Stay Ahead, Stay ONMINE

A Visual Guide to How Diffusion Models Work

This article is aimed at those who want to understand exactly how Diffusion Models work, with no prior knowledge expected. I’ve tried to use illustrations wherever possible to provide visual intuitions on each part of these models. I’ve kept mathematical notation and equations to a minimum, and where they are necessary I’ve tried to define […]

This article is aimed at those who want to understand exactly how Diffusion Models work, with no prior knowledge expected. I’ve tried to use illustrations wherever possible to provide visual intuitions on each part of these models. I’ve kept mathematical notation and equations to a minimum, and where they are necessary I’ve tried to define and explain them as they occur.

Intro

I’ve framed this article around three main questions:

  • What exactly is it that diffusion models learn?
  • How and why do diffusion models work?
  • Once you’ve trained a model, how do you get useful stuff out of it?

The examples will be based on the glyffuser, a minimal text-to-image diffusion model that I previously implemented and wrote about. The architecture of this model is a standard text-to-image denoising diffusion model without any bells or whistles. It was trained to generate pictures of new “Chinese” glyphs from English definitions. Have a look at the picture below — even if you’re not familiar with Chinese writing, I hope you’ll agree that the generated glyphs look pretty similar to the real ones!

Random examples of glyffuser training data (left) and generated data (right).

What exactly is it that diffusion models learn?

Generative Ai models are often said to take a big pile of data and “learn” it. For text-to-image diffusion models, the data takes the form of pairs of images and descriptive text. But what exactly is it that we want the model to learn? First, let’s forget about the text for a moment and concentrate on what we are trying to generate: the images.

Probability distributions

Broadly, we can say that we want a generative AI model to learn the underlying probability distribution of the data. What does this mean? Consider the one-dimensional normal (Gaussian) distribution below, commonly written 𝒩(μ,σ²) and parameterized with mean μ = 0 and variance σ² = 1. The black curve below shows the probability density function. We can sample from it: drawing values such that over a large number of samples, the set of values reflects the underlying distribution. These days, we can simply write something like x = random.gauss(0, 1) in Python to sample from the standard normal distribution, although the computational sampling process itself is non-trivial!

Values sampled from an underlying distribution (here, the standard normal 𝒩(0,1)) can then be used to estimate the parameters of that distribution.

We could think of a set of numbers sampled from the above normal distribution as a simple dataset, like that shown as the orange histogram above. In this particular case, we can calculate the parameters of the underlying distribution using maximum likelihood estimation, i.e. by working out the mean and variance. The normal distribution estimated from the samples is shown by the dotted line above. To take some liberties with terminology, you might consider this as a simple example of “learning” an underlying probability distribution. We can also say that here we explicitly learnt the distribution, in contrast with the implicit methods that diffusion models use.

Conceptually, this is all that generative AI is doing — learning a distribution, then sampling from that distribution!

Data representations

What, then, does the underlying probability distribution of a more complex dataset look like, such as that of the image dataset we want to use to train our diffusion model?

First, we need to know what the representation of the data is. Generally, a machine learning (ML) model requires data inputs with a consistent representation, i.e. format. For the example above, it was simply numbers (scalars). For images, this representation is commonly a fixed-length vector.

The image dataset used for the glyffuser model is ~21,000 pictures of Chinese glyphs. The images are all the same size, 128 × 128 = 16384 pixels, and greyscale (single-channel color). Thus an obvious choice for the representation is a vector x of length 16384, where each element corresponds to the color of one pixel: x = (x,x₂,…,x₁₆₃₈₄). We can call the domain of all possible images for our dataset “pixel space”.

An example glyph with pixel values labelled (downsampled to 32 × 32 pixels for readability).

Dataset visualization

We make the assumption that our individual data samples, x, are actually sampled from an underlying probability distribution, q(x), in pixel space, much as the samples from our first example were sampled from an underlying normal distribution in 1-dimensional space. Note: the notation x q(x) is commonly used to mean: “the random variable x sampled from the probability distribution q(x).”

This distribution is clearly much more complex than a Gaussian and cannot be easily parameterized — we need to learn it with a ML model, which we’ll discuss later. First, let’s try to visualize the distribution to gain a better intution.

As humans find it difficult to see in more than 3 dimensions, we need to reduce the dimensionality of our data. A small digression on why this works: the manifold hypothesis posits that natural datasets lie on lower dimensional manifolds embedded in a higher dimensional space — think of a line embedded in a 2-D plane, or a plane embedded in 3-D space. We can use a dimensionality reduction technique such as UMAP to project our dataset from 16384 to 2 dimensions. The 2-D projection retains a lot of structure, consistent with the idea that our data lie on a lower dimensional manifold embedded in pixel space. In our UMAP, we see two large clusters corresponding to characters in which the components are arranged either horizontally (e.g. 明) or vertically (e.g. 草). An interactive version of the plot below with popups on each datapoint is linked here.

 Click here for an interactive version of this plot.

Let’s now use this low-dimensional UMAP dataset as a visual shorthand for our high-dimensional dataset. Remember, we assume that these individual points have been sampled from a continuous underlying probability distribution q(x). To get a sense of what this distribution might look like, we can apply a KDE (kernel density estimation) over the UMAP dataset. (Note: this is just an approximation for visualization purposes.)

This gives a sense of what q(x) should look like: clusters of glyphs correspond to high-probability regions of the distribution. The true q(x) lies in 16384 dimensions — this is the distribution we want to learn with our diffusion model.

We showed that for a simple distribution such as the 1-D Gaussian, we could calculate the parameters (mean and variance) from our data. However, for complex distributions such as images, we need to call on ML methods. Moreover, what we will find is that for diffusion models in practice, rather than parameterizing the distribution directly, they learn it implicitly through the process of learning how to transform noise into data over many steps.

Takeaway

The aim of generative AI such as diffusion models is to learn the complex probability distributions underlying their training data and then sample from these distributions.

How and why do diffusion models work?

Diffusion models have recently come into the spotlight as a particularly effective method for learning these probability distributions. They generate convincing images by starting from pure noise and gradually refining it. To whet your interest, have a look at the animation below that shows the denoising process generating 16 samples.

In this section we’ll only talk about the mechanics of how these models work but if you’re interested in how they arose from the broader context of generative models, have a look at the further reading section below.

What is “noise”?

Let’s first precisely define noise, since the term is thrown around a lot in the context of diffusion. In particular, we are talking about Gaussian noise: consider the samples we talked about in the section about probability distributions. You could think of each sample as an image of a single pixel of noise. An image that is “pure Gaussian noise”, then, is one in which each pixel value is sampled from an independent standard Gaussian distribution, 𝒩(0,1). For a pure noise image in the domain of our glyph dataset, this would be noise drawn from 16384 separate Gaussian distributions. You can see this in the previous animation. One thing to keep in mind is that we can choose the means of these noise distributions, i.e. center them, on specific values — the pixel values of an image, for instance.

For convenience, you’ll often find the noise distributions for image datasets written as a single multivariate distribution 𝒩(0,I) where I is the identity matrix, a covariance matrix with all diagonal entries equal to 1 and zeroes elsewhere. This is simply a compact notation for a set of multiple independent Gaussians — i.e. there are no correlations between the noise on different pixels. In the basic implementations of diffusion models, only uncorrelated (a.k.a. “isotropic”) noise is used. This article contains an excellent interactive introduction on multivariate Gaussians.

Diffusion process overview

Below is an adaptation of the somewhat-famous diagram from Ho et al.’s seminal paper “Denoising Diffusion Probabilistic Models” which gives an overview of the whole diffusion process:

Diagram of the diffusion process adapted from Ho et al. 2020. The glyph 锂, meaning “lithium”, is used as a representative sample from the dataset.

I found that there was a lot to unpack in this diagram and simply understanding what each component meant was very helpful, so let’s go through it and define everything step by step.

We previously used x q(x) to refer to our data. Here, we’ve added a subscript, xₜ, to denote timestep t indicating how many steps of “noising” have taken place. We refer to the samples noised a given timestep as x q(xₜ). x₀​ is clean data and xₜ (t = T) ∼ 𝒩(0,1) is pure noise.

We define a forward diffusion process whereby we corrupt samples with noise. This process is described by the distribution q(xₜ|xₜ₋₁). If we could access the hypothetical reverse process q(xₜ₋₁|xₜ), we could generate samples from noise. As we cannot access it directly because we would need to know x₀​, we use ML to learn the parameters, θ, of a model of this process, 𝑝θ(𝑥ₜ₋₁∣𝑥ₜ). (That should be p subscript θ but medium cannot render it.)

In the following sections we go into detail on how the forward and reverse diffusion processes work.

Forward diffusion, or “noising”

Used as a verb, “noising” an image refers to applying a transformation that moves it towards pure noise by scaling down its pixel values toward 0 while adding proportional Gaussian noise. Mathematically, this transformation is a multivariate Gaussian distribution centered on the pixel values of the preceding image.

In the forward diffusion process, this noising distribution is written as q(xₜ|xₜ₋₁) where the vertical bar symbol “|” is read as “given” or “conditional on”, to indicate the pixel means are passed forward from q(xₜ₋₁) At t = T where T is a large number (commonly 1000) we aim to end up with images of pure noise (which, somewhat confusingly, is also a Gaussian distribution, as discussed previously).

The marginal distributions q(xₜ) represent the distributions that have accumulated the effects of all the previous noising steps (marginalization refers to integration over all possible conditions, which recovers the unconditioned distribution).

Since the conditional distributions are Gaussian, what about their variances? They are determined by a variance schedule that maps timesteps to variance values. Initially, an empirically determined schedule of linearly increasing values from 0.0001 to 0.02 over 1000 steps was presented in Ho et al. Later research by Nichol & Dhariwal suggested an improved cosine schedule. They state that a schedule is most effective when the rate of information destruction through noising is relatively even per step throughout the whole noising process.

Forward diffusion intuition

As we encounter Gaussian distributions both as pure noise q(xₜ, t = T) and as the noising distribution q(xₜ|xₜ₋₁), I’ll try to draw the distinction by giving a visual intuition of the distribution for a single noising step, q(x₁∣x₀), for some arbitrary, structured 2-dimensional data:

Each noising step q(xₜ|xₜ₋₁) is a Gaussian distribution conditioned on the previous step.

The distribution q(x₁∣x₀) is Gaussian, centered around each point in x₀, shown in blue. Several example points x₀⁽ⁱ⁾ are picked to illustrate this, with q(x₁∣x₀ = x₀⁽ⁱ⁾) shown in orange.

In practice, the main usage of these distributions is to generate specific instances of noised samples for training (discussed further below). We can calculate the parameters of the noising distributions at any timestep t directly from the variance schedule, as the chain of Gaussians is itself also Gaussian. This is very convenient, as we don’t need to perform noising sequentially—for any given starting data x₀⁽ⁱ⁾, we can calculate the noised sample xₜ⁽ⁱ⁾ by sampling from q(xₜ∣x₀ = x₀⁽ⁱ⁾) directly.

Forward diffusion visualization

Let’s now return to our glyph dataset (once again using the UMAP visualization as a visual shorthand). The top row of the figure below shows our dataset sampled from distributions noised to various timesteps: xₜ ∼ q(xₜ). As we increase the number of noising steps, you can see that the dataset begins to resemble pure Gaussian noise. The bottom row visualizes the underlying probability distribution q(xₜ).

The dataset xₜ (above) sampled from its probability distribution q(xₜ) (below) at different noising timesteps.

Reverse diffusion overview

It follows that if we knew the reverse distributions q(xₜ₋₁∣xₜ), we could repeatedly subtract a small amount of noise, starting from a pure noise sample xₜ at t = T to arrive at a data sample x₀ ∼ q(x₀). In practice, however, we cannot access these distributions without knowing x₀ beforehand. Intuitively, it’s easy to make a known image much noisier, but given a very noisy image, it’s much harder to guess what the original image was.

So what are we to do? Since we have a large amount of data, we can train an ML model to accurately guess the original image that any given noisy image came from. Specifically, we learn the parameters θ of an ML model that approximates the reverse noising distributions, (xₜ₋₁ ∣ xₜ) for t = 0, …, T. In practice, this is embodied in a single noise prediction model trained over many different samples and timesteps. This allows it to denoise any given input, as shown in the figure below.

The ML model predicts added noise at any given timestep t.

Next, let’s go over how this noise prediction model is implemented and trained in practice.

How the model is implemented

First, we define the ML model — generally a deep neural network of some sort — that will act as our noise prediction model. This is what does the heavy lifting! In practice, any ML model that inputs and outputs data of the correct size can be used; the U-net, an architecture particularly suited to learning images, is what we use here and frequently chosen in practice. More recent models also use vision transformers.

We use the U-net architecture (Ronneberger et al. 2015) for our ML noise prediction model. We train the model by minimizing the difference between predicted and actual noise.

Then we run the training loop depicted in the figure above:

  • We take a random image from our dataset and noise it to a random timestep tt. (In practice, we speed things up by doing many examples in parallel!)
  • We feed the noised image into the ML model and train it to predict the (known to us) noise in the image. We also perform timestep conditioning by feeding the model a timestep embedding, a high-dimensional unique representation of the timestep, so that the model can distinguish between timesteps. This can be a vector the same size as our image directly added to the input (see here for a discussion of how this is implemented).
  • The model “learns” by minimizing the value of a loss function, some measure of the difference between the predicted and actual noise. The mean square error (the mean of the squares of the pixel-wise difference between the predicted and actual noise) is used in our case.
  • Repeat until the model is well trained.

Note: A neural network is essentially a function with a huge number of parameters (on the order of 10for the glyffuser). Neural network ML models are trained by iteratively updating their parameters using backpropagation to minimize a given loss function over many training data examples. This is an excellent introduction. These parameters effectively store the network’s “knowledge”.

A noise prediction model trained in this way eventually sees many different combinations of timesteps and data examples. The glyffuser, for example, was trained over 100 epochs (runs through the whole data set), so it saw around 2 million data samples. Through this process, the model implicity learns the reverse diffusion distributions over the entire dataset at all different timesteps. This allows the model to sample the underlying distribution q(x₀) by stepwise denoising starting from pure noise. Put another way, given an image noised to any given level, the model can predict how to reduce the noise based on its guess of what the original image. By doing this repeatedly, updating its guess of the original image each time, the model can transform any noise to a sample that lies in a high-probability region of the underlying data distribution.

Reverse diffusion in practice

We can now revisit this video of the glyffuser denoising process. Recall a large number of steps from sample to noise e.g. T = 1000 is used during training to make the noise-to-sample trajectory very easy for the model to learn, as changes between steps will be small. Does that mean we need to run 1000 denoising steps every time we want to generate a sample?

Luckily, this is not the case. Essentially, we can run the single-step noise prediction but then rescale it to any given step, although it might not be very good if the gap is too large! This allows us to approximate the full sampling trajectory with fewer steps. The video above uses 120 steps, for instance (most implementations will allow the user to set the number of sampling steps).

Recall that predicting the noise at a given step is equivalent to predicting the original image x₀, and that we can access the equation for any noised image deterministically using only the variance schedule and x₀. Thus, we can calculate xₜ₋ₖ based on any denoising step. The closer the steps are, the better the approximation will be.

Too few steps, however, and the results become worse as the steps become too large for the model to effectively approximate the denoising trajectory. If we only use 5 sampling steps, for example, the sampled characters don’t look very convincing at all:

There is then a whole literature on more advanced sampling methods beyond what we’ve discussed so far, allowing effective sampling with much fewer steps. These often reframe the sampling as a differential equation to be solved deterministically, giving an eerie quality to the sampling videos — I’ve included one at the end if you’re interested. In production-level models, these are usually preferred over the simple method discussed here, but the basic principle of deducing the noise-to-sample trajectory is the same. A full discussion is beyond the scope of this article but see e.g. this paper and its corresponding implementation in the Hugging Face diffusers library for more information.

Alternative intuition from score function

To me, it was still not 100% clear why training the model on noise prediction generalises so well. I found that an alternative interpretation of diffusion models known as “score-based modeling” filled some of the gaps in intuition (for more information, refer to Yang Song’s definitive article on the topic.)

The dataset xₜ sampled from its probability distribution q(xₜ) at different noising timesteps; below, we add the score function ∇ₓ log q(xₜ).

I try to give a visual intuition in the bottom row of the figure above: essentially, learning the noise in our diffusion model is equivalent (to a constant factor) to learning the score function, which is the gradient of the log of the probability distribution: ∇ₓ log q(x). As a gradient, the score function represents a vector field with vectors pointing towards the regions of highest probability density. Subtracting the noise at each step is then equivalent to moving following the directions in this vector field towards regions of high probability density.

As long as there is some signal, the score function effectively guides sampling, but in regions of low probability it tends towards zero as there is little to no gradient to follow. Using many steps to cover different noise levels allows us to avoid this, as we smear out the gradient field at high noise levels, allowing sampling to converge even if we start from low probability density regions of the distribution. The figure shows that as the noise level is increased, more of the domain is covered by the score function vector field.

Summary

  • The aim of diffusion models is learn the underlying probability distribution of a dataset and then be able to sample from it. This requires forward and reverse diffusion (noising) processes.
  • The forward noising process takes samples from our dataset and gradually adds Gaussian noise (pushes them off the data manifold). This forward process is computationally efficient because any level of noise can be added in closed form a single step.
  • The reverse noising process is challenging because we need to predict how to remove the noise at each step without knowing the original data point in advance. We train a ML model to do this by giving it many examples of data noised at different timesteps.
  • Using very small steps in the forward noising process makes it easier for the model to learn to reverse these steps, as the changes are small.
  • By applying the reverse noising process iteratively, the model refines noisy samples step by step, eventually producing a realistic data point (one that lies on the data manifold).

Takeaway

Diffusion models are a powerful framework for learning complex data distributions. The distributions are learnt implicitly by modelling a sequential denoising process. This process can then be used to generate samples similar to those in the training distribution.

Once you’ve trained a model, how do you get useful stuff out of it?

Earlier uses of generative AI such as “This Person Does Not Exist” (ca. 2019) made waves simply because it was the first time most people had seen AI-generated photorealistic human faces. A generative adversarial network or “GAN” was used in that case, but the principle remains the same: the model implicitly learnt a underlying data distribution — in that case, human faces — then sampled from it. So far, our glyffuser model does a similar thing: it samples randomly from the distribution of Chinese glyphs.

The question then arises: can we do something more useful than just sample randomly? You’ve likely already encountered text-to-image models such as Dall-E. They are able to incorporate extra meaning from text prompts into the diffusion process — this in known as conditioning. Likewise, diffusion models for scientific scientific applications like protein (e.g. Chroma, RFdiffusion, AlphaFold3) or inorganic crystal structure generation (e.g. MatterGen) become much more useful if can be conditioned to generate samples with desirable properties such as a specific symmetry, bulk modulus, or band gap.

Conditional distributions

We can consider conditioning as a way to guide the diffusion sampling process towards particular regions of our probability distribution. We mentioned conditional distributions in the context of forward diffusion. Below we show how conditioning can be thought of as reshaping a base distribution.

A simple example of a joint probability distribution p(x, y), shown as a contour map, along with its two marginal 1-D probability distributions, p(x) and p(y). The highest points of p(x, y) are at (x₁, y₁) and (x₂, y₂). The conditional distributions p(xy = y₁) and p(xy = y₂) are shown overlaid on the main plot.

Consider the figure above. Think of p(x) as a distribution we want to sample from (i.e., the images) and p(y) as conditioning information (i.e., the text dataset). These are the marginal distributions of a joint distribution p(x, y). Integrating p(x, y) over y recovers p(x), and vice versa.

Sampling from p(x), we are equally likely to get x₁ or x₂. However, we can condition on p(y = y₁) to obtain p(xy = y₁). You can think of this as taking a slice through p(x, y) at a given value of y. In this conditioned distribution, we are much more likely to sample at x₁ than x₂.

In practice, in order to condition on a text dataset, we need to convert the text into a numerical form. We can do this using large language model (LLM) embeddings that can be injected into the noise prediction model during training.

Embedding text with an LLM

In the glyffuser, our conditioning information is in the form of English text definitions. We have two requirements: 1) ML models prefer fixed-length vectors as input. 2) The numerical representation of our text must understand context — if we have the words “lithium” and “element” nearby, the meaning of “element” should be understood as “chemical element” rather than “heating element”. Both of these requirements can be met by using a pre-trained LLM.

The diagram below shows how an LLM converts text into fixed-length vectors. The text is first tokenized (LLMs break text into tokens, small chunks of characters, as their basic unit of interaction). Each token is converted into a base embedding, which is a fixed-length vector of the size of the LLM input. These vectors are then passed through the pre-trained LLM (here we use the encoder portion of Google’s T5 model), where they are imbued with additional contextual meaning. We end up with a array of n vectors of the same length d, i.e. a (n, d) sized tensor.

We can convert text to a numerical embedding imbued with contextual meaning using a pre-trained LLM.

Note: in some models, notably Dall-E, additional image-text alignment is performed using contrastive pretraining. Imagen seems to show that we can get away without doing this.

Training the diffusion model with text conditioning

The exact method that this embedding vector is injected into the model can vary. In Google’s Imagen model, for example, the embedding tensor is pooled (combined into a single vector in the embedding dimension) and added into the data as it passes through the noise prediction model; it is also included in a different way using cross-attention (a method of learning contextual information between sequences of tokens, most famously used in the transformer models that form the basis of LLMs like ChatGPT).

Conditioning information can be added via multiple different methods but the training loss remains the same.

In the glyffuser, we only use cross-attention to introduce this conditioning information. While a significant architectural change is required to introduce this additional information into the model, the loss function for our noise prediction model remains exactly the same.

Testing the conditioned diffusion model

Let’s do a simple test of the fully trained conditioned diffusion model. In the figure below, we try to denoise in a single step with the text prompt “Gold”. As touched upon in our interactive UMAP, Chinese characters often contain components known as radicals which can convey sound (phonetic radicals) or meaning (semantic radicals). A common semantic radical is derived from the character meaning “gold”, “金”, and is used in characters that are in some broad sense associated with gold or metals.

Even with a single sampling step, conditioning guides denoising towards the relevant regions of the probability distribution.

The figure shows that even though a single step is insufficient to approximate the denoising trajectory very well, we have moved into a region of our probability distribution with the “金” radical. This indicates that the text prompt is effectively guiding our sampling towards a region of the glyph probability distribution related to the meaning of the prompt. The animation below shows a 120 step denoising sequence for the same prompt, “Gold”. You can see that every generated glyph has either the 釒 or 钅 radical (the same radical in traditional and simplified Chinese, respectively).

Takeaway

Conditioning enables us to sample meaningful outputs from diffusion models.

Further remarks

I found that with the help of tutorials and existing libraries, it was possible to implement a working diffusion model despite not having a full understanding of what was going on under the hood. I think this is a good way to start learning and highly recommend Hugging Face’s tutorial on training a simple diffusion model using their diffusers Python library (which now includes my small bugfix!).

I’ve omitted some topics that are crucial to how production-grade diffusion models function, but are unnecessary for core understanding. One is the question of how to generate high resolution images. In our example, we did everything in pixel space, but this becomes very computationally expensive for large images. The general approach is to perform diffusion in a smaller space, then upscale it in a separate step. Methods include latent diffusion (used in Stable Diffusion) and cascaded super-resolution models (used in Imagen). Another topic is classifier-free guidance, a very elegant method for boosting the conditioning effect to give much better prompt adherence. I show the implementation in my previous post on the glyffuser and highly recommend this article if you want to learn more.

Further reading

A non-exhaustive list of materials I found very helpful:

Fun extras

Diffusion sampling using the DPMSolverSDEScheduler developed by Katherine Crowson and implemented in Hugging Face diffusers—note the smooth transition from noise to data.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Aker BP, DNO Swap Norwegian Offshore Assets

DNO ASA and Aker BP ASA have signed agreements to recalibrate their exploration and production ownerships in the Norwegian continental shelf, including the Kjottkake discovery. Aker BP will assume operatorship of Kjottkake until the start of production, after which DNO will resume operatorship, according to online statements by the companies on Thursday. The move allows for faster development, with production now targeted for the first quarter of 2028, the companies said. Fornebu, Norway-based Aker BP “will draw on its alliance with suppliers and its equipment inventory to deliver the project on time”, DNO said. “Three years from discovery to production is a standout on the Norwegian continental shelf, where such tie-backs typically take at least twice as long to complete”, DNO said. DNO discovered Kjottkake earlier this year in the northern North Sea under Production License 1182 S (PL 1182 S). “The discovery was made in Paleocene injectite sandstones of excellent reservoir quality with preliminary estimates of gross recoverable resources in the range of 39 to 75 million barrels of oil equivalent (MMboe), with a mean of 55 MMboe”, DNO said in a press release March 26. “The Kjottkake exploration well encountered a 41-meter oil column and a nine-meter gas column. A sidetrack drilled horizontally 1,350 meters westwards along the reservoir in the Sotra Formation confirmed the presence of the oil column throughout the discovery”. Kjottkake sits 27 kilometers (16.78 miles) northwest of the Troll C platform and 44 kilometers southwest of the Gjoa platform, according to DNO. Under the swap agreements, DNO and Aker BP retain their Kjottkake stakes of 40 percent and 45 percent respectively. Concedo AS holds 15 percent. Also under the agreements DNO will transfer its 28.9 percent stake in the producing Vilje field to Aker BP, whose interest will increase to 75.76 percent. Aker BP

Read More »

Oil Falls as Saudi Price Cuts Signal Market Gloom

Oil extended declines after Saudi Arabia lowered the prices of its crude, signaling uncertainty surrounding the supply outlook, while equities slumped in another pressure on the commodity. West Texas Intermediate settled near $59, sliding around 0.3% on the day after falling in the previous two sessions. Volatility hit Wall Street, also weighing on oil prices. Saudi Arabia lowered the price of its main oil grade to Asia for December to the lowest level in 11 months. Even though the price cut met expectations, traders saw it as a bearish signal about the cartel’s confidence in the market’s ability to absorb new supply, with a glut widely expected to begin next year. Prices have given up ground since the US sanctioned Russia’s two largest oil producers last month over Moscow’s war in Ukraine, and abundant supplies have so far managed to cushion the impact of stunted flows from the OPEC+ member to major buyers India and China. Key price gauges indicate that supply perceptions are worsening, with the premium that front-month WTI futures command over the next month’s contract, known as the prompt spread, narrowing in the past few weeks to near February lows. That’s also true for Brent crude. Still, US shale companies are forging ahead with their production plans, with Diamondback Energy Inc., Coterra Energy Inc. and Ovintiv Inc. this week announcing they inend to raise output slightly for this year or 2026 despite oil prices falling close to the threshold needed for many US shale wells to break even. Oversupply gloom hasn’t permeated refined products markets, though. Traders are still assessing how those supplies may be impacted by the US clampdown on purchases of Russian crude and Ukraine’s strikes on its neighbor’s energy assets. Those factors, as well as diminishing global refining capacity, bolstered diesel futures and gasoil

Read More »

Clearway projects strong renewables outlook while adding gas assets

300 MW Average size of Clearway’s current projects. Most of the projects slated for 2030 and beyond are 500 MW or more, the company said.  >90% Percentage of projects planned for 2031-2032 that are focused in the Western U.S or the PJM Interconnection, “where renewables are cost competitive and/or valued.” 1.8 GW Capacity of power purchase agreements meant to support data center loads the company has signed so far this year. Meeting digital infrastructure energy needs Independent power producer Clearway Energy announced a U.S. construction pipeline of 27 GW of generation and storage resources following strong third-quarter earnings. The San Francisco-based company is owned by Global Infrastructure Partners and TotalEnergies. According to its earnings presentation, it has an operating portfolio of more than 12 GW of wind, solar, gas and storage.   Clearway President and CEO Craig Cornelius said on an earnings call Tuesday that the company is positioning itself to serve large load data centers.  “Growth in both the medium and long term reflects the strong traction we’ve made in supporting the energy needs of our country’s digital infrastructure build-out and reindustrialization,” Cornelius said during the call. “We expect this to be a core driver of Clearway’s growth outlook well into the 2030s.” Cornelius noted that Clearway executed and awarded 1.8 GW of power purchase agreements meant to support data center loads so far this year, and is currently developing generation aimed at serving “gigawatt class co-located data centers across five states.” Its 27 GW pipeline of projects in development or under construction includes 8.2 GW of solar, 4.6 GW of wind, 1.3 GW of wind repowering, 8 GW of standalone storage, 2.1 GW of paired storage and 2.6 GW of natural gas aimed at serving data centers. Under the OBBBA, wind and solar projects that begin construction by July 4,

Read More »

USA Crude Oil Stocks Rise More Than 5MM Barrels WoW

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR) increased by 5.2 million barrels from the week ending October 24 to the week ending October 31. That’s what the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report, which was released on November 5 and included data for the week ending October 31. The EIA report showed that crude oil stocks, not including the SPR, stood at 421.2 million barrels on October 31, 416.0 million barrels on October 24, and 427.7 million barrels on November 1, 2024. Crude oil in the SPR stood at 409.6 million barrels on October 31, 409.1 million barrels on October 24, and 387.2 million barrels on November 1, 2024, the report highlighted. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.679 billion barrels on October 31, the report revealed. Total petroleum stocks were up 1.1 million barrels week on week and up 44.5 million barrels year on year, the report showed. “At 421.2 million barrels, U.S. crude oil inventories are about four percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories decreased by 4.7 million barrels from last week and are about five percent below the five year average for this time of year. Both finished gasoline and blending components inventories decreased last week,” it added. “Distillate fuel inventories decreased by 0.6 million barrels last week and are about nine percent below the five year average for this time of year. Propane/propylene inventories increased by 0.4 million barrels from last week and are 15 percent above the five year average

Read More »

Energy Transfer Bags 20-Year Deal to Deliver Gas for Entergy Louisiana

Energy Transfer LP has signed a 20-year transport agreement to deliver natural gas to Entergy Corp to support the power utility’s operations in Louisiana. “Under the agreement, Energy Transfer would initially provide 250,000 MMBtu per day of firm transportation service beginning in February 2028 and continuing through January 2048”, a joint statement said. “The deal structure also provides an option to Entergy to expand delivery capacity in the region to meet future energy demand and demonstrates both companies’ long-term commitment to meeting the region’s growing energy needs. “The natural gas supplied through this agreement, already in Entergy’s financial plan, will help fuel Entergy Louisiana’s combined-cycle combustion turbine facilities, which are being developed to provide efficient, cleaner energy for the company’s customers and to support projects like Meta’s new hyperscale data center in Richland Parish. “The project includes expanding Energy Transfer’s Tiger Pipeline with the construction of a 12-mile lateral with a capacity of up to one Bcfd. Natural gas supply for this project will be sourced from Energy Transfer’s extensive pipeline network which is connected to all the major producing basins in the U.S.” Entergy Louisiana had 1.1 million electric customers in 58 of Louisiana’s 64 parishes as of December 2024, Entergy Louisiana says on its website. Earlier Energy Transfer secured an agreement to deliver gas for a power-data center partnership between VoltaGrid LLC and Oracle Corp. VoltaGrid will deploy 2.3 gigawatts of “cutting-edge, ultra-low-emissions infrastructure, supplied by Energy Transfer’s pipeline network, to support the energy demands of Oracle Cloud Infrastructure’s (OCI) next-generation artificial intelligence data centers”, VoltaGrid said in a press release October 15. “The VoltaGrid power infrastructure will be delivered through the proprietary VoltaGrid platform – a modular, high-transient-response system developed by VoltaGrid with key suppliers, including INNIO Jenbacher and ABB”. “This power plant deployment is being supplied with firm natural gas from Energy Transfer’s expansive pipeline

Read More »

SRP to Convert Unit 4 of SGS Station in Arizona to Use Gas

Three of the four units at the coal-fired Springerville Generation Station (SGS) in Arizona will shift to natural gas in the early 2030s. This week Salt River Project’s (SRP) board approved the conversion of Unit 4. Earlier this year Tucson Electric Power (TEP), which operates all four units, said it will convert Units 1 and 2. Unit 3, owned by the Tri-State Generation and Transmission Association, is set to be retired. “Today’s decision is the lowest-cost option to preserve the plant’s 400-megawatt (MW) generating capacity, enough to serve 90,000 homes, which is important to meeting the Valley’s growing power need in the early 2030s”, SRP said in a statement on its website. “Converting SGS Unit 4 to run on natural gas is expected to save SRP customers about $45 million compared to building a new natural gas facility and about $826 million relative to adding new long-duration lithium-ion batteries over the same period”, the public power utility added. “The decision also provides a bridge to the mid-2040s, when other generating technology options, including advanced nuclear, are mature”. Gas for the converted Unit 4 will come from a new pipeline that SRP will build. The pipeline will also supply gas to the Coronado Generating Station (CGS). On June 24 SRP announced board approval for the conversion of CGS from coal to gas. “SRP is working to more than double the capacity of its power system in the next 10 years while maintaining reliability and affordability and making continued progress toward our sustainability goals”, SRP said. “SRP will accomplish this through an all-of-the-above approach that plans to add renewables in addition to natural gas and storage resources”.  SRP currently supplies 3,000 MW of “carbon-free energy” including over 1,500 MW of solar, with nearly 1,300 MW of battery and pumped hydro storage supporting its

Read More »

Top network and data center events 2025 & 2026

Denise Dubie is a senior editor at Network World with nearly 30 years of experience writing about the tech industry. Her coverage areas include AIOps, cybersecurity, networking careers, network management, observability, SASE, SD-WAN, and how AI transforms enterprise IT. A seasoned journalist and content creator, Denise writes breaking news and in-depth features, and she delivers practical advice for IT professionals while making complex technology accessible to all. Before returning to journalism, she held senior content marketing roles at CA Technologies, Berkshire Grey, and Cisco. Denise is a trusted voice in the world of enterprise IT and networking.

Read More »

Google’s cheaper, faster TPUs are here, while users of other AI processors face a supply crunch

Opportunities for the AI industry LLM vendors such as OpenAI and Anthropic, which still have relatively young code bases and are continuously evolving them, also have much to gain from the arrival of Ironwood for training their models, said Forrester vice president and principal analyst Charlie Dai. In fact, Anthropic has already agreed to procure 1 million TPUs for training and its models and using them for inferencing. Other, smaller vendors using Google’s TPUs for training models include Lightricks and Essential AI. Google has seen a steady increase in demand for its TPUs (which it also uses to run interna services), and is expected to buy $9.8 billion worth of TPUs from Broadcom this year, compared to $6.2 billion and $2.04 billion in 2024 and 2023 respectively, according to Harrowell. “This makes them the second-biggest AI chip program for cloud and enterprise data centers, just tailing Nvidia, with approximately 5% of the market. Nvidia owns about 78% of the market,” Harrowell said. The legacy problem While some analysts were optimistic about the prospects for TPUs in the enterprise, IDC research director Brandon Hoff said enterprises will most likely to stay away from Ironwood or TPUs in general because of their existing code base written for other platforms. “For enterprise customers who are writing their own inferencing, they will be tied into Nvidia’s software platform,” Hoff said, referring to CUDA, the software platform that runs on Nvidia GPUs. CUDA was released to the public in 2007, while the first version of TensorFlow has only been around since 2015.

Read More »

Cisco launches AI infrastructure, AI practitioner certifications

“This new certification focuses on artificial intelligence and machine learning workloads, helping technical professionals become AI-ready and successfully embed AI into their workflows,” said Pat Merat, vice president at Learn with Cisco, in a blog detailing the new AI Infrastructure Specialist certification. “The certification validates a candidate’s comprehensive knowledge in designing, implementing, operating, and troubleshooting AI solutions across Cisco infrastructure.” Separately, the AITECH certification is part of the Cisco AI Infrastructure track, which complements its existing networking, data center, and security certifications. Cisco says the AITECH cert training is intended for network engineers, system administrators, solution architects, and other IT professionals who want to learn how AI impacts enterprise infrastructure. The training curriculum covers topics such as: Utilizing AI for code generation, refactoring, and using modern AI-assisted coding workflows. Using generative AI for exploratory data analysis, data cleaning, transformation, and generating actionable insights. Designing and implementing multi-step AI-assisted workflows and understanding complex agentic systems for automation. Learning AI-powered requirements, evaluating customization approaches, considering deployment strategies, and designing robust AI workflows. Evaluating, fine-tuning, and deploying pre-trained AI models, and implementing Retrieval Augmented Generation (RAG) systems. Monitoring, maintaining, and optimizing AI-powered workflows, ensuring data integrity and security. AITECH certification candidates will learn how to use AI to enhance productivity, automate routine tasks, and support the development of new applications. The training program includes hands-on labs and simulations to demonstrate practical use cases for AI within Cisco and multi-vendor environments.

Read More »

Chip-to-Grid Gets Bought: Eaton, Vertiv, and Daikin Deals Imply a New Thermal Capital Cycle

This week delivered three telling acquisitions that mark a turning point for the global data center supply chain; and more specifically, for the high-density liquid cooling mega-play now unfolding across the power-thermal continuum. Eaton is acquiring Boyd Thermal for $9.5 billion from Goldman Sachs Asset Management. Vertiv is buying PurgeRite for about $1 billion from Milton Street Capital. And Daikin Applied has moved to acquire Chilldyne, one of the most proven negative-pressure direct-to-chip pioneers. On paper, they’re three distinct transactions. In reality, they’re chapters in the same story: the acceleration of strategic vertical integration around thermal infrastructure for AI-class compute. The Equity Layer: Private Capital Builds, Strategics Buy From an equity standpoint, these are classic handoff moments between private-equity construction and corporate consolidation. Goldman Sachs built Boyd Thermal into a global platform spanning cold plates, CDUs, and high-density liquid loop design, now sold to Eaton at an enterprise multiple north of 5× 2026E revenue. Milton Street Capital took PurgeRite from a specialist contractor in fluid flushing and commissioning into a nationwide services platform. And Daikin, long synonymous with chillers and air-side thermal, is crossing the liquid Rubicon by buying its way into the D2C ecosystem. Each deal crystallizes a simple fact: liquid cooling is no longer an adjunct; it’s core infrastructure. Private equity did its job scaling the parts. Strategic players are now paying up for the system. Eaton’s Bid: The Chip-to-Grid Thesis For Eaton, Boyd Thermal is the final missing piece in its “chip-to-grid” thesis. The company already owns the electrical side of the data center: UPS, busway, switchgear, and monitoring. Boyd plugs the thermal gap, allowing Eaton to market full rack-to-substation solutions for AI loads in the 50–100 kW+ range. It’s a statement acquisition that places Eaton squarely against Schneider Electric, Vertiv and ABB in the race to

Read More »

Space: The final frontier for data processing

There are, however, a couple of reasons why data centers in space are being considered. There are plenty of reports about how the increased amount of AI processing is affecting power consumption within data centers; the World Economic Forum has estimated that the power required to handle AI is increasing at a rate of between 26% and 36% annually. Therefore, it is not surprising that organizations are looking at other options. But an even more pressing reason for orbiting data centers is to handle the amount of data that is being produced by existing satellites, Judge said. “Essentially, satellites are gathering a lot more data than can be sent to earth, because downlinks are a bottleneck,” he noted. “With AI capacity in orbit, they could potentially analyze more of this data, extract more useful information, and send insights back to earth. My overall feeling is that any more data processing in space is going to be driven by space processing needs.” And China may already be ahead of the game. Last year, Guoxing Aerospace  launched 12 satellites, forming a space-based computing network dubbed the Three-Body Computing Constellation. When completed, it will contain 2,800 satellites, all handling the orchestration and processing of data, taking edge computing to a new dimension.

Read More »

Meta’s $27B Hyperion Campus: A New Blueprint for AI Infrastructure Finance

At the end of October, Meta announced a joint venture with funds managed by Blue Owl Capital to finance, develop, and operate the previously announced “Hyperion” project, a multi-building AI megacampus in Richland Parish, Louisiana. Under the new JV structure, Blue Owl will own 80 percent and Meta 20 percent, though Meta had announced the project long before Blue Owl’s involvement was confirmed. The venture anticipates roughly $27 billion in total development costs for the buildings and the long-lived power, cooling, and connectivity infrastructure. Blue Owl contributed about $7 billion in cash at formation; Meta received a $3 billion one-time distribution and contributed land and construction-in-progress to the vehicle. Rachel Peterson, VP of Data Centers at Meta, noted that construction on the project is already well underway, with thousands of workers on-site. Structuring Capital and Control Media coverage from Reuters and others characterizes the financing package as one of the largest private-capital deals ever for a single industrial campus, with debt placements led by PIMCO and additional institutional investors. Meta keeps the project largely off its balance sheet through the joint venture while retaining the development and property-management role and serving as the anchor tenant for the campus. The JV allows Meta to smooth its capital expenditures and manage risk while maintaining execution control over its most ambitious AI site to date. The structure incorporates lease agreements and a residual-value guarantee, according to Kirkland & Ellis (Blue Owl’s counsel), enabling lenders and equity holders to underwrite a very large, long-duration asset with multiple exit paths. For Blue Owl, Hyperion represents a utility-like digital-infrastructure platform with contracted cash flows to a single A-tier counterparty: a hyperscaler running mission-critical AI workloads for training and inference. As Barron’s and MarketWatch have noted, the deal underscores Wall Street’s ongoing appetite for AI-infrastructure investments at

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »