add arrows as in this figure.

A directed graph with four nodes/vertices and five directed edges

A directed edge communicates “who listens to whom?” which is the essence of causation.

In this specific example you can notice a cyclical relationship between the C and D nodes.A useful subset of directed graphs are the directed acyclic graphs (DAG), which have no cycles as in the next figure.

A directed acyclic graph with four nodes/vertices and four directed edges

Here we see that when starting from any node (e.g, A) there isn’t a path that gets back to it.

DAGs are the go-to choice in causality for simplicity as the fact that parameters do not have feedback highly simplifies the flow of information. (For mechanisms that have feedback, e.g temporal systems, one may consider rolling out nodes as a function of time, but that is beyond the scope of this intro.)

Causal graphs are powerful at conveying the cause/effect relationships between the parameter and hence how data was generated (the story behind the data).

From a practical point of view, graphs enable us to understand which parameters are confounders that need to be controlled for, and, as important, which not to control for, because doing so causes spurious correlations. This will be demonstrated below.

The practice of attempting to build a causal graph enables:

  • Design of better experiments.
  • Draw causal conclusions (go beyond correlations by means of representing interventions, counterfactuals and encoding conditional independence relationships; all beyond the scope of this post).

To further motivate the usage of causal graph models we will use them to resolve the Simpson’s and Berkson’s paradoxes introduced above.

💊 Causal Graph Resolution of Simpson’s Paradox

For simplicity we’ll examine Simpson’s paradox focusing on two cohorts, male and female adults.

Outcome of the imaginary therapeutic trial, similar to the previous but focusing on the adults. Each symbol is one patient from the respective age-gender cohort and the red line indicates the naïve population trend.

Examining this data we can make three statements about three variables of interest:

  • Gender is an independent variable (it does not “listen to” the other two)
  • Treatment depends on Gender (as we can see, in this setting the level given depends on Gender — women have been given, for some reason, a higher dosage.)
  • Outcome depends on both Gender and Treatment

According to these we can draw the causal graph as the following:

Simpson’s paradox Graphic Model where Gender is a confounding variable between Treatment and Outcome

Notice how each arrow contributes to communicate the statements above. As important, the lack of an arrow pointing into Gender conveys that it is an independent variable.

We also notice that by having arrows pointing from Gender to Treatment and Outcome it is considered a common cause between them.

The essence of the Simpson’s paradox is that although the Outcome is effected by changes in Treatment, as expected, there is also a backdoor path flow of information via Gender.

As you may have guessed by this stage, the solution to this paradox is that the common cause Gender is a confounding variable that needs to be controlled.

Controlling for a variable, in terms of a causal graph, means eliminating the relationship between Gender and Treatment.

This may be done in two manners:

  • Pre data collection: Setting up a Randomised Control Trial (RCT) in which participants will be given dosage regardless of their Gender.
  • Post data collection: E.g, in this made up scenario the data has already been collected and hence we need to deal with what is referred to as Observational Data.

In both pre- and post- data collection the elimination of the Treatment dependency of Gender (i.e, controlling for the Gender) may be done by modifying the graph such that the arrow between them is removed as in the following:

A modified version of the Simpson’s paradox Graphic Model. The dark node means we control for Gender.

Applying this “graphical surgery” means that the last two statements need to be modified (for convenience I’ll write all three):

  • Gender is an independent variable
  • Treatment is an independent variable
  • Outcome depends on Gender and Treatment (but with no backdoor path).

This enables obtaining the causal relationship of interest : we can assess the direct impact of modification Treatment on the Outcome.

The process of controlling for a confounder, i.e manipulation of the data generation process, is formally referred to as applying an intervention. That is to say we are no longer passive observers of the data, but we are taking an active role in modification it to assess the causal impact.

How is this manifested in practice?

In the case of RCTs the researcher needs to control for important confounding variables. Here we limit the discussion to Gender (but in real world settings you can imagine other variables such as Age, Social Status and anything else that might be relevant to one’s health).

RCTs are considered the golden standard for causal analysis in many experimental settings thanks to its practice of confounding variables. That said, it has many setbacks:

  • It may be expensive to recruit individuals and may be complicated logistically
  • The intervention under investigation may not be physically possible or ethical to conduct (e.g, one can’t ask randomly selected people to smoke or not for ten years)
  • Artificial setting of a laboratory — not a true natural habitat of the population.

Observational data on the other hand is much more readily available in the industry and academia and hence much cheaper and could be more representative of actual habits of the individuals. But as illustrated in the Simpson’s diagram it may have confounding variables that need to be controlled.

This is where ingenious solutions developed in the causal community in the past few decades are making headway. Detailing them are beyond the scope of this post, but I briefly mention how to learn more at the end.

To resolve for this Simpson’s paradox with the given observational data one

  1. Calculates for each cohort the impact of the change of the treatment on the outcome
  2. Calculates a weighted average contribution of each cohort on the population.

Here we will focus on intuition, but in a future post we will describe the maths behind this solution.

I am sure that many analysts, just like myself, have noticed Simpson’s at some stage in their data and hopefully have corrected for it. Now you know the name of this effect and hopefully start to appreciate how causal tools are useful.

That said … being confused at this stage is OK 😕

I’ll be the first to admit that I struggled to understand this concept and it took me three weekends of deep diving into examples to internalised it. This was the gateway drug to causality for me. Part of my process to understanding statistics is playing with data. For this purpose I created an interactive web application hosted in Streamlit which I call Simpson’s Calculator 🧮. I’ll write a separate post for this in the future.

Even if you are confused the main takeaways of Simpson’s paradox is that:

  • It is a situation where trends can exist in subgroups but reverse for the whole.
  • It may be resolved by identifying confounding variables between the treatment and the outcome variables and controlling for them.

This raises the question — should we just control for all variables except for the treatment and outcome? Let’s keep this in mind when resolving for the Berkson’s paradox.

🦚 Causal Graph Resolution of Berkson’s Paradox

As in the previous section we are going to make clear statements about how we believe the data was generated and then draw these in a causal graph.

Let’s examine the case of the general population, for convenience I’m copying the image from above:

General population. Source: Wikipedia, created by Cmglee

Here we understand that:

  • Talent is an independent variable
  • Attractiveness is an independent variable

A causal graph for this is quite simple, two nodes without an edge.

In the general population ones Talent and Attractiveness are independent

Let’s examine the plot of the celebrity subset.

A subset of celebrities. Source: Wikipedia created by Cmglee

The cheeky insight from this mock data is that the more likely one is attractive the less they need to be talented to be a celebrity. Hence we can deduce that:

  • Talent is an independent variable
  • Attractiveness is an independent variable
  • Celebrity variable depends on both Talent and Attractiveness variables. (Imagine this variable is boolean as in: true for celebrities or false for not).

Hence we can draw the causal graph as:

Being a celebrity depends on Talent and Attractiveness

By having arrows pointing into it Celebrity is a collider node between Talent and Attractiveness.

Berkson’s paradox is the fact that when controlling for celebrities we see an interesting trend (anti correlation between Attractiveness and Talent) not seen in the general population.

This can be visualised in the causal graph that by confounding for the Celebrity parameter we are creating a spurious correlation between the otherwise independent variables Talent and Attractiveness. We can draw this as the following:

Berkson’s paradox Graphic Model. The dark node means we control for Celebrity. Controlling this collider variable generates a spurious correlation (dashed line) between Talent and Attractiveness.

The solution of this Berkson’s paradox should be apparent here: Talent and Attractiveness are independent variables in general, but by controlling for the collider Celebrity node causes a spurious correlation in the data.

Let’s compare the resolution of both paradoxes:

  • Resolving Simpson’s Paradox is by controlling for common cause (Gender)
  • Resolving Berkson’s Paradox is by not controlling for the collider (Celebrity)

The next figure combines both insights in the form of their causal graphs:

Graph models show how to resolve the paradoxes. Dark nodes are controlled for. Left: Modified graph to resolve Simpson’s paradox by controlling for Gender. Right: To resolve for Berkson’s paradox the collider should not be controlled.

The main takeaway from the resolution of these paradoxes is that controlling for parameters requires a justification. Common causes should be controlled for but colliders should not.

Even though this is common knowledge for those who study causality (e.g, Economics majors), it is unfortunate that most analysts and machine learning practitioners are not aware of this (including myself in 2020 after over 15 years of analysis and predictive modelling experience).

Oddly, statisticians both over- and underrate the importance of confounders — Judea Pearl

Summary

The main takeaway from this post is that the story behind the data is as important as the data itself.

Appreciating this will help you avoid result misinterpretation as spurious correlations and, as demonstrated here, in Simpson’s and Berskon’s paradoxes.

Causal Graphs are an essential tool to visualise the story behind the data. By using them to solve for the paradoxes we learnt that controlling for variables requires justification (common causes ✅, colliders ⛔️).

For those interested in taking the next step in their causal journey I highly suggest mastering Simpson’s paradox. One great way is by playing with data. Feel free to do so with my interactive “Simpson-calculator” 🧮.

Loved this post? 💌 Join me on LinkedIn or ☕ Buy me a coffee!

Credits

Unless otherwise noted, all images were created by the author.

Many thanks to Jim Parr, Will Reynolds, Hedva Kazin and Betty Kazin for their useful comments.

Wondering what your next step should be in your causal journey? Check out my new article on mastering Simpson’s Paradox — you will never look at data the same way. 🔎

Useful Resources

Here I provide resources that I find useful as well as a shopping list of topics for beginners to learn.

📚 Books

Credit: Gaelle Marcel
  • The Book of Why — popular science reading (NY Times level)
  • Causal Inference in Statistics A Primer — excellent short technical book (site)
  • Causal Inference and Discovery in Python by Aleksander Molak (Packt, github) — clearly explained with python applications 🐍.
  • What If? — a cohesive presentation of concepts of, and methods for, causal inference (site, github)
  • Causal Inference The Mixtape — Social Science focused using Python, R and Strata (site, resources, mooc)
  • Counterfactuals and Causal Inference — Methods and Principles (Social Science focused)

This list is far from comprehensive, but I’m glad to add to it if anyone has suggestions (please mention why the book stands out from the pack).

🔏 Courses

Credit: Austrian National Library

There are probably a few courses online. I love the 🆓 one of Brady Neil bradyneal.com/causal-inference-course.

  • Clearly explained
  • Covers many aspects
  • Thorough
  • Provides memorable examples
  • F.R.E.E

One paid course 💰 that is targeted to practitioners is Altdeep.

💾 Software

Credit: Artturi Jalli

This list is far from comprehensive because the space is rapidly growing:

Causal Wizard app also have an article about Causal Diagram tools.

🐾 Suggested Next Steps In The Causal Journey

Here I highlight a list of topics which I would have found useful when I started my learnings in the field. If I’m missing anything I’d be more than glad to get feedback and adding. I bold face the ones which were briefly discussed here.

Pearl’s Causal Hierarchy of seeing, doing, imagining and their applications. This is an approved modification of the original illustration by Maayan Harel from MaayanVisuals.com in The Book of Why.
  • Pearl’s Causal Hierarchy of seeing, doing and imagining (figure above)
  • Observational data vs. Randomised Control Trials
  • d-separation, common causes, colliders, mediators, instrumental variables
  • Causal Graphs
  • Structural Causal Models
  • Assumptions: Ignorability, SUTVA, Consistency, Positivity
  • “Do” Algebra — assessing impact on cohorts by intervention
  • Counterfactuals — assessing impact on individuals by comparing real outcomes to potential ones
  • The fundamental problem of causality
  • Estimand, Estimator, Estimate, Identifiability — relating causal definitions to observable statistics (e.g, conditional probabilities)
  • Causal Discovery — finding causal graphs with data (e.g, Markov Equivalence)
  • Causal Machine Learning (e.g, Double Machine Learning)

For completeness it is useful to know that there are different streams of causality. Although there is a lot of overlap you may find that methods differ in naming convention due to development in different fields of research: Computer Science, Social Sciences, Health, Economics

Here I used definitions mostly from the Pearlian perspective (as developed in the field of computer science).

The Story Behind This Post

This narrative is a result of two study groups that I have conducted in a previous role to get myself and colleagues to learn about causality, which I felt missing in my skill set. If there is any interest I’m glad to write a post about the study group experience.

This intro was created as the one I felt that I needed when I started my journey in causality.

In the first iteration of this post I wrote and presented the limitations of spurious correlations and Simpson’s paradox. The main reason for this revision to focus on two paradoxes is that, whereas most causality intros focus on the limitations of correlations, I feel that understanding the concept of justification of confounders is important for all analysts and machine learning practitioners to be aware of.

On September 5th 2024 I have presented this content in a contributed talk at the Royal Statistical Society Annual Conference in Brighton, England (abstract link).

Unfortunately there is no recording but there are of previous talks of mine:

The slides are available at bit.ly/start-ask-why. Presenting this material for the first time at PyData Global 2021

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

F5 to acquire CalypsoAI for advanced AI security capabilities

CalypsoAI’s platform creates what the company calls an Inference Perimeter that protects across models, vendors, and environments. The offers several products including Inference Red Team, Inference Defend, and Inference Observe, which deliver adversarial testing, threat detection and prevention, and enterprise oversight, respectively, among other capabilities. CalypsoAI says its platform proactively

Read More »

HomeLM: A foundation model for ambient AI

Capabilities of a HomeLM What makes a foundation model like HomeLM powerful is its ability to learn generalizable representations of sensor streams, allowing them to be reused, recombined and adapted across diverse tasks. This fundamentally differs from traditional signal processing and machine learning pipelines in RF sensing, which are typically

Read More »

IEA Says World Must Spend $540B a Year Looking for Oil, Gas

The world needs to spend some $540 billion a year looking for oil and gas to maintain current output by 2050, according to the International Energy Agency.  While global spending is likely to hit $570 billion this year, the amount would be down slightly from 2024, Christophe McGlade, head of the IEA’s energy supply unit, said on a webinar. The outlook means that companies will need to tap reserves that haven’t yet been discovered, unless demand shifts away from fossil fuels. Its forecast is part of a report that analyzed more than 15,000 fields and how fast their output is declining. Without investment, global supply would fall by the combined production of Norway and Brazil — more than 5 million barrels a day — every year. That amount is around 40% higher than it was in 2010, partly because of more reliance on shale production, particularly from the US, which typically depletes faster than conventional reserves. The outlook matters because there’s little sign of oil demand peaking soon, meaning that elevated output will be needed for years to come. While a global oil surplus is forecast for this year and next, BP Plc this year projected that supply growth outside of the Organization of the Petroleum Exporting Countries from early 2026 would remain largely flat for 12 to 18 months. “In the case of oil, an absence of upstream investment would remove the equivalent of Brazil and Norway’s combined production each year from the global market balance,” IEA Executive Director Fatih Birol said in a statement. “The situation means that the industry has to run much faster just to stand still.” WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments

Read More »

Preparing for regulatory audits in an era of affordability scrutiny

Jim McMahon is a vice president and practice leader of Charles River Associates’ energy practice. Across the electric utility sector, regulatory audits are becoming more frequent, more detailed and more focused on the question of affordability. Rising customer bills, driven by fuel and purchased power volatility, transmission and distribution investment, and renewable integration costs, have made cost management a central point of regulatory and public interest. For electric utilities, this means audits are no longer just compliance exercises; they are reputational moments that can influence rate outcomes, regulatory relationships and public trust. Electric utilities that approach audits reactively often find themselves stretched thin, scrambling to assemble data, align narratives and respond to follow-up requests under time pressure. In contrast, those that prepare strategically not only navigate the process more smoothly but also use it to reinforce their credibility as responsible stewards of customer resources. A structured approach to audit readiness, such as the Audit Readiness Test, or ART, offers a roadmap for ensuring that preparation is not just about meeting requirements but about strengthening the organization’s position before, during and after the review. Why the strategic approach matters Audits are, at their core, about telling a story that is both evidence-based and credible. For electric utilities, the most effective audit narratives weave together data, policy and operational decisions, from resource planning and grid investments to rate case filings, into a cohesive account that demonstrates responsible stewardship of customer resources. This story must clearly connect operational and financial choices to measurable customer value, with particular emphasis on how these decisions support affordability. An audit is not simply a technical compliance review; it is also a test of how well the organization can explain why it made certain choices, how those choices were implemented and what tangible benefits they delivered. Regulators and

Read More »

AccuWeather Updates Atlantic Hurricane Season Forecast

In a media advisory sent to Rigzone by the AccuWeather team recently, AccuWeather said its hurricane experts are “slightly reducing the[ir] forecast for the highest potential number of named storms and hurricanes expected to develop [in the Atlantic] this season”.   AccuWeather now forecasts 13-16 named storms and six to nine hurricanes for the 2025 Atlantic hurricane season, the advisory noted, adding that this is the first update to the AccuWeather 2025 Atlantic Hurricane Season Forecast, which the advisory pointed out was first issued back in March.   The initial forecast, which was also sent to Rigzone by the AccuWeather team earlier this year, predicted 13-18 named storms in 2025. That forecast expected 7-10 of those storms to strengthen into hurricanes, and three to five of those storms to strengthen into major hurricanes. AccuWeather also noted in that forecast that its hurricane experts “predict that three to six storms can directly impact the U.S. this year”.  In its latest advisory, AccuWeather highlighted that the forecast for three to five major hurricanes and three to six direct impacts to the United States has not changed. It pointed out that there have been two direct impacts to the U.S. so far this year and said its hurricane experts are urging people, businesses, and officials near the coast and in inland areas that have been affected by hurricanes and tropical storms in recent years to remain prepared and vigilant. “AccuWeather hurricane experts are constantly refining and integrating new data into our predictions,” AccuWeather Lead Hurricane Expert Alex DaSilva said in the advisory. “Unusual surges of dry air, Saharan dust, disruptive wind shear, cooler water temperatures off the western coast of Africa, and other atmospheric conditions have hampered multiple tropical waves from developing into tropical storms or hurricanes, during what are typically the peak weeks

Read More »

Ring Energy CFO Steps Down

Ring Energy, Inc. said its chief financial officer Travis Thomas, has resigned effective immediately to pursue other opportunities. Thomas’ resignation was not the result of any disagreement on any financial or other matter related to the operations, policies, or practices of Ring Energy, the company said in a news release. Ring Energy Vice President of Accounting, Controller and Assistant Treasurer Rocky Kwon, has been appointed interim chief financial officer while the company conducts a search for a new CFO, according to the release. Kwon, who has been with Ring since 2021, previously held financial leadership positions at Earthstone Energy, Inc. and The AES Corporation, the release said. Ring Energy Chairman and CEO Paul McKinney said, “Ring is positioned for financial success with the skilled leadership of Rocky. I want to personally thank Travis for his five years of dedication and service to the Company and the executive management team, and I wish him great success in his future endeavors. With this leadership transition plan in place, Ring remains firmly committed to delivering shareholder value and advancing its strategic objectives, including its continued focus on debt reduction”. Meanwhile, Ring Energy said it established a debt reduction target of approximately $18 million for the third quarter. The company said it expects to have approximately $430 million in borrowings outstanding on its credit facility as of Sept. 30, down from $448 million in borrowings outstanding as of June 30. Ring Energy also noted that Warburg Pincus has recently exited its full common equity position in the company. McKinney said, “In response to the drop in oil prices experienced earlier this year, the Company responded by adjusting capital spending and other operational alternatives within our control to focus on maximizing free cash flow generation and paying down debt. We believe our debt reduction target

Read More »

EIA Sees NatGas Price Jumping Well Over $4 in 2026

The U.S. Energy Information Administration (EIA) projected that the Henry Hub spot price will average well above $4 per million British thermal units (MMBtu) next year in its latest short term energy outlook (STEO), which was released on September 9. According to its latest STEO, the EIA sees the Henry Hub natural gas spot price averaging $3.52 per MMBtu in 2025 and $4.28 per MMBtu in 2026. The commodity averaged $2.19 per MMBtu in 2024, the STEO showed. A quarterly breakdown included in the EIA’s latest STEO highlighted that the EIA expects the Henry Hub natural gas spot price to average $3.04 per MMBtu in the third quarter of 2025, $3.72 per MMBtu in the fourth quarter, $4.25 per MMBtu in the first quarter of next year, $3.64 per MMBtu in the second quarter, $4.26 per MMBtu in the third quarter, and $4.99 per MMBtu in the fourth quarter of 2026. In its previous STEO, which was released last month, the EIA projected that the Henry Hub natural gas spot price would average $3.61 per MMBtu in 2025 and $4.34 per MMBtu in 2026. That STEO saw the commodity averaging $3.25 per MMBtu in the third quarter of 2025, $3.87 per MMBtu in the fourth quarter, $4.35 per MMBtu in the first quarter of 2026, $3.69 per MMBtu in the second quarter, $4.29 per MMBtu in the third quarter, and $5.01 per MMBtu in the fourth quarter. “Natural gas inventories remain relatively high, and August ended with six percent more natural gas in storage compared with the five-year average,” the EIA said in its September STEO. “The Henry Hub spot price averaged $2.91 per MMBtu in August (10 percent below our August STEO estimate). Lower prices over this summer have been driven by robust production and reduced natural gas consumption

Read More »

Australia Approves Extension for Woodside-Operated NWS Project

The Australian government has granted environmental approval to the Woodside-operated North West Shelf (NWS) project extension. Minister for the Environment and Water Murray Watt said in a statement that the approval is subject to “48 strict conditions” to avoid and mitigate significant impacts on the Murujuga rock art, which forms part of Western Australia’s Dampier Archipelago. “Specifically, I have imposed conditions that will require a reduction in certain gas emissions below their current levels, in some cases by 60 percent by 2030 with ongoing reductions beyond that,” Watt said. The conditions should account for any new science achieved through the Murujuga Rock Art Monitoring Program and require the joint venture for the asset to comply with any air quality objectives and standards that are derived from the program, according to the statement. The project will be required to reduce its emissions every year and reach net zero greenhouse gas emissions by 2050. Woodside and the NWS joint venture said they welcomed the Australian government’s final decision to grant environmental approval for the project. The final government approval “followed an extensive assessment and appeal process and included rigorous conditions to manage the protection of cultural heritage,” Woodside COO Australia Liz Westcott said in a separate statement. “This final approval provides certainty for the ongoing operation of the North West Shelf Project, so it can continue to provide reliable energy supplies as it has for more than 40 years,” Westcott said. “Over this time, the North West Shelf Project has paid more than [AUD 40 billion] in royalties and excise, supported thousands of Australian jobs and contributed well over [AUD 300 million] to communities in the Pilbara through social investment initiatives and infrastructure support”. According to Woodside, the NWS project, one of the largest liquefied natural gas (LNG) projects in the world,

Read More »

Arista touts liquid cooling, optical tech to reduce power consumption for AI networking

Both technologies will likely find a role in future AI and optical networks, experts say, as both promise to reduce power consumption and support improved bandwidth density. Both have advantages and disadvantages as well – CPOs are more complex to deploy given the amount of technology included in a CPO package, whereas LPOs promise more simplicity.  Bechtolsheim said that LPO can provide an additional 20% power savings over other optical forms. Early tests show good receiver performance even under degraded conditions, though transmit paths remain sensitive to reflections and crosstalk at the connector level, Bechtolsheim added. At the recent Hot Interconnects conference, he said: “The path to energy-efficient optics is constrained by high-volume manufacturing,” stressing that advanced optics packaging remains difficult and risky without proven production scale.  “We are nonreligious about CPO, LPO, whatever it is. But we are religious about one thing, which is the ability to ship very high volumes in a very predictable fashion,” Bechtolsheim said at the investor event. “So, to put this in quantity numbers here, the industry expects to ship something like 50 million OSFP modules next calendar year. The current shipment rate of CPO is zero, okay? So going from zero to 50 million is just not possible. The supply chain doesn’t exist. So, even if the technology works and can be demonstrated in a lab, to get to the volume required to meet the needs of the industry is just an incredible effort.” “We’re all in on liquid cooling to reduce power, eliminating fan power, supporting the linear pluggable optics to reduce power and cost, increasing rack density, which reduces data center footprint and related costs, and most importantly, optimizing these fabrics for the AI data center use case,” Bechtolsheim added. “So what we call the ‘purpose-built AI data center fabric’ around Ethernet

Read More »

Network and cloud implications of agentic AI

The chain analogy is critical here. Realistic uses of AI agents will require core database access; what can possibly make an AI business case that isn’t tied to a company’s critical data? The four critical elements of these applications—the agent, the MCP server, the tools, and the data— are all dragged along with each other, and traffic on the network is the linkage in the chain. How much traffic is generated? Here, enterprises had another surprise. Enterprises told me that their initial view of their AI hosting was an “AI cluster” with a casual data link to their main data center network. With AI agents, they now see smaller AI servers actually installed within their primary data centers, and all the traffic AI creates, within the model and to and from it, now flows on the data center network. Vendors who told enterprises that AI networking would have a profound impact are proving correct. You can run a query or perform a task with an agent and have that task parse an entire database of thousands or millions of records. Someone not aware of what an agent application implies in terms of data usage can easily create as much traffic as a whole week’s normal access-and-update would create. Enough, they say, to impact network capacity and the QoE of other applications. And, enterprises remind us, if that traffic crosses in/out of the cloud, the cloud costs could skyrocket. About a third of the enterprises said that issues with AI agents generated enough traffic to create local congestion on the network or a blip in cloud costs large enough to trigger a financial review. MCP tool use by agents is also a major security and governance headache. Enterprises point out that MCP standards haven’t always required strong authentication, and they also

Read More »

There are 121 AI processor companies. How many will succeed?

The US currently leads in AI hardware and software, but China’s DeepSeek and Huawei continue to push advanced chips, India has announced an indigenous GPU program targeting production by 2029, and policy shifts in Washington are reshaping the playing field. In Q2, the rollback of export restrictions allowed US companies like Nvidia and AMD to strike multibillion-dollar deals in Saudi Arabia.  JPR categorizes vendors into five segments: IoT (ultra-low-power inference in microcontrollers or small SoCs); Edge (on-device or near-device inference in 1–100W range, used outside data centers); Automotive (distinct enough to break out from Edge); data center training; and data center inference. There is some overlap between segments as many vendors play in multiple segments. Of the five categories, inference has the most startups with 90. Peddie says the inference application list is “humongous,” with everything from wearable health monitors to smart vehicle sensor arrays, to personal items in the home, and every imaginable machine in every imaginable manufacturing and production line, plus robotic box movers and surgeons.  Inference also offers the most versatility. “Smart devices” in the past, like washing machines or coffee makers, could do basically one thing and couldn’t adapt to any changes. “Inference-based systems will be able to duck and weave, adjust in real time, and find alternative solutions, quickly,” said Peddie. Peddie said despite his apparent cynicism, this is an exciting time. “There are really novel ideas being tried like analog neuron processors, and in-memory processors,” he said.

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist (and coming soon free Data Center Intern listing). Data Center Critical Facility Manager Impact, TX There position is also available in: Cheyenne, WY; Ashburn, VA or Manassas, VA. This opportunity is working directly with a leading mission-critical data center developer / wholesaler / colo provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations (enterprise and hyperscale customers). This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer New Albany, OH This traveling position is also available in: Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; Cedar Rapids, IA; Phoenix, AZ; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits.  Data Center Engineering Design ManagerAshburn, VA This opportunity is working directly with a leading mission-critical data center developer /

Read More »

Modernizing Legacy Data Centers for the AI Revolution with Schneider Electric’s Steven Carlini

As artificial intelligence workloads drive unprecedented compute density, the U.S. data center industry faces a formidable challenge: modernizing aging facilities that were never designed to support today’s high-density AI servers. In a recent Data Center Frontier podcast, Steven Carlini, Vice President of Innovation and Data Centers at Schneider Electric, shared his insights on how operators are confronting these transformative pressures. “Many of these data centers were built with the expectation they would go through three, four, five IT refresh cycles,” Carlini explains. “Back then, growth in rack density was moderate. Facilities were designed for 10, 12 kilowatts per rack. Now with systems like Nvidia’s Blackwell, we’re seeing 132 kilowatts per rack, and each rack can weigh 5,000 pounds.” The implications are seismic. Legacy racks, floor layouts, power distribution systems, and cooling infrastructure were simply not engineered for such extreme densities. “With densification, a lot of the power distribution, cooling systems, even the rack systems — the new servers don’t fit in those racks. You need more room behind the racks for power and cooling. Almost everything needs to be changed,” Carlini notes. For operators, the first questions are inevitably about power availability. At 132 kilowatts per rack, even a single cluster can challenge the limits of older infrastructure. Many facilities are conducting rigorous evaluations to decide whether retrofitting is feasible or whether building new sites is the more practical solution. Carlini adds, “You may have transformers spaced every hundred yards, twenty of them. Now, one larger transformer can replace that footprint, and power distribution units feed busways that supply each accelerated compute rack. The scale and complexity are unlike anything we’ve seen before.” Safety considerations also intensify with these densifications. “At 132 kilowatts, maintenance is still feasible,” Carlini says, “but as voltages rise, data centers are moving toward environments where

Read More »

Google Backs Advanced Nuclear at TVA’s Clinch River as ORNL Pushes Quantum Frontiers

Inside the Hermes Reactor Design Kairos Power’s Hermes reactor is based on its KP-FHR architecture — short for fluoride salt–cooled, high-temperature reactor. Unlike conventional water-cooled reactors, Hermes uses a molten salt mixture called FLiBe (lithium fluoride and beryllium fluoride) as a coolant. Because FLiBe operates at atmospheric pressure, the design eliminates the risk of high-pressure ruptures and allows for inherently safer operation. Fuel for Hermes comes in the form of TRISO particles rather than traditional enriched uranium fuel rods. Each TRISO particle is encapsulated within ceramic layers that function like miniature containment vessels. These particles can withstand temperatures above 1,600 °C — far beyond the reactor’s normal operating range of about 700 °C. In combination with the salt coolant, Hermes achieves outlet temperatures between 650–750 °C, enabling efficient power generation and potential industrial applications such as hydrogen production. Because the salt coolant is chemically stable and requires no pressurization, the reactor can shut down and dissipate heat passively, without external power or operator intervention. This passive safety profile differentiates Hermes from traditional light-water reactors and reflects the Generation IV industry focus on safer, modular designs. From Hermes-1 to Hermes-2: Iterative Nuclear Development The first step in Kairos’ roadmap is Hermes-1, a 35 MW thermal demonstration reactor now under construction at TVA’s Clinch River site under a 2023 NRC license. Hermes-1 is not designed to generate electricity but will validate reactor physics, fuel handling, licensing strategies, and construction techniques. Building on that experience, Hermes-2 will be a 50 MW electric reactor connected to TVA’s grid, with operations targeted for 2030. Under the agreement, TVA will purchase electricity from Hermes-2 and supply it to Google’s data centers in Tennessee and Alabama. Kairos describes its development philosophy as “iterative,” scaling incrementally rather than attempting to deploy large fleets of units at once. By

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »