Stay Ahead, Stay ONMINE

What even is the AI bubble?

MIT Technology Review Explains: Let our writers untangle the complex, messy world of technology to help you understand what’s coming next. You can read more from the series here. In July, a widely cited MIT study claimed that 95% of organizations that invested in generative AI were getting “zero return.” Tech stocks briefly plunged. While the study itself was more nuanced than the headlines, for many it still felt like the first hard data point confirming what skeptics had muttered for months: Hype around AI might be outpacing reality. Then, in August, OpenAI CEO Sam Altman said what everyone in Silicon Valley had been whispering. “Are we in a phase where investors as a whole are overexcited about AI?” he said during a press dinner I attended. “My opinion is yes.”  This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next. He compared the current moment to the dot-com bubble. “When bubbles happen, smart people get overexcited about a kernel of truth,” he explained. “Tech was really important. The internet was a really big deal. People got overexcited.”  With those comments, it was off to the races. The next day’s stock market dip was attributed to the sentiment he shared. The question “Are we in an AI bubble?” became inescapable. Who thinks it is a bubble?  The short answer: Lots of people. But not everyone agrees on who or what is overinflated. Tech leaders are using this moment of fear to take shots at their rivals and position themselves as clear winners on the other side. How they describe the bubble depends on where their company sits. When I asked Meta CEO Mark Zuckerberg about the AI bubble in September, he ran through the historical analogies of past bubbles—railroads, fiber for the internet, the dot-com boom—and noted that in each case, “the infrastructure gets built out, people take on too much debt, and then you hit some blip … and then a lot of the companies end up going out of business.” But Zuckerberg’s prescription wasn’t for Meta to pump the brakes. It was to keep spending: “If we end up misspending a couple of hundred billion dollars, I think that that is going to be very unfortunate, obviously. But I’d say the risk is higher on the other side.” Bret Taylor, the chairman of OpenAI and CEO of the AI startup Sierra, uses a mental model from the late ’90s to help navigate this AI bubble. “I think the closest analogue to this AI wave is the dot-com boom or bubble, depending on your level of pessimism,” he recently told me. Back then, he explained, everyone knew e-commerce was going to be big, but there was a massive difference between Buy.com and Amazon. Taylor and others have been trying to position themselves as today’s Amazon. Still others are arguing that the pain will be widespread. Google CEO Sundar Pichai told the BBC this month that there’s “some irrationality” in the current boom. Asked whether Google would be immune to a bubble bursting, he warned, “I think no company is going to be immune, including us.” What’s inflating the bubble? Companies are raising enormous sums of money and seeing unprecedented valuations. Much of that money, in turn, is going toward the buildout of massive data centers—on which both private companies like OpenAI and Elon Musk’s xAI and public ones such as Meta and Google are spending heavily. OpenAI has pledged that it will spend $500 billion to build AI data centers, more than 15 times what was spent on the Manhattan Project. This eye-popping spending on AI data centers isn’t entirely detached from reality. The leaders of the top AI companies all stress that they’re bottlenecked by their limited access to computing power. You hear it constantly when you talk to them. Startups can’t get the GPU allocations they need. Hyperscalers are rationing compute, saving it for their best customers. If today’s AI market is as brutally supply-constrained as tech leaders claim, perhaps aggressive infrastructure buildouts are warranted. But some of the numbers are too large to comprehend. Sam Altman has told employees that OpenAI’s moonshot goal is to build 250 gigawatts of computing capacity by 2033, roughly equaling India’s total national electricity demand. Such a plan would cost more than $12 trillion by today’s standards. “I do think there’s real execution risk,” OpenAI president and cofounder Greg Brockman recently told me about the company’s aggressive infrastructure goals. “Everything we say about the future, we see that it’s a possibility. It is not a certainty, but I don’t think the uncertainty comes from scientific questions. It’s a lot of hard work.” Who is exposed, and who is to blame? It depends on who you ask. During the August press dinner, where he made his market-moving comments, Altman was blunt about where he sees the excess. He said it’s “insane” that some AI startups with “three people and an idea” are receiving funding at such high valuations. “That’s not rational behavior,” he said. “Someone’s gonna get burned there, I think.” As Safe Superintelligence cofounder (and former OpenAI chief scientist and cofounder) Ilya Sutskever put it on a recent podcast: Silicon Valley has “more companies than ideas.” Demis Hassabis, the CEO of Google DeepMind, offered a similar diagnosis when I spoke with him in November. “It feels like there’s obviously a bubble in the private market,” he said. “You look at seed rounds with just nothing being tens of billions of dollars. That seems a little unsustainable.” Anthropic CEO Dario Amodei also struck at his competition during the New York Times DealBook Summit in early December. He said he feels confident about the technology itself but worries about how others are behaving on the business side: “On the economic side, I have my concerns where, even if the technology fulfills all its promises, I think there are players in the ecosystem who, if they just make a timing error, they just get it off by a little bit, bad things could happen.” Ask AIWhy it matters to you?BETAHere’s why this story might matter to you, according to AI. This is a beta feature and AI hallucinates—it might get weirdTell me why it matters He stopped short of naming Sam Altman and OpenAI, but the implication was clear. “There are some players who are YOLOing,” he said. “Let’s say you’re a person who just kind of constitutionally wants to YOLO things or just likes big numbers. Then you may turn the dial too far.” Amodei also flagged “circular deals,” or the increasingly common arrangements where chip suppliers like Nvidia invest in AI companies that then turn around and spend those funds on their chips. Anthropic has done some of these, he said, though “not at the same scale as some other players.” (OpenAI is at the center of a number of such deals, as are Nvidia, CoreWeave, and a roster of other players.)  The danger, he explained, comes when the numbers get too big: “If you start stacking these where they get to huge amounts of money, and you’re saying, ’By 2027 or 2028 I need to make $200 billion a year,’ then yeah, you can overextend yourself.” Zuckerberg shared a similar message at an internal employee Q&A session after Meta’s last earnings call. He noted that unprofitable startups like OpenAI and Anthropic risk bankruptcy if they misjudge the timing of their investments, but Meta has the advantage of strong cash flow, he reassured staff. How could a bubble burst? My conversations with tech executives and investors suggest that the bubble will be most likely to pop if overfunded startups can’t turn a profit or grow into their lofty valuations. This bubble could last longer than than past ones, given that private markets aren’t traded on public markets and therefore move more slowly, but the ripple effects will still be profound when the end comes.  If companies making grand commitments to data center buildouts no longer have the revenue growth to support them, the headline deals that have propped up the stock market come into question. Anthropic’s Amodei illustrated the problem during his DealBook Summit appearance, where he said the multi-year data center commitments he has to make combine with the company’s rapid, unpredictable revenue growth rate to create a “cone of uncertainty” about how much to spend. The two most prominent private players in AI, OpenAI and Anthropic, have yet to turn a profit. A recent Deutsche Bank chart put the situation in stark historical context. Amazon burned through $3 billion before becoming profitable. Tesla, around $4 billion. Uber, $30 billion. OpenAI is projected to burn through $140 billion by 2029, while Anthropic is expected to burn $20 billion by 2027. Consultants at Bain estimate that the wave of AI infrastructure spending will require $2 trillion in annual AI revenue by 2030 just to justify the investment. That’s more than the combined 2024 revenue of Amazon, Apple, Alphabet, Microsoft, Meta, and Nvidia. When I talk to leaders of these large tech companies, they all agree that their sprawling businesses can absorb an expensive miscalculation about the returns from their AI infrastructure buildouts. It’s all the other companies that are either highly leveraged with debt or just unprofitable—even OpenAI and Anthropic—that they worry about.  Still, given the level of spending on AI, it still needs a viable business model beyond subscriptions, which won’t be able to  drive profits from billions of people’s eyeballs like the ad-driven businesses that have defined the last 20 years of the internet. Even the largest tech companies know they need to ship the world-changing agents they keep hyping: AI that can fully replace coworkers and complete tasks in the real world. For now, investors are mostly buying into the hype of the powerful AI systems that these data center buildouts will supposedly unlock in the future. At some point the biggest spenders, like OpenAI, will need to show investors that the money spent on the infrastructure buildout was worth it. There’s also still a lot of uncertainty about the technical direction that AI is heading in. LLMs are expected to remain critical to more advanced AI systems, but industry leaders can’t seem to agree on which additional breakthroughs are needed to achieve artificial general intelligence, or AGI. Some are betting on new kinds of AI that can understand the physical world, while others are focused on training AI to learn in a general way, like a human. In other words, what if all this unprecedented spending turns out to have been backing the wrong horse? The question now What makes this moment surreal is the honesty. The same people pouring billions into AI will openly tell you it might all come crashing down.  Taylor framed it as two truths existing at once. “I think it is both true that AI will transform the economy,” he told me, “and I think we’re also in a bubble, and a lot of people will lose a lot of money. I think both are absolutely true at the same time.” He compared it to the internet. Webvan failed, but Instacart succeeded years later with essentially the same idea. If you were an Amazon shareholder from its IPO to now, you’re looking pretty good. If you were a Webvan shareholder, you probably feel differently.  “When the dust settles and you see who the winners are, society benefits from those inventions,” Amazon founder Jeff Bezos said in October. “This is real. The benefit to society from AI is going to be gigantic.” Goldman Sachs says the AI boom now looks the way tech stocks did in 1997, several years before the dot-com bubble actually burst. The bank flagged five warning signs seen in the late 1990s that investors should watch now: peak investment spending, falling corporate profits, rising corporate debt, Fed rate cuts, and widening credit spreads. We’re probably not at 1999 levels yet. But the imbalances are building fast. Michael Burry, who famously called the 2008 housing bubble collapse (as seen in the film The Big Short), recently compared the AI boom to the 1990s dot-com bubble too. Maybe AI will save us from our own irrational exuberance. But for now, we’re living in an in-between moment when everyone knows what’s coming but keeps blowing more air into the balloon anyway. As Altman put it that night at dinner: “Someone is going to lose a phenomenal amount of money. We don’t know who.” Alex Heath is the author of Sources, a newsletter about the AI race, and the cohost of ACCESS, a podcast about the tech industry’s inside conversations. Previously, he was deputy editor at The Verge.

MIT Technology Review Explains: Let our writers untangle the complex, messy world of technology to help you understand what’s coming next. You can read more from the series here.

In July, a widely cited MIT study claimed that 95% of organizations that invested in generative AI were getting “zero return.” Tech stocks briefly plunged. While the study itself was more nuanced than the headlines, for many it still felt like the first hard data point confirming what skeptics had muttered for months: Hype around AI might be outpacing reality.

Then, in August, OpenAI CEO Sam Altman said what everyone in Silicon Valley had been whispering. “Are we in a phase where investors as a whole are overexcited about AI?” he said during a press dinner I attended. “My opinion is yes.” 


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


He compared the current moment to the dot-com bubble. “When bubbles happen, smart people get overexcited about a kernel of truth,” he explained. “Tech was really important. The internet was a really big deal. People got overexcited.” 

With those comments, it was off to the races. The next day’s stock market dip was attributed to the sentiment he shared. The question “Are we in an AI bubble?” became inescapable.

Who thinks it is a bubble? 

The short answer: Lots of people. But not everyone agrees on who or what is overinflated. Tech leaders are using this moment of fear to take shots at their rivals and position themselves as clear winners on the other side. How they describe the bubble depends on where their company sits.

When I asked Meta CEO Mark Zuckerberg about the AI bubble in September, he ran through the historical analogies of past bubbles—railroads, fiber for the internet, the dot-com boom—and noted that in each case, “the infrastructure gets built out, people take on too much debt, and then you hit some blip … and then a lot of the companies end up going out of business.”

But Zuckerberg’s prescription wasn’t for Meta to pump the brakes. It was to keep spending: “If we end up misspending a couple of hundred billion dollars, I think that that is going to be very unfortunate, obviously. But I’d say the risk is higher on the other side.”

Bret Taylor, the chairman of OpenAI and CEO of the AI startup Sierra, uses a mental model from the late ’90s to help navigate this AI bubble. “I think the closest analogue to this AI wave is the dot-com boom or bubble, depending on your level of pessimism,” he recently told me. Back then, he explained, everyone knew e-commerce was going to be big, but there was a massive difference between Buy.com and Amazon. Taylor and others have been trying to position themselves as today’s Amazon.

Still others are arguing that the pain will be widespread. Google CEO Sundar Pichai told the BBC this month that there’s “some irrationality” in the current boom. Asked whether Google would be immune to a bubble bursting, he warned, “I think no company is going to be immune, including us.”

What’s inflating the bubble?

Companies are raising enormous sums of money and seeing unprecedented valuations. Much of that money, in turn, is going toward the buildout of massive data centers—on which both private companies like OpenAI and Elon Musk’s xAI and public ones such as Meta and Google are spending heavily. OpenAI has pledged that it will spend $500 billion to build AI data centers, more than 15 times what was spent on the Manhattan Project.

This eye-popping spending on AI data centers isn’t entirely detached from reality. The leaders of the top AI companies all stress that they’re bottlenecked by their limited access to computing power. You hear it constantly when you talk to them. Startups can’t get the GPU allocations they need. Hyperscalers are rationing compute, saving it for their best customers.

If today’s AI market is as brutally supply-constrained as tech leaders claim, perhaps aggressive infrastructure buildouts are warranted. But some of the numbers are too large to comprehend. Sam Altman has told employees that OpenAI’s moonshot goal is to build 250 gigawatts of computing capacity by 2033, roughly equaling India’s total national electricity demand. Such a plan would cost more than $12 trillion by today’s standards.

“I do think there’s real execution risk,” OpenAI president and cofounder Greg Brockman recently told me about the company’s aggressive infrastructure goals. “Everything we say about the future, we see that it’s a possibility. It is not a certainty, but I don’t think the uncertainty comes from scientific questions. It’s a lot of hard work.”

Who is exposed, and who is to blame?

It depends on who you ask. During the August press dinner, where he made his market-moving comments, Altman was blunt about where he sees the excess. He said it’s “insane” that some AI startups with “three people and an idea” are receiving funding at such high valuations. “That’s not rational behavior,” he said. “Someone’s gonna get burned there, I think.” As Safe Superintelligence cofounder (and former OpenAI chief scientist and cofounder) Ilya Sutskever put it on a recent podcast: Silicon Valley has “more companies than ideas.”

Demis Hassabis, the CEO of Google DeepMind, offered a similar diagnosis when I spoke with him in November. “It feels like there’s obviously a bubble in the private market,” he said. “You look at seed rounds with just nothing being tens of billions of dollars. That seems a little unsustainable.”

Anthropic CEO Dario Amodei also struck at his competition during the New York Times DealBook Summit in early December. He said he feels confident about the technology itself but worries about how others are behaving on the business side: “On the economic side, I have my concerns where, even if the technology fulfills all its promises, I think there are players in the ecosystem who, if they just make a timing error, they just get it off by a little bit, bad things could happen.”

Ask AI

Why it matters to you?BETA
Here’s why this story might matter to you, according to AI. This is a beta feature and AI hallucinates—it might get weird

He stopped short of naming Sam Altman and OpenAI, but the implication was clear. “There are some players who are YOLOing,” he said. “Let’s say you’re a person who just kind of constitutionally wants to YOLO things or just likes big numbers. Then you may turn the dial too far.”

Amodei also flagged “circular deals,” or the increasingly common arrangements where chip suppliers like Nvidia invest in AI companies that then turn around and spend those funds on their chips. Anthropic has done some of these, he said, though “not at the same scale as some other players.” (OpenAI is at the center of a number of such deals, as are Nvidia, CoreWeave, and a roster of other players.) 

The danger, he explained, comes when the numbers get too big: “If you start stacking these where they get to huge amounts of money, and you’re saying, ’By 2027 or 2028 I need to make $200 billion a year,’ then yeah, you can overextend yourself.”

Zuckerberg shared a similar message at an internal employee Q&A session after Meta’s last earnings call. He noted that unprofitable startups like OpenAI and Anthropic risk bankruptcy if they misjudge the timing of their investments, but Meta has the advantage of strong cash flow, he reassured staff.

How could a bubble burst?

My conversations with tech executives and investors suggest that the bubble will be most likely to pop if overfunded startups can’t turn a profit or grow into their lofty valuations. This bubble could last longer than than past ones, given that private markets aren’t traded on public markets and therefore move more slowly, but the ripple effects will still be profound when the end comes. 

If companies making grand commitments to data center buildouts no longer have the revenue growth to support them, the headline deals that have propped up the stock market come into question. Anthropic’s Amodei illustrated the problem during his DealBook Summit appearance, where he said the multi-year data center commitments he has to make combine with the company’s rapid, unpredictable revenue growth rate to create a “cone of uncertainty” about how much to spend.

The two most prominent private players in AI, OpenAI and Anthropic, have yet to turn a profit. A recent Deutsche Bank chart put the situation in stark historical context. Amazon burned through $3 billion before becoming profitable. Tesla, around $4 billion. Uber, $30 billion. OpenAI is projected to burn through $140 billion by 2029, while Anthropic is expected to burn $20 billion by 2027.

Consultants at Bain estimate that the wave of AI infrastructure spending will require $2 trillion in annual AI revenue by 2030 just to justify the investment. That’s more than the combined 2024 revenue of Amazon, Apple, Alphabet, Microsoft, Meta, and Nvidia. When I talk to leaders of these large tech companies, they all agree that their sprawling businesses can absorb an expensive miscalculation about the returns from their AI infrastructure buildouts. It’s all the other companies that are either highly leveraged with debt or just unprofitable—even OpenAI and Anthropic—that they worry about. 

Still, given the level of spending on AI, it still needs a viable business model beyond subscriptions, which won’t be able to  drive profits from billions of people’s eyeballs like the ad-driven businesses that have defined the last 20 years of the internet. Even the largest tech companies know they need to ship the world-changing agents they keep hyping: AI that can fully replace coworkers and complete tasks in the real world.

For now, investors are mostly buying into the hype of the powerful AI systems that these data center buildouts will supposedly unlock in the future. At some point the biggest spenders, like OpenAI, will need to show investors that the money spent on the infrastructure buildout was worth it.

There’s also still a lot of uncertainty about the technical direction that AI is heading in. LLMs are expected to remain critical to more advanced AI systems, but industry leaders can’t seem to agree on which additional breakthroughs are needed to achieve artificial general intelligence, or AGI. Some are betting on new kinds of AI that can understand the physical world, while others are focused on training AI to learn in a general way, like a human. In other words, what if all this unprecedented spending turns out to have been backing the wrong horse?

The question now

What makes this moment surreal is the honesty. The same people pouring billions into AI will openly tell you it might all come crashing down. 

Taylor framed it as two truths existing at once. “I think it is both true that AI will transform the economy,” he told me, “and I think we’re also in a bubble, and a lot of people will lose a lot of money. I think both are absolutely true at the same time.”

He compared it to the internet. Webvan failed, but Instacart succeeded years later with essentially the same idea. If you were an Amazon shareholder from its IPO to now, you’re looking pretty good. If you were a Webvan shareholder, you probably feel differently. 

“When the dust settles and you see who the winners are, society benefits from those inventions,” Amazon founder Jeff Bezos said in October. “This is real. The benefit to society from AI is going to be gigantic.”

Goldman Sachs says the AI boom now looks the way tech stocks did in 1997, several years before the dot-com bubble actually burst. The bank flagged five warning signs seen in the late 1990s that investors should watch now: peak investment spending, falling corporate profits, rising corporate debt, Fed rate cuts, and widening credit spreads. We’re probably not at 1999 levels yet. But the imbalances are building fast. Michael Burry, who famously called the 2008 housing bubble collapse (as seen in the film The Big Short), recently compared the AI boom to the 1990s dot-com bubble too.

Maybe AI will save us from our own irrational exuberance. But for now, we’re living in an in-between moment when everyone knows what’s coming but keeps blowing more air into the balloon anyway. As Altman put it that night at dinner: “Someone is going to lose a phenomenal amount of money. We don’t know who.”

Alex Heath is the author of Sources, a newsletter about the AI race, and the cohost of ACCESS, a podcast about the tech industry’s inside conversations. Previously, he was deputy editor at The Verge.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nvidia moves deeper into AI infrastructure with SchedMD acquisition

“Slurm excels at orchestrating multi-node distributed training, where jobs span hundreds or thousands of GPUs,” said Lian Jye Su, chief analyst at Omdia. “The software can optimize data movement within servers by deciding where jobs should be placed based on resource availability. With strong visibility into the network topology, Slurm

Read More »

ExxonMobil bumps up 2030 target for Permian production

ExxonMobil Corp., Houston, is looking to grow production in the Permian basin to about 2.5 MMboe/d by 2030, an increase of 200,000 boe/d from executives’ previous forecasts and a jump of more than 45% from this year’s output. Helping drive that higher target is an expected 2030 cost profile that

Read More »

Chevron Reduces Price for Venezuelan Oil

Chevron Corp, lowered the price of Venezuelan crude offered to US refiners after a tanker was seized by American forces in the Caribbean and as global prices drifted lower.  The oil supermajor sold a batch of Venezuelan oil on Dec. 11 — a day after US forces seized a vessel off the country’s coast — at weaker prices compared than a batch offered on Monday, according to people with knowledge of the situation.  The administration of President Donald Trump is stepping up pressure on Venezuela by targeting oil revenues critical to the survival of Nicolas Maduro regime. The seized vessel, the Skipper, is currently near the Dominican Republic and appeared to be en route to the US, according to vessel movements tracked by Bloomberg. While it’s unclear when the ship will be able to discharge, it’s expected arrival is pressuring already weak prices in the Gulf Coast market, the people said, asking not to be named because the information is private.  Chevron’s operations in Venezuela continue in full compliance with laws and regulations applicable to its business, as well as the sanctions frameworks provided for by the US government, the Houston-based company said in a statement.  The company sold about 10 oil cargoes of different grades for loading next month, in a sign that it’s pressing ahead despite heightened tensions between the two countries. The cargoes were sold in two separate tenders and price levels were not immediately available.  WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Phillips 66 Budgets $2.4B for 2026

Phillips 66 said Monday it expects a $2.4 billion budget for next year, consisting of $1.1 billion in sustaining capital and $1.3 billion in growth capital. “The 2026 capital budget reflects our ongoing commitment to capital discipline and maximizing shareholder returns”, chair and chief executive Mark Lashier said in an online statement. “We are investing growth capital in our NGL value chain and high-return refining projects, while also investing sustaining capital to support safe and reliable operations”. Houston, Texas-based Phillips 66 expects to shell out $1.1 billion into its refining business, comprising $590 million in sustaining capital and $520 million into growth projects. “With the consolidation of WRB Refining, we incorporated approximately $200 million of sustaining capital and $100 million of growth capital into the budget”, Lashier said. Phillips 66 recently acquired an additional 50 percent stake in WRB Refining LP from Cenovus Energy Inc for $1.4 billion, fully taking over the Wood River and Borger refineries, as confirmed by Phillips 66 in its third quarter report October 29. Wood River in Roxana, Illinois, has a gasoline and distillates production capacity of 176,000 bpd and 140,000 bpd respectively. Borger in Borger, Texas, produces up to 100,000 bpd of gasoline and 70,000 bpd of distillates, according to Phillips 66. The refining allotment for 2026 also includes a multiyear investment at the Humber refinery to enable the production of higher-quality gasoline and expand the facility’s access to “higher-value global markets”, the company said. Phillips 66 expects to start up the project in the second quarter of 2027. Located in North Lincolnshire on the English east coast, the Humber site produces up to 95,000 barrels per day (bpd) of gasoline and 115,000 bpd of distillates, according to Phillips 66. The refining budget also includes “over 100 low-capital, high-return projects to improve market capture

Read More »

USA Emerges as World’s Hydrocarbon Superpower

The U.S. has emerged as the world’s hydrocarbon superpower, exemplified by its meteoric rise in the liquefied natural gas (LNG) market.   That’s what Wood Mackenzie (WoodMac) said in a statement sent to Rigzone recently, which highlighted several charts that “spotlight the most significant trends reshaping the [energy and resources] sector globally” and were included in the company’s latest Horizons report. “You don’t need to look too far back to find a U.S. which was building LNG import infrastructure and now in under 10 years it has become the world’s largest LNG exporter,” WoodMac said in the statement. The company noted in the statement that, by 2030, the U.S. is projected to account for 30 percent of global LNG output. A chart included in the statement outlined that the U.S. would continue as the world’s largest LNG exporter in 2030, followed by Qatar and Australia. WoodMac also highlighted in its statement that the U.S. “leads global oil production (including oil, condensate, and natural gas liquids), delivering one-fifth of the world’s volumes”. “In comparison, its closest competitors, Saudi Arabia and Russia, produce only 65 percent and 50 percent of U.S. volumes, respectively,” it added.   Malcolm Forbes-Cable, Vice President, Upstream and Carbon Management Consulting at Wood Mackenzie, said in the statement, “the resurrection of U.S. LNG is a crucial reminder of what a resource-rich, free-market country like the U.S. can do”. “This hydrocarbon hegemony is now being leveraged as a diplomatic tool,” he added. In its latest short term energy outlook (STEO), which was released on December 9, the U.S. Energy Information Administration (EIA) projected that gross U.S. LNG exports will average 14.9 billion cubic feet per day in 2025 and 16.3 billion cubic feet per day in 2026. Gross U.S. LNG exports averaged 11.9 billion cubic feet per day in 2024, this STEO highlighted. A quarterly breakdown included in the EIA’s latest STEO forecasted that gross U.S. LNG exports will come in at

Read More »

North America Rig Count Stays Flat

North America’s rig count stayed flat week on week, according to Baker Hughes’ latest North America rotary rig count, which was published on December 12. The total U.S. rig count dropped by one week on week and the total Canada rig count rose by one during the same period, keeping the total North America rig count at 740, the count outlined. The total North America rig count comprised 548 rigs from the U.S. and 192 rigs from Canada, the count showed. Of the total U.S. rig count of 548, 528 rigs are categorized as land rigs, 17 are categorized as offshore rigs, and three are categorized as inland water rigs. The total U.S. rig count is made up of 414 oil rigs, 127 gas rigs, and seven miscellaneous rigs, according to Baker Hughes’ count, which revealed that the U.S. total comprises 478 horizontal rigs, 54 directional rigs, and 16 vertical rigs. Week on week, the U.S. land rig count rose by one, its offshore rig count dropped by two, and its inland water rig count remained unchanged, Baker Hughes highlighted. The U.S. oil rig count rose by one week on week, its gas rig count dropped by two by week on week, and its miscellaneous rig count remained unchanged week on week, the count showed. The U.S. horizontal rig count rose by two, its directional rig count dropped by four, and its vertical rig count increased by one, week on week, the count revealed. A major state variances subcategory included in the rig count showed that, week on week, Texas added two rigs, and Ohio and Louisiana each added one rig. This subcategory revealed that New Mexico dropped three rigs and Colorado dropped one rig week on week. A major basin variances subcategory included in Baker Hughes’ rig count showed

Read More »

Pembina Completes Remarketing of Cedar LNG Share

Pembina Pipeline Corp said Monday it had signed a 12-year agreement allowing Ovintiv Inc to use 0.5 million tonnes per annum (MMtpa) of liquefaction capacity at the under-construction Cedar LNG on Canada’s West Coast. “Pembina has now remarketed the full 1.5 mtpa [million tonnes per annum] of its Cedar LNG capacity to third parties and further demonstrated its commitment to delivering growth and executing its strategy within the company’s long-standing financial guardrails and prudent risk profile”, Calgary-based Pembina said in an online statement. It owns 49.9 percent in the project. The Haisla Nation, who host Cedar LNG on tribal territory, holds 50.1 percent. According to the developers, Cedar LNG is the world’s first liquefied natural gas facility primarily owned by Indigenous people. Expected to start operation 2028, the project has a declared capacity of 3.3 MMtpa. “The agreement enables the export of 0.5 mtpa of LNG, under which Pembina will provide transportation and liquefaction capacity to Ovintiv over a 12-year term, commencing with commercial operations at Cedar LNG, anticipated in late 2028”, Denver, Colorado-based Ovintiv said separately. “It provides Ovintiv, one of Canada’s largest natural gas producers, with access to additional export markets, complementary to the company’s existing portfolio of natural gas transportation arrangements. Export from the west coast of Canada offers the shortest shipping distance to Asian LNG markets from North America”. Meghan Eilers, midstream and marketing executive vice president at Ovintiv, said, “Today’s announcement marks a significant advancement in our strategy to expand market access and maximize the profitability of our Montney gas resource through participation in global LNG markets”. Pembina senior vice president and corporate development officer Stu Taylor said, “Ovintiv is a significant customer to Pembina across our natural gas processing and transportation, and NGL transportation, fractionation and marketing businesses”. Pembina added in its statement, in which it also announced a capital investment

Read More »

TotalEnergies, Galp Agree Exchange Involving Mopane, Venus Discoveries

TotalEnergies and Galp Energia SGPS SA have entered into a deal under which TotalEnergies will acquire a 40 percent operating stake in the block containing the Mopane discoveries and Galp will obtain a 10 percent interest in the Venus discovery license, both on Namibia’s side of the Orange Basin. Currently Portugal’s Galp operates Petroleum Exploration License (PEL) 83, which includes Mopane, with an 80 percent stake. The National Petroleum Corporation of Namibia (Namcor) owns 10 percent. Local player Custos Energy (Pty) Ltd holds 10 percent. In PEL56 France’s TotalEnergies has a 45.25 percent operating stake. State-owned QatarEnergy owns 35.25 percent. Namcor owns 10 percent. London-based Impact Oil & Gas Ltd owns 9.5 percent. After the completion of the transaction, subject to approvals from Namibian authorities and their partners in the PELs, Galp would retain 40 percent in PEL83 and TotalEnergies would keep operatorship and a 35.25 percent stake in PEL56. Galp would also receive a 9.4 percent stake in PEL 91, also in the Namibian Orange Basin. Operator TotalEnergies would keep a 33.09 percent stake. QatarEnergy owns 33.03 percent, Namcor 15 percent and Impact 9.5 percent. “The transaction positions TotalEnergies as the operator of the two largest oil discoveries in Namibia and opens the way for the development of a major producing hub, generating long-term value for the country and partners”, TotalEnergies said in an online statement. Galp has announced five discoveries in PEL83’s Mopane area. Mopane-1X, Mopane-2X, appraisal well Mopane-1A and appraisal well Mopane 2A were proven 2024. Mopane-3X was proven 2025. In PEL56, TotalEnergies announced a “significant discovery” through the Venus 1-X well on February 24, 2022. “TotalEnergies and Galp agreed to launch an exploration and appraisal campaign including three wells over the next two years, with a first well planned in 2026, to further derisk resources and progress diligently

Read More »

Executive Roundtable: Converging Disciplines in the AI Buildout

At Data Center Frontier, we rely on industry leaders to help us understand the most urgent challenges facing digital infrastructure. And in the fourth quarter of 2025, the data center industry is adjusting to a new kind of complexity.  AI-scale infrastructure is redefining what “mission critical” means, from megawatt density and modular delivery to the chemistry of cooling fluids and the automation of energy systems. Every project has arguably in effect now become an ecosystem challenge, demanding that electrical, mechanical, construction, and environmental disciplines act as one.  For this quarter’s Executive Roundtable, DCF convened subject matter experts from Ecolab, EdgeConneX, Rehlko and Schneider Electric – leaders spanning the full chain of facilities design, deployment, and operation. Their insights illuminate how liquid cooling, energy management, and sustainable process design in data centers are now converging to set the pace for the AI era. Our distinguished executive panelists for this quarter include: Rob Lowe, Director RD&E – Global High Tech, Ecolab Phillip Marangella, Chief Marketing and Product Officer, EdgeConneX Ben Rapp, Manager, Strategic Project Development, Rehlko Joe Reele, Vice President, Datacenter Solution Architects, Schneider Electric Today: Engineering the New Normal – Liquid Cooling at Scale  Today’s kickoff article grapples with how, as liquid cooling technology transitions to default hyperscale design, the challenge is no longer if, but how to scale builds safely, repeatably, and globally.  Cold plates, immersion, dielectric fluids, and liquid-to-chip loops are converging into factory-integrated building blocks, yet variability in chemistry, serviceability, materials, commissioning practices, and long-term maintenance threatens to fragment adoption just as demand accelerates.  Success now hinges on shared standards and tighter collaboration across OEMs, builders, and process specialists worldwide. So how do developers coordinate across the ecosystem to make liquid cooling a safe, maintainable global default? What’s Ahead in the Roundtable Over the coming days, our panel

Read More »

DCF Trends Summit 2025: AI for Good – How Operators, Vendors and Cooling Specialists See the Next Phase of AI Data Centers

At the 2025 Data Center Frontier Trends Summit (Aug. 26-28) in Reston, Va., the conversation around AI and infrastructure moved well past the hype. In a panel sponsored by Schneider Electric—“AI for Good: Building for AI Workloads and Using AI for Smarter Data Centers”—three industry leaders explored what it really means to design, cool and operate the new class of AI “factories,” while also turning AI inward to run those facilities more intelligently. Moderated by Data Center Frontier Editor in Chief Matt Vincent, the session brought together: Steve Carlini, VP, Innovation and Data Center Energy Management Business, Schneider Electric Sudhir Kalra, Chief Data Center Operations Officer, Compass Datacenters Andrew Whitmore, VP of Sales, Motivair Together, they traced both sides of the “AI for Good” equation: building for AI workloads at densities that would have sounded impossible just a few years ago, and using AI itself to reduce risk, improve efficiency and minimize environmental impact. From Bubble Talk to “AI Factories” Carlini opened by acknowledging the volatility surrounding AI investments, citing recent headlines and even Sam Altman’s public use of the word “bubble” to describe the current phase of exuberance. “It’s moving at an incredible pace,” Carlini noted, pointing out that roughly half of all VC money this year has flowed into AI, with more already spent than in all of the previous year. Not every investor will win, he said, and some companies pouring in hundreds of billions may not recoup their capital. But for infrastructure, the signal is clear: the trajectory is up and to the right. GPU generations are cycling faster than ever. Densities are climbing from high double-digits per rack toward hundreds of kilowatts. The hyperscale “AI factories,” as NVIDIA calls them, are scaling to campus capacities measured in gigawatts. Carlini reminded the audience that in 2024,

Read More »

FinOps Foundation sharpens FOCUS to reduce cloud cost chaos

“The big change that’s really started to happen in late 2024 early 2025 is that the FinOps practice started to expand past the cloud,” Storment said. “A lot of organizations got really good at using FinOps to manage the value of cloud, and then their organizations went, ‘oh, hey, we’re living in this happily hybrid state now where we’ve got cloud, SaaS, data center. Can you also apply the FinOps practice to our SaaS? Or can you apply it to our Snowflake? Can you apply it to our data center?’” The FinOps Foundation’s community has grown to approximately 100,000 practitioners. The organization now includes major cloud vendors, hardware providers like Nvidia and AMD, data center operators and data cloud platforms like Snowflake and Databricks. Some 96 of the Fortune 100 now participate in FinOps Foundation programs. The practice itself has shifted in two directions. It has moved left into earlier architectural and design processes, becoming more proactive rather than reactive. It has also moved up organizationally, from director-level cloud management roles to SVP and COO positions managing converged technology portfolios spanning multiple infrastructure types. This expansion has driven the evolution of FOCUS beyond its original cloud billing focus. Enterprises are implementing FOCUS as an internal standard for chargeback reporting even when their providers don’t generate native FOCUS data. Some newer cloud providers, particularly those focused on AI infrastructure, are using the FOCUS specification to define their billing data structures from the ground up rather than retrofitting existing systems. The FOCUS 1.3 release reflects this maturation, addressing technical gaps that have emerged as organizations apply cost management practices across increasingly complex hybrid environments. FOCUS 1.3 exposes cost allocation logic for shared infrastructure The most significant technical enhancement in FOCUS 1.3 addresses a gap in how shared infrastructure costs are allocated and

Read More »

Aetherflux joins the race to launch orbital data centers by 2027

Enterprises will connect to and manage orbital workloads “the same way they manage cloud workloads today,” using optical links, the spokesperson added. The company’s approach is to “continuously launch new hardware and quickly integrate the latest architectures,” with older systems running lower-priority tasks to serve out the full useful lifetime of their high-end GPUs. The company declined to disclose pricing. Aetherflux plans to launch about 30 satellites at a time on SpaceX Falcon 9 rockets. Before the data center launch, the company will launch a power-beaming demonstration satellite in 2026 to test transmission of one kilowatt of energy from orbit to ground stations, using infrared lasers. Competition in the sector has intensified in recent months. In November, Starcloud launched its Starcloud-1 satellite carrying an Nvidia H100 GPU, which is 100 times more powerful than any previous GPU flown in space, according to the company, and demonstrated running Google’s Gemma AI model in orbit. In the same month, Google announced Project Suncatcher, with a 2027 demonstration mission planned. Analysts see limited near-term applications Despite the competitive activity, orbital data centers won’t replace terrestrial cloud regions for general hosting through 2030, said Ashish Banerjee, senior principal analyst at Gartner. Instead, they suit specific workloads, including meeting data sovereignty requirements for jurisdictionally complex scenarios, offering disaster recovery immune to terrestrial risks, and providing asynchronous high-performance computing, he said. “Orbital centers are ideal for high-compute, low-I/O batch jobs,” Banerjee said. “Think molecular folding simulations for pharma, massive Monte Carlo financial simulations, or training specific AI model weights. If the job takes 48 hours, the 500ms latency penalty of LEO is irrelevant.” One immediate application involves processing satellite-generated data in orbit, he said. Earth observation satellites using synthetic aperture radar generate roughly 10 gigabytes per second, but limited downlink bandwidth creates bottlenecks. Processing data in

Read More »

Here’s what Oracle’s soaring infrastructure spend could mean for enterprises

He said he had earlier told analysts in a separate call that margins for AI workloads in these data centers would be in the 30% to 40% range over the life of a customer contract. Kehring reassured that there would be demand for the data centers when they were completed, pointing to Oracle’s increasing remaining performance obligations, or services contracted but not yet delivered, up $68 billion on the previous quarter, saying that Oracle has been seeing unprecedented demand for AI workloads driven by the likes of Meta and Nvidia. Rising debt and margin risks raise flags for CIOs For analysts, though, the swelling debt load is hard to dismiss, even with Oracle’s attempts to de-risk its spend and squeeze more efficiency out of its buildouts. Gogia sees Oracle already under pressure, with the financial ecosystem around the company pricing the risk — one of the largest debts in corporate history, crossing $100 billion even before the capex spend this quarter — evident in the rising cost of insuring the debt and the shift in credit outlook. “The combination of heavy capex, negative free cash flow, increasing financing cost and long-dated revenue commitments forms a structural pressure that will invariably finds its way into the commercial posture of the vendor,” Gogia said, hinting at an “eventual” increase in pricing of the company’s offerings. He was equally unconvinced by Magouyrk’s assurances about the margin profile of AI workloads as he believes that AI infrastructure, particularly GPU-heavy clusters, delivers significantly lower margins in the early years because utilisation takes time to ramp.

Read More »

New Nvidia software gives data centers deeper visibility into GPU thermals and reliability

Addressing the challenge Modern AI accelerators now draw more than 700W per GPU, and multi-GPU nodes can reach 6kW, creating concentrated heat zones, rapid power swings, and a higher risk of interconnect degradation in dense racks, according to Manish Rawat, semiconductor analyst at TechInsights. Traditional cooling methods and static power planning increasingly struggle to keep pace with these loads. “Rich vendor telemetry covering real-time power draw, bandwidth behavior, interconnect health, and airflow patterns shifts operators from reactive monitoring to proactive design,” Rawat said. “It enables thermally aware workload placement, faster adoption of liquid or hybrid cooling, and smarter network layouts that reduce heat-dense traffic clusters.” Rawat added that the software’s fleet-level configuration insights can also help operators catch silent errors caused by mismatched firmware or driver versions. This can improve training reproducibility and strengthen overall fleet stability. “Real-time error and interconnect health data also significantly accelerates root-cause analysis, reducing MTTR and minimizing cluster fragmentation,” Rawat said. These operational pressures can shape budget decisions and infrastructure strategy at the enterprise level.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »