Stay Ahead, Stay ONMINE

One option for electric vehicle fires? Let them burn.

In the fall of 2024, a trucking company in Falls Township, Pennsylvania, temporarily stored a storm-damaged Tesla at its yard. A few weeks later, the car burst into flames that grew out of control within seconds, some shooting out 30 feet. A local fire company tried in vain to squelch the blaze, spraying more than 2,000 gallons of water on the vehicle. Eventually, the firefighters requested help from a fire company in neighboring Bristol Township, led by volunteer fire chief Howard McGoldrick. He’d been fighting fires since 1989, but this conflagration was unusual: It was a chemical fire in a lithium-ion battery, meaning it provided its own heat, fuel, and oxygen. And it was incredibly challenging to extinguish.   McGoldrick was encountering fires like this more and more often. The previous year, he says, several rowhouses were badly burned after overcharged lithium-ion batteries in racing drones ignited inside. In another nearby incident, old lithium-ion biomedical devices at a scrapyard got soaked in a rainstorm and combusted. The Tesla fire felt like a breaking point. “We were like, ‘Okay, this is just too many incidents in a short amount of time,’” McGoldrick recalls. He went in search of someone who could help his company get better at responding to fires in lithium-ion batteries. He found Patrick Durham. Durham is the owner of (and mustache behind) StacheD Training, one of a growing number of private companies helping first responders learn how to deal with lithium-ion battery safety, including electric-vehicle fires. Although there isn’t solid data on the frequency of EV battery fires, it’s no secret to EV makers that these fires are happening. Yet the manufacturers offer no standardized steps on how to fight them or avoid them in the first place, leaving first responders scrambling to search through each car’s emergency response guide—something that’s hard to do when you’re standing in front of an immolating vehicle. In this void, Durham offers a wealth of resources to first responders, from easy-to-follow video tutorials to hours-long in-person workshops. In 2024 alone, Durham says he trained approximately 2,000 first responders around the country. As more people buy EVs, in part to help address climate change, the need for this training has only grown; in less than two years, Durham’s YouTube channel has attracted almost 30,000 subscribers. (The US doesn’t currently collect data on the frequency or causes of EV fires, but this year the US Fire Administration and the Fire Safety Research Institute are rolling out a new data collection system for fire departments.) A circumspect man with a shaved head, brown eyes, and a thick horseshoe mustache framing his mouth, Durham previously worked as a mechanical engineer developing battery boxes for EVs. He is also a volunteer firefighter, and in 2020 he offered his first training on fires in lithium-ion batteries to his local department. From there, his reputation spread by word of mouth. Today, StacheD Training is Durham’s full-time work. He’s also the captain of his local volunteer fire department in Troy, Michigan.   As more EVs hit the road, what worries Durham most isn’t just the growing likelihood of battery fires—it’s their intensity. “The severity of the fire is significant compared to a regular vehicle fire,” he says. “The traditional car fires that you and I grew up with—the majority of those always start in the engine compartment,” says Jim Stevenson, a fire chief from rural Michigan who has taken Durham’s training. “So we basically get there, we pop the car hood, and then we put out the fire from there, and if it gets into the inner compartment of the car? Not a big deal. You spray it down with the hose, and it’s out in no time.” With EV fires, Stevenson says, “it’s just a completely different monster.”  SHAWN HAZEN An EV battery is essentially a tightly packed array of thousands of cells, each of which ranges from approximately the size and shape of an AA battery to the size of a legal envelope, depending on the battery model. If a single cell gets damaged–such as by getting crushed, overcharged, or waterlogged–that cell can heat uncontrollably in a process called thermal runaway. It will release so much heat and flammable gas that it generates its own fire, which spreads to the other cells.  Older lithium-ion battery packs exploded “like a pipe bomb” when that happened, Durham says; today’s battery packs have release valves so that during thermal runaway they avoid an explosion by instead spewing flames in what Durham describes as “essentially a blowtorch.” The location of an EV’s battery—underneath the car, between its axles, within a protective case—complicates things further. The batteries are much safer from collision damage than they would be under the hood, but they are also much harder to reach and douse if they ignite. The result? Fires such as one at an Illinois Rivian plant in 2024, where one EV caught fire and approximately 50 cars parked nearby ended up burning. Or one in Hollywood, Florida, in 2023, where a Tesla was accidentally driven off a dock and burst into flames even though it was underwater. Durham worries that if an EV battery catches fire in a high-speed crash, it will burn so intensely that first responders won’t be able to save anyone inside the vehicle. Putting out a fire in an internal-combustion car might take as little as 30 minutes and a few hundred gallons of water, he notes, while an electric car battery fire could take upwards of 4,000 gallons of water and many hours to extinguish—and much more for commercial trucks. Indeed, when a Tesla Semi drove off Interstate 80 in Northern California in 2024 and burst into flames, first responders had to douse it with 50,000 gallons of water and close the highway for 15 hours. What’s more, with EVs, it’s never entirely clear whether the fire is truly out. Cars may ignite, or reignite, weeks or even months after the battery is damaged or a battery fire is initially suppressed. Durham points to one salvaged Tesla in California that burst into flames 308 days after it had flooded in a Florida hurricane. The vehicle hadn’t initially ignited, but saltwater intrusion into the battery pack eventually corroded it enough to produce a chemical fire leading to thermal runaway. According to Durham, the simple truth is that the best way to manage EV fires right now is to let them burn—while making sure to protect the surrounding area, including other vehicles and people’s homes. Allowing the fire to run its course will ideally also destroy any cells that might otherwise ignite later. This goes against firefighters’ instincts. When they respond to EV fires, they will spray water “because they want to do something to fix the problem,” he says. [But] … it’s not really doing anything.” Stevenson worries about how bystanders will perceive  first responders waiting out a blaze. “It’s going to be ugly,” he says, “because the public’s going to see us standing on the side [of the] road just watching it burn, which looks bad for us.” But at the same time, he adds, “we don’t have [an] actual way of getting to the battery to knock it out.” For now, Durham’s training focuses on the options that first responders do have with EV fires. An important if simple one is using a fire blanket to cover a vehicle and prevent the blaze from spreading as it burns out. Although they hadn’t yet received Durham’s training, that’s exactly what McGoldrick and his crew did when they responded to the burning Tesla last fall: After the facility used a forklift to move the burning car to an isolated part of the yard, first responders covered it with a fire blanket. The car reignited several times over the next few days, McGoldrick says, “but it was contained. We just put it in the middle of an open lot and basically let it go.” It’s a significant cultural shift that first responders need to make, Durham says, and there’s another one, too: being extra-vigilant about the personal protective equipment they wear from the first moment they arrive at a burning EV. There isn’t yet enough information to compare the toxicity of EV fires and those in gas-powered cars, but Durham warns that first responders could inhale high levels of carbon dioxide, carbon monoxide, and heavy metals from burning EVs. Overall, Durham says, he is not against EVs, but he thinks there needs to be a change in attitude to handle them safely. When an EV battery catches fire, he says, “until that battery has been removed from the vehicle and shredded and fully recycled, it’s always going be a hazard.” Maya L. Kapoor is an award-winning freelance journalist who writes about climate change, biodiversity, and environmental justice.

In the fall of 2024, a trucking company in Falls Township, Pennsylvania, temporarily stored a storm-damaged Tesla at its yard. A few weeks later, the car burst into flames that grew out of control within seconds, some shooting out 30 feet.

A local fire company tried in vain to squelch the blaze, spraying more than 2,000 gallons of water on the vehicle. Eventually, the firefighters requested help from a fire company in neighboring Bristol Township, led by volunteer fire chief Howard McGoldrick. He’d been fighting fires since 1989, but this conflagration was unusual: It was a chemical fire in a lithium-ion battery, meaning it provided its own heat, fuel, and oxygen. And it was incredibly challenging to extinguish.  

McGoldrick was encountering fires like this more and more often. The previous year, he says, several rowhouses were badly burned after overcharged lithium-ion batteries in racing drones ignited inside. In another nearby incident, old lithium-ion biomedical devices at a scrapyard got soaked in a rainstorm and combusted.

The Tesla fire felt like a breaking point. “We were like, ‘Okay, this is just too many incidents in a short amount of time,’” McGoldrick recalls. He went in search of someone who could help his company get better at responding to fires in lithium-ion batteries. He found Patrick Durham.

Durham is the owner of (and mustache behind) StacheD Training, one of a growing number of private companies helping first responders learn how to deal with lithium-ion battery safety, including electric-vehicle fires.

Although there isn’t solid data on the frequency of EV battery fires, it’s no secret to EV makers that these fires are happening. Yet the manufacturers offer no standardized steps on how to fight them or avoid them in the first place, leaving first responders scrambling to search through each car’s emergency response guide—something that’s hard to do when you’re standing in front of an immolating vehicle.

In this void, Durham offers a wealth of resources to first responders, from easy-to-follow video tutorials to hours-long in-person workshops. In 2024 alone, Durham says he trained approximately 2,000 first responders around the country. As more people buy EVs, in part to help address climate change, the need for this training has only grown; in less than two years, Durham’s YouTube channel has attracted almost 30,000 subscribers. (The US doesn’t currently collect data on the frequency or causes of EV fires, but this year the US Fire Administration and the Fire Safety Research Institute are rolling out a new data collection system for fire departments.)

A circumspect man with a shaved head, brown eyes, and a thick horseshoe mustache framing his mouth, Durham previously worked as a mechanical engineer developing battery boxes for EVs. He is also a volunteer firefighter, and in 2020 he offered his first training on fires in lithium-ion batteries to his local department. From there, his reputation spread by word of mouth. Today, StacheD Training is Durham’s full-time work. He’s also the captain of his local volunteer fire department in Troy, Michigan.  

As more EVs hit the road, what worries Durham most isn’t just the growing likelihood of battery fires—it’s their intensity. “The severity of the fire is significant compared to a regular vehicle fire,” he says.

“The traditional car fires that you and I grew up with—the majority of those always start in the engine compartment,” says Jim Stevenson, a fire chief from rural Michigan who has taken Durham’s training. “So we basically get there, we pop the car hood, and then we put out the fire from there, and if it gets into the inner compartment of the car? Not a big deal. You spray it down with the hose, and it’s out in no time.” With EV fires, Stevenson says, “it’s just a completely different monster.” 

matchbox on wheels

SHAWN HAZEN

An EV battery is essentially a tightly packed array of thousands of cells, each of which ranges from approximately the size and shape of an AA battery to the size of a legal envelope, depending on the battery model. If a single cell gets damaged–such as by getting crushed, overcharged, or waterlogged–that cell can heat uncontrollably in a process called thermal runaway. It will release so much heat and flammable gas that it generates its own fire, which spreads to the other cells. 

Older lithium-ion battery packs exploded “like a pipe bomb” when that happened, Durham says; today’s battery packs have release valves so that during thermal runaway they avoid an explosion by instead spewing flames in what Durham describes as “essentially a blowtorch.” The location of an EV’s battery—underneath the car, between its axles, within a protective case—complicates things further. The batteries are much safer from collision damage than they would be under the hood, but they are also much harder to reach and douse if they ignite.

The result? Fires such as one at an Illinois Rivian plant in 2024, where one EV caught fire and approximately 50 cars parked nearby ended up burning. Or one in Hollywood, Florida, in 2023, where a Tesla was accidentally driven off a dock and burst into flames even though it was underwater.

Durham worries that if an EV battery catches fire in a high-speed crash, it will burn so intensely that first responders won’t be able to save anyone inside the vehicle. Putting out a fire in an internal-combustion car might take as little as 30 minutes and a few hundred gallons of water, he notes, while an electric car battery fire could take upwards of 4,000 gallons of water and many hours to extinguish—and much more for commercial trucks. Indeed, when a Tesla Semi drove off Interstate 80 in Northern California in 2024 and burst into flames, first responders had to douse it with 50,000 gallons of water and close the highway for 15 hours.

What’s more, with EVs, it’s never entirely clear whether the fire is truly out. Cars may ignite, or reignite, weeks or even months after the battery is damaged or a battery fire is initially suppressed. Durham points to one salvaged Tesla in California that burst into flames 308 days after it had flooded in a Florida hurricane. The vehicle hadn’t initially ignited, but saltwater intrusion into the battery pack eventually corroded it enough to produce a chemical fire leading to thermal runaway.

According to Durham, the simple truth is that the best way to manage EV fires right now is to let them burn—while making sure to protect the surrounding area, including other vehicles and people’s homes. Allowing the fire to run its course will ideally also destroy any cells that might otherwise ignite later.

This goes against firefighters’ instincts. When they respond to EV fires, they will spray water “because they want to do something to fix the problem,” he says. [But] … it’s not really doing anything.”

Stevenson worries about how bystanders will perceive  first responders waiting out a blaze. “It’s going to be ugly,” he says, “because the public’s going to see us standing on the side [of the] road just watching it burn, which looks bad for us.” But at the same time, he adds, “we don’t have [an] actual way of getting to the battery to knock it out.”

For now, Durham’s training focuses on the options that first responders do have with EV fires. An important if simple one is using a fire blanket to cover a vehicle and prevent the blaze from spreading as it burns out. Although they hadn’t yet received Durham’s training, that’s exactly what McGoldrick and his crew did when they responded to the burning Tesla last fall: After the facility used a forklift to move the burning car to an isolated part of the yard, first responders covered it with a fire blanket. The car reignited several times over the next few days, McGoldrick says, “but it was contained. We just put it in the middle of an open lot and basically let it go.”

It’s a significant cultural shift that first responders need to make, Durham says, and there’s another one, too: being extra-vigilant about the personal protective equipment they wear from the first moment they arrive at a burning EV. There isn’t yet enough information to compare the toxicity of EV fires and those in gas-powered cars, but Durham warns that first responders could inhale high levels of carbon dioxide, carbon monoxide, and heavy metals from burning EVs.

Overall, Durham says, he is not against EVs, but he thinks there needs to be a change in attitude to handle them safely. When an EV battery catches fire, he says, “until that battery has been removed from the vehicle and shredded and fully recycled, it’s always going be a hazard.”

Maya L. Kapoor is an award-winning freelance journalist who writes about climate change, biodiversity, and environmental justice.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Is private 5G/6G important after all?

Most process control is done using wired connections to local computers, or Wi-Fi. Wires can’t connect moving things, and they’re hard to maintain if they have to be strung a significant distance. Wi-Fi is great for a hundred feet from a hub, but it’s weak for large areas unless you

Read More »

Oil Settles Lower as Iran-US Talks Ease Risk

Oil fell for the first time in three days after Iran confirmed it would hold negotiations with the US, easing the immediate risk of military conflict and supply disruptions from the OPEC producer. West Texas Intermediate dropped to settle near $63 a barrel, after adding 4.8% over the previous two sessions, while Brent was below $68 a barrel. Iranian Foreign Minister Abbas Araghchi confirmed in a social media post that the talks will be held in Oman on Friday, clarifying the location of the encounter. Futures also extended declines after private jobs data revived worries about an economic slowdown in the US and a potential slowdown in oil demand. The commodity pared some losses after Saudi Arabia dropped the price of its main oil grade for buyers in Asia to the lowest in years, though by less than many in the industry had anticipated. That is offering the market a sign that the kingdom has faith in demand for its barrels. Differing positions over the parameters of US-Iran negotiations mean it remains unclear whether the two sides can realistically bridge major differences at a time of heightened tensions in the region, which supplies about a third of the world’s crude. That has reinserted some risk premium into oil prices, which have rebounded this year after slumping in the second half of 2025 on signs of a growing global glut. “We see that there is indeed a bit of oversupply at the moment, but that I would say is balanced with the significant uncertainty that we are seeing because of the geopolitical challenges,” Wael Sawan, chief executive officer of Shell Plc, said in a Bloomberg TV interview. “There is a premium with that uncertainty and volatility.” The added volatility is bolstering market gauges aside from benchmark futures prices. Bullish WTI call

Read More »

Insights: Upstream studies that matter—from proppant design to resource size and methane reality

In this Insights episode of the Oil & Gas Journal ReEnterprised podcast, Alex Procyk, Upstream Editor, recaps four recent technical papers shaping today’s upstream decisions. He looks at how lightweight and ultralight proppants are influencing fracture performance and gravel-pack stability, why updated data show the Marcellus continuing to expand without signs of productivity loss, and how airborne monitoring offshore Angola is exposing gaps in reported methane emissions. The episode is a practical walkthrough of what the latest research means for completion design, resource expectations, and environmental oversight. Article references If you’d like to dig deeper, the full articles are available with your membership on OGJ.com.  Marcellus assessment shows continued expansion [Free – Members Only] New assessment suggests substantial Appalachian shale gas resources [Premium] Lightweight proppants improve completion [Free – Members Only] Airborne Angolan methane monitoring reveals discrepancies [Free – Memers Only]  

Read More »

Aker BP begins oil production from Solvieg Phase 2

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } Aker BP ASA started oil production from the Solveig Phase 2 development in production license (PL) 359 in the North Sea. Solveig field lies about 15 km south of the Edvard Grieg platform. The project is a subsea tieback to Edvard Grieg through existing infrastructure. It comprises three wells targeting both new and existing reservoir segments and will help extend plateau production from the field while making efficient use of available capacity on the Edvard Grieg platform. Phase 2 added about 39 MMboe in recoverable resources to the field and is the fifth Aker BP-operated project sanctioned in 2022 that has come on stream. TechnipFMC delivered the subsea systems and Moreld Apply performed modifications on the platform. Odfjell Drilling and Halliburton performed drilling operations through Aker BP’s drilling and wells alliance. Aker BP is operator of (PL) 359 (65%) with partners OMV Norge AS (20%) and Harbour Energy Norge AS (15%).

Read More »

OPEC+ to maintain oil production levels amid tensions in Iran

OPEC and its allies (OPEC+) agreed on Sunday, Feb. 1, to keep oil production levels unchanged for March, reaffirming earlier decisions amid heightened geopolitical uncertainty and firmer crude prices. The decision was taken at a brief meeting attended by eight OPEC+ members—Saudi Arabia, Russia, the United Arab Emirates (UAE), Kazakhstan, Kuwait, Iraq, Algeria, and Oman—after Brent crude settled near $70/bbl on Friday. Prices have been supported by market concerns that the US could launch a military strike against Iran, an OPEC member. The eight producers had already agreed to raise output quotas by a combined 2.9 million b/d between April and December 2025, equivalent to about 3% of global oil demand. However, in November the group froze plans for further increases scheduled for January–March 2026, citing seasonally weak demand. Sunday’s meeting reaffirmed that freeze, following similar decisions taken in January and February. The statement issued after the meeting offered no guidance on production policy beyond March. Given the increasing uncertainty surrounding tensions between Iran and the US, the group is keeping all options open, according to Jorge Leon, head of geopolitical analysis at Rystad Energy and a former OPEC official. Leon added that OPEC’s own data show demand for OPEC+ crude declining in the second quarter, which could limit the scope for further production increases. The situation in Iran remains tense, with the US employing both military pressure and diplomatic means. An escalation of the conflict could impact Iran’s export volumes and threaten the Strait of Hormuz trade route, becoming a critical risk variable on the supply side. At the same time, Venezuela, under the leadership of the interim government, continues to export crude oil to the US, and the US is gradually easing sanctions against it, which is expected to bring about a certain increase in supply.

Read More »

Howard Energy Partners CEO named to National Petroleum Council

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } US Secretary of Energy Chris Wright has appointed Mike Howard, chief executive officer of San Antonio, Tex.-based Howard Energy Partners (HEP), to the National Petroleum Council (NPC). Howard serves as chairman and chief executive of privately held HEP, an energy infrastructure company, which he founded in 2011. HEP owns and operates midstream assets spanning the natural gas and liquids value chain in Texas, New Mexico, Pennsylvania, Oklahoma, and Mexico. Founded in 1946, the NPC is made up of about 200 people selected and appointed by the Secretary of Energy to advise, inform, and make recommendations, at the Secretary’s request, on matters pertaining to oil and natural gas or to the oil and gas industries.

Read More »

Chevron to advance Yoyo-Yolanda natural gas project offshore Africa

Chevron Corp. plant to advance the Yoyo-Yolanda gas project straddling the maritime border in the Gulf of Guinea between Equatorial Guinea and Cameroon after the two countries signed a unitization agreement, the African Energy Chamber (AEC) reported.  The agreement, signed on Feb. 3, 2026, allows for joint development of cross-border fields, forming part of the broader Gas Mega Hub (GMH). The resource will be split 84% for Yoyo block (Cameroon) and 16% for Yolanda block (Equatorial Guinea).  “The Yoyo‑Yolanda project is central to Chevron’s strategy of supporting long‑term liquefied natural gas supply and leveraging existing infrastructure at Alen and Punta Europa,” said Jim Swartz, chairman and managing director Chevron Nigeria and Mid-Africa Region, AEC reported.    With Yoyo-Yolanda now unified, the focus shifts to execution. The countries expect to fast-track approvals, streamline cross-border processes, and leverage existing regional infrastructure. Utilizing established processing and export infrastructure such as Punta Europa could lower operating costs, shorten development timelines, and accelerate gas to market. Yoyo-Yolanda gas fields hold 2.5 tcf of natural gas reserves and are operated by Noble Energy EG Ltd. and Noble Energy Cameroon Ltd., both of which are Chevron companies.

Read More »

Azure outage disrupts VMs and identity services for over 10 hours

After multiple infrastructure scale-up attempts failed to handle the backlog and retry volumes, Microsoft ultimately removed traffic from the affected service to repair the underlying infrastructure without load. “The outage didn’t just take websites offline, but it halted development workflows and disrupted real-world operations,” said Pareekh Jain, CEO at EIIRTrend & Pareekh Consulting. Cloud outages on the rise Cloud outages have become more frequent in recent years, with major providers such as AWS, Google Cloud, and IBM all experiencing high-profile disruptions. AWS services were severely impacted for more than 15 hours when a DNS problem rendered the DynamoDB API unreliable. In November, a bad configuration file in Cloudflare’s Bot Management system led to intermittent service disruptions across several online platforms. In June, an invalid automated update disrupted the company’s identity and access management (IAM) system, resulting in users being unable to use Google to authenticate on third-party apps. “The evolving data center architecture is shaped by the shift to more demanding, intricate workloads driven by the new velocity and variability of AI. This rapid expansion is not only introducing complexities but also challenging existing dependencies. So any misconfiguration or mismanagement at the control layer can disrupt the environment,” said Neil Shah, co-founder and VP at Counterpoint Research. Preparing for the next cloud incident This is not an isolated incident. For CIOs, the event only reinforces the need to rethink resilience strategies. In the immediate aftermath when a hyperscale dependency fails, waiting is not a recommended strategy for CIOs, and they should focus on a strategy of stabilize, prioritize, and communicate, stated Jain. “First, stabilize by declaring a formal cloud incident with a single incident commander, quickly determining whether the issue affects control-plane operations or running workloads, and freezing all non-essential changes such as deployments and infrastructure updates.”

Read More »

Intel sets sights on data center GPUs amid AI-driven infrastructure shifts

Supply chain reliability is another underappreciated advantage. Hyperscalers want a credible second source, but only if Intel can offer stable, predictable roadmaps across multiple product generations. However, the company runs into a major constraint at the software layer. “The decisive bottleneck is software,” Rawat said. “CUDA functions as an industry operating standard, embedded across models, pipelines, and DevOps. Intel’s challenge is to prove that migration costs are low, and that ongoing optimization does not become a hidden engineering tax.” For enterprise buyers, that software gap translates directly into switching risk. Tighter integration of Intel CPUs, GPUs, and networking could improve system-level efficiency for enterprises and cloud providers, but the dominance of the CUDA ecosystem remains the primary barrier to switching, said Charlie Dai, VP and principal analyst at Forrester. “Even with strong hardware integration, buyers will hesitate without seamless compatibility with mainstream ML/DL frameworks and tooling,” Dai added.

Read More »

8 hot networking trends for 2026

Recurring license fees may have dissuaded enterprises from adopting AIOps in the past, but that’s changing, Morgan adds: “Over the past few years, vendors have added features and increased the value of those licenses, including 24×7 support. Now, by paying the equivalent of a fraction of a network engineer’s salary in license fees, a mid-sized enterprise can reduce hours spent on operations and level-one support in order to allocate more of their valuable networking experts’ time to AI projects. Every enterprise’s business case will be different, but with networking expertise in high demand, we predict that in 2026, the labor savings will outweigh the additional license costs for the majority of mid-to-large sized enterprises.” 2. AI boosts data center networking investments Enterprise data centers, which not so long ago were on the endangered species list, have made a remarkable comeback, driven by the reality that many AI workloads need to be hosted on premises, either for privacy, security, regulatory, latency or cost considerations. The global market for data center networking technologies was estimated at around $46 billion in 2025 and is projected to reach $103 billion by the end of 2030, a growth rate of nearly 18%, according to BCC Research: “The data center networking technologies market is rapidly changing due to increasing use of AI-powered solutions across data centers and sectors like telecom, IT, banking, financial services, insurance, government and commercial industries.” McKinsey predicts that global demand for data center capacity could nearly triple by 2030, with about 70% of that demand coming from AI workloads. McKinsey says both training and inference workloads are contributing to data center growth, with inference expected to become the dominant workload by 2030. 3. Private clouds roll in Clearly, the hyperscalers are driving most of the new data center construction, but enterprises are

Read More »

Cisco: Infrastructure, trust, model development are key AI challenges

“The G200 chip was for the scale out, because what’s happening now is these models are getting bigger where they don’t just fit within a single data center. You don’t have enough power to just pull into a single data center,” Patel said. “So now you need to have data centers that might be hundreds of kilometers apart, that operate like an ultra-cluster that are coherent. And so that requires a completely different chip architecture to make sure that you have capabilities like deep buffering and so on and so forth… You need to make sure that these data centers can be scaled across physical boundaries.”  “In addition, we are reaching the physical limits of copper and optics, and coherent optics especially are going to be extremely important as we go start building out this data center infrastructure. So that’s an area that you’re starting to see a tremendous amount of progress being made,” Patel said. The second constraint is the AI trust deficit, Patel said. “We currently need to make sure that these systems are trusted by the people that are using them, because if you don’t trust these systems, you’ll never use them,” Patel said. “This is the first time that security is actually becoming a prerequisite for adoption. In the past, you always ask the question whether you want to be secure, or you want to be productive. And those were kind of needs that offset each other,” Patel said. “We need to make sure that we trust not just using AI for cyber defense, but we trust AI itself,” Patel said. The third constraint is the notion of a data gap. AI models get trained on human-generated data that’s publicly available on the Internet, but “we’re running out,” Patel said. “And what you’re starting to see happen

Read More »

How Robotics Is Re-Engineering Data Center Construction and Operations

Physical AI: A Reusable Robotics Stack for Data Center Operations This is where the recent collaboration between Multiply Labs and NVIDIA becomes relevant, even though the application is biomanufacturing rather than data centers. Multiply Labs has outlined a robotics approach built on three core elements: Digital twins using NVIDIA Isaac Sim to model hardware and validate changes in simulation before deployment. Foundation-model-based skill learning via NVIDIA Isaac GR00T, enabling robots to generalize tasks rather than rely on brittle, hard-coded behaviors. Perception pipelines including FoundationPose and FoundationStereo, that convert expert demonstrations into structured training data. Taken together, this represents a reusable blueprint for data center robotics. Applying the Lesson to Data Center Environments The same physical-AI techniques now being applied in lab and manufacturing environments map cleanly onto the realities of data center operations, particularly where safety, uptime, and variability intersect. Digital-twin-first deployment Before a robot ever enters a live data hall, it needs to be trained in simulation. That means modeling aisle geometry, obstacles, rack layouts, reflective surfaces, and lighting variation; along with “what if” scenarios such as blocked aisles, emergency egress conditions, ladders left in place, or spill events. Simulation-first workflows make it possible to validate behavior and edge cases before introducing any new system into a production environment. Skill learning beats hard-coded rules Data centers appear structured, but in practice they are full of variability: temporary cabling, staged parts, mixed-vendor racks, and countless human exceptions. Foundation-model approaches to manipulation are designed to generalize across that messiness far better than traditional rule-based automation, which tends to break when conditions drift even slightly from the expected state. Imitation learning captures tribal knowledge Many operational tasks rely on tacit expertise developed over years in the field, such as how to manage stiff patch cords, visually confirm latch engagement, or stage a

Read More »

Applied Digital CEO Wes Cummins On the Hard Part of the AI Boom: Execution

Designing for What Comes After the Current AI Cycle Applied Digital’s design philosophy starts with a premise many developers still resist: today’s density assumptions may not hold. “We’re designing for maximum flexibility for the future—higher density power, lower density power, higher voltage delivery, and more floor space,” Cummins said. “It’s counterintuitive because densities are going up, but we don’t know what comes next.” That choice – to allocate more floor space even as rack densities climb – signals a long-view approach. Facilities are engineered to accommodate shifts in voltage, cooling topology, and customer requirements without forcing wholesale retrofits. Higher-voltage delivery, mixed cooling configurations, and adaptable data halls are baked in from the start. The goal is not to predict the future perfectly, Cummins stressed, but to avoid painting infrastructure into a corner. Supply Chain as Competitive Advantage If flexibility is the design thesis, supply chain control is the execution weapon. “It’s a huge advantage that we locked in our MEP supply chain 18 to 24 months ago,” Cummins said. “It’s a tight environment, and more timelines are going to get missed in 2026 because of it.” Applied Digital moved early to secure long-lead mechanical, electrical, and plumbing components; well before demand pressure fully rippled through transformers, switchgear, chillers, generators, and breakers. That foresight now underpins the company’s ability to make credible delivery commitments while competitors confront procurement bottlenecks. Cummins was blunt: many delays won’t stem from poor planning, but from simple unavailability. From 100 MW to 700 MW Without Losing Control The past year marked a structural pivot for Applied Digital. What began as a single, 100-megawatt “field of dreams” facility in North Dakota has become more than 700 MW under construction, with expansion still ahead. “A hundred megawatts used to be considered scale,” Cummins said. “Now we’re at 700

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »