Stay Ahead, Stay ONMINE

AI Agents from Zero to Hero – Part 1

Intro AI Agents are autonomous programs that perform tasks, make decisions, and communicate with others. Normally, they use a set of tools to help complete tasks. In GenAI applications, these Agents process sequential reasoning and can use external tools (like web searches or database queries) when the LLM knowledge isn’t enough. Unlike a basic chatbot, […]

Intro

AI Agents are autonomous programs that perform tasks, make decisions, and communicate with others. Normally, they use a set of tools to help complete tasks. In GenAI applications, these Agents process sequential reasoning and can use external tools (like web searches or database queries) when the LLM knowledge isn’t enough. Unlike a basic chatbot, which generates random text when uncertain, an AI Agent activates tools to provide more accurate, specific responses.

We are moving closer and closer to the concept of Agentic Ai: systems that exhibit a higher level of autonomy and decision-making ability, without direct human intervention. While today’s AI Agents respond reactively to human inputs, tomorrow’s Agentic AIs proactively engage in problem-solving and can adjust their behavior based on the situation.

Today, building Agents from scratch is becoming as easy as training a logistic regression model 10 years ago. Back then, Scikit-Learn provided a straightforward library to quickly train Machine Learning models with just a few lines of code, abstracting away much of the underlying complexity.

In this tutorial, I’m going to show how to build from scratch different types of AI Agents, from simple to more advanced systems. I will present some useful Python code that can be easily applied in other similar cases (just copy, paste, run) and walk through every line of code with comments so that you can replicate this example.

Setup

As I said, anyone can have a custom Agent running locally for free without GPUs or API keys. The only necessary library is Ollama (pip install ollama==0.4.7), as it allows users to run LLMs locally, without needing cloud-based services, giving more control over data privacy and performance.

First of all, you need to download Ollama from the website. 

Then, on the prompt shell of your laptop, use the command to download the selected LLM. I’m going with Alibaba’s Qwen, as it’s both smart and lite.

After the download is completed, you can move on to Python and start writing code.

import ollama
llm = "qwen2.5"

Let’s test the LLM:

stream = ollama.generate(model=llm, prompt='''what time is it?''', stream=True)
for chunk in stream:
    print(chunk['response'], end='', flush=True)

Obviously, the LLM per se is very limited and it can’t do much besides chatting. Therefore, we need to provide it the possibility to take action, or in other words, to activate Tools.

One of the most common tools is the ability to search the Internet. In Python, the easiest way to do it is with the famous private browser DuckDuckGo (pip install duckduckgo-search==6.3.5). You can directly use the original library or import the LangChain wrapper (pip install langchain-community==0.3.17). 

With Ollama, in order to use a Tool, the function must be described in a dictionary.

from langchain_community.tools import DuckDuckGoSearchResults
def search_web(query: str) -> str:
  return DuckDuckGoSearchResults(backend="news").run(query)

tool_search_web = {'type':'function', 'function':{
  'name': 'search_web',
  'description': 'Search the web',
  'parameters': {'type': 'object',
                'required': ['query'],
                'properties': {
                    'query': {'type':'str', 'description':'the topic or subject to search on the web'},
}}}}
## test
search_web(query="nvidia")

Internet searches could be very broad, and I want to give the Agent the option to be more precise. Let’s say, I’m planning to use this Agent to learn about financial updates, so I can give it a specific tool for that topic, like searching only a finance website instead of the whole web.

def search_yf(query: str) -> str:  engine = DuckDuckGoSearchResults(backend="news")
  return engine.run(f"site:finance.yahoo.com {query}")

tool_search_yf = {'type':'function', 'function':{
  'name': 'search_yf',
  'description': 'Search for specific financial news',
  'parameters': {'type': 'object',
                'required': ['query'],
                'properties': {
                    'query': {'type':'str', 'description':'the financial topic or subject to search'},
}}}}

## test
search_yf(query="nvidia")

Simple Agent (WebSearch)

In my opinion, the most basic Agent should at least be able to choose between one or two Tools and re-elaborate the output of the action to give the user a proper and concise answer. 

First, you need to write a prompt to describe the Agent’s purpose, the more detailed the better (mine is very generic), and that will be the first message in the chat history with the LLM. 

prompt = '''You are an assistant with access to tools, you must decide when to use tools to answer user message.''' 
messages = [{"role":"system", "content":prompt}]

In order to keep the chat with the AI alive, I will use a loop that starts with user’s input and then the Agent is invoked to respond (which can be a text from the LLM or the activation of a Tool).

while True:
    ## user input
    try:
        q = input('🙂 >')
    except EOFError:
        break
    if q == "quit":
        break
    if q.strip() == "":
        continue
    messages.append( {"role":"user", "content":q} )
   
    ## model
    agent_res = ollama.chat(
        model=llm,
        tools=[tool_search_web, tool_search_yf],
        messages=messages)

Up to this point, the chat history could look something like this:

If the model wants to use a Tool, the appropriate function needs to be run with the input parameters suggested by the LLM in its response object:

So our code needs to get that information and run the Tool function.

## response
    dic_tools = {'search_web':search_web, 'search_yf':search_yf}

    if "tool_calls" in agent_res["message"].keys():
        for tool in agent_res["message"]["tool_calls"]:
            t_name, t_inputs = tool["function"]["name"], tool["function"]["arguments"]
            if f := dic_tools.get(t_name):
                ### calling tool
                print('🔧 >', f"x1b[1;31m{t_name} -> Inputs: {t_inputs}x1b[0m")
                messages.append( {"role":"user", "content":"use tool '"+t_name+"' with inputs: "+str(t_inputs)} )
                ### tool output
                t_output = f(**tool["function"]["arguments"])
                print(t_output)
                ### final res
                p = f'''Summarize this to answer user question, be as concise as possible: {t_output}'''
                res = ollama.generate(model=llm, prompt=q+". "+p)["response"]
            else:
                print('🤬 >', f"x1b[1;31m{t_name} -> NotFoundx1b[0m")
 
    if agent_res['message']['content'] != '':
        res = agent_res["message"]["content"]
     
    print("👽 >", f"x1b[1;30m{res}x1b[0m")
    messages.append( {"role":"assistant", "content":res} )

Now, if we run the full code, we can chat with our Agent.

Advanced Agent (Coding)

LLMs know how to code by being exposed to a large corpus of both code and natural language text, where they learn patterns, syntax, and semantics of Programming languages. The model learns the relationships between different parts of the code by predicting the next token in a sequence. In short, LLMs can generate Python code but can’t execute it, Agents can.

I shall prepare a Tool allowing the Agent to execute code. In Python, you can easily create a shell to run code as a string with the native command exec().

import io
import contextlib

def code_exec(code: str) -> str:
    output = io.StringIO()
    with contextlib.redirect_stdout(output):
        try:
            exec(code)
        except Exception as e:
            print(f"Error: {e}")
    return output.getvalue()

tool_code_exec = {'type':'function', 'function':{
  'name': 'code_exec',
  'description': 'execute python code',
  'parameters': {'type': 'object',
                'required': ['code'],
                'properties': {
                    'code': {'type':'str', 'description':'code to execute'},
}}}}

## test
code_exec("a=1+1; print(a)")

Just like before, I will write a prompt, but this time, at the beginning of the chat-loop, I will ask the user to provide a file path.

prompt = '''You are an expert data scientist, and you have tools to execute python code.
First of all, execute the following code exactly as it is: 'df=pd.read_csv(path); print(df.head())'
If you create a plot, ALWAYS add 'plt.show()' at the end.
'''
messages = [{"role":"system", "content":prompt}]
start = True

while True:
    ## user input
    try:
        if start is True:
            path = input('📁 Provide a CSV path >')
            q = "path = "+path
        else:
            q = input('🙂 >')
    except EOFError:
        break
    if q == "quit":
        break
    if q.strip() == "":
        continue
   
    messages.append( {"role":"user", "content":q} )

Since coding tasks can be a little trickier for LLMs, I am going to add also memory reinforcement. By default, during one session, there isn’t a true long-term memory. LLMs have access to the chat history, so they can remember information temporarily, and track the context and instructions you’ve given earlier in the conversation. However, memory doesn’t always work as expected, especially if the LLM is small. Therefore, a good practice is to reinforce the model’s memory by adding periodic reminders in the chat history.

prompt = '''You are an expert data scientist, and you have tools to execute python code.
First of all, execute the following code exactly as it is: 'df=pd.read_csv(path); print(df.head())'
If you create a plot, ALWAYS add 'plt.show()' at the end.
'''
messages = [{"role":"system", "content":prompt}]
memory = '''Use the dataframe 'df'.'''
start = True

while True:
    ## user input
    try:
        if start is True:
            path = input('📁 Provide a CSV path >')
            q = "path = "+path
        else:
            q = input('🙂 >')
    except EOFError:
        break
    if q == "quit":
        break
    if q.strip() == "":
        continue
   
    ## memory
    if start is False:
        q = memory+"n"+q
    messages.append( {"role":"user", "content":q} )

Please note that the default memory length in Ollama is 2048 characters. If your machine can handle it, you can increase it by changing the number when the LLM is invoked:

    ## model
    agent_res = ollama.chat(
        model=llm,
        tools=[tool_code_exec],
        options={"num_ctx":2048},
        messages=messages)

In this usecase, the output of the Agent is mostly code and data, so I don’t want the LLM to re-elaborate the responses.

    ## response
    dic_tools = {'code_exec':code_exec}
   
    if "tool_calls" in agent_res["message"].keys():
        for tool in agent_res["message"]["tool_calls"]:
            t_name, t_inputs = tool["function"]["name"], tool["function"]["arguments"]
            if f := dic_tools.get(t_name):
                ### calling tool
                print('🔧 >', f"x1b[1;31m{t_name} -> Inputs: {t_inputs}x1b[0m")
                messages.append( {"role":"user", "content":"use tool '"+t_name+"' with inputs: "+str(t_inputs)} )
                ### tool output
                t_output = f(**tool["function"]["arguments"])
                ### final res
                res = t_output
            else:
                print('🤬 >', f"x1b[1;31m{t_name} -> NotFoundx1b[0m")
 
    if agent_res['message']['content'] != '':
        res = agent_res["message"]["content"]
     
    print("👽 >", f"x1b[1;30m{res}x1b[0m")
    messages.append( {"role":"assistant", "content":res} )
    start = False

Now, if we run the full code, we can chat with our Agent.

Conclusion

This article has covered the foundational steps of creating Agents from scratch using only Ollama. With these building blocks in place, you are already equipped to start developing your own Agents for different use cases. 

Stay tuned for Part 2, where we will dive deeper into more advanced examples.

Full code for this article: GitHub

I hope you enjoyed it! Feel free to contact me for questions and feedback or just to share your interesting projects.

👉 Let’s Connect 👈

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Arm jumps on the Nvidia NVLink Fusion bandwagon at SC25

“Some partners want to mix different CPUs and accelerate technologies for specialized use cases,” said Dion Harris, senior director, HPC and AI infrastructure solutions at Nvidia. “NVLink Fusion enables hyperscalers and custom ASIC builders to leverage Nvidia’s rack scale architecture to rapidly deploy custom silicon,” Harris said during a media

Read More »

Nvidia touts next-gen quantum computing interconnects

Paired with NVQLink is CUDA-Q, which provides a programming model where quantum processors (QPU), GPUs, and CPUs all work together in the same application. This is necessary because most useful quantum algorithms will rely on traditional computing for tasks like control, optimization, and error correction. The first quantum computing company

Read More »

ConocoPhillips Makes Offshore Gas Discovery in Australia’s Otway Basin

ConocoPhillips made a natural gas discovery offshore Victoria in the Otway Basin, though further work is needed to determine potential flow rates, the United States company’s Australian unit said Monday. “The Essington-1 well is the first discovery in the Otway since 2021 and is a promising start to ConocoPhillips’ exploration activities in the region”, ConocoPhillips Australia president Jan-Arne Johansen said in an online statement. “The initial results are encouraging, and we look forward to continuing drilling our second exploration well in December”. ConocoPhillips Australia said, “Preliminary estimates from logs and wireline results place the primary Waarre A target reservoir as a 62.6-meter gross hydrocarbon column. The secondary Waarre C target shows a further 33.2-meter gross hydrocarbon column as best estimates”. 3D Energi said separately, “Elevated gas readings were recorded in both the Waarre C (intersected at 2,265 meters MDRT) and Waarre A (intersected at 2,515 meters MDRT) reservoirs”. “In both reservoirs, gas peaks coincide with elevated resistivity readings observed on Logging While Drilling tools, consistent with probable hydrocarbon presence”, 3D Energi added. The discovery sits 12 kilometers (7.46 miles) from producing gas wells and about 53 kilometers (32.93 miles) from Port Campbell, Victoria, according to ConocoPhillips Australia. “Further work will be conducted to determine potential flow rates, the reservoir’s ultimate resource recovery and the commercial viability for potential development plans”, ConocoPhillips Australia said. The partners expect to complete operations at the well this month, after which the well will be plugged and abandoned. “A second well in VIC/P79 (Charlemont-1) expected to commence in December (weather and operational conditions permitting) and additional wells may be considered in the future under the accepted Environmental Plan”, ConocoPhillips Australia said. It announced the start of the Otway exploration campaign November 1, “in an effort to find new domestic natural gas supply and be part of

Read More »

Turkey Plans $4B Sukuk in Energy Production Push

Turkey’s state energy company Turkiye Petrolleri AO plans to sell as much as $4 billion in Islamic debt as part of its push to expand oil and gas production, marking the firm’s first such international debt offering. The company, also known by its Turkish initials TPAO, is preparing to issue the five-year sukuk to international investors by the end of the year, Energy Minister Alparslan Bayraktar told Bloomberg on Monday. The debut sukuk follows non-deal roadshow meetings in London, Abu Dhabi and Dubai, where officials briefed potential investors on TPAO’s financial outlook and projects, including Black Sea natural gas production and the Gabar oil field in Turkey’s southeast, he said. Owned by Turkey’s sovereign wealth fund, TPAO also has a growing portfolio of international projects including exploration plans in Libya, Oman and Pakistan alongside existing production in Azerbaijan, Iraq and Russia.  TPAO produced 33.7 million barrels of oil and 2.2 billion cubic meters of gas in Turkey in 2024, former CEO Ahmet Turkoglu told a parliamentary commission earlier this year. It also pumped 39.4 million barrels of oil equivalent from international projects.  He said that the company made a profit of 15.4 billion liras last year – equivalent to around $390 million at the time of the comments. Production is set to increase both at home and abroad. Turkey plans to increase output at the main Black Sea gas field, Sakarya, to 45 million cubic meters per day in 2028 from the current 9.5 mcm, Bayraktar said. TPAO is also planning to develop unconventional reserves in the southeast in partnership with US-based Continental Resources, Inc. and TransAtlantic Petroleum Ltd.  TPAO established a subsidiary, TPAO Varlik Kiralama, earlier this month to manage the sukuk issuance. The debt sale comes as Turkey’s borrowing costs decline due to an easing of political tensions at

Read More »

ADNOC Gas Achieves Record Q3

ADNOC Gas PLC has reported an eight percent year-on-year increase in net profit to $1.34 billion for the third quarter, the company’s highest for the July-September period. The increase was driven by a four percent rise in domestic gas sales volumes, according to an online statement by the company. Demand is supported by growth in the United Arab Emirates’ economy, while contract negotiations also improved underlying margins, said the gas processing and sales arm of Abu Dhabi National Oil Co. Earnings per share landed at $0.017. ADNOC Gas has extended its five percent annual dividend growth policy to 2030, aiming for $24.4 billion in total for 2025-30, according to a stock filing October 8. ADNOC Gas has introduced a policy to distribute dividends quarterly starting with Q3 2025. “The introduction of quarterly dividend distributions starting in Q3 2025 with $896 million to be paid by December 12 – alongside a five percent annual increase in dividend payout now extended until 2030 – offers greater transparency and even more regular income, allowing shareholders to plan and manage their finances with confidence”, it said in its quarterly statement. ADNOC Gas said, “Year-to-date net income reached $3.99 billion, exceeding market expectations, even as oil prices averaged $71/barrel in the first nine months of 2025 compared to $83/barrel in 2024”. “Q3 2025 saw ADNOC Gas’ domestic gas business deliver record results, with EBITDA rising to $914 million, up 26 percent year-on-year”. On lower prices, revenue fell from $4.87 billion for Q3 2024 to $4.86 billion for Q3 2025. Operating profit landed at $1.74 billion, up from $1.69 billion for Q3 2024. Profit before tax was $1.72 billion, up from $1.68 billion for Q3 2024. Net cash from operating activities before changes in working capital was $4.65 billion, up from $4.24 billion for Q3 2024. ADNOC Gas ended

Read More »

Oil Slips as Russia Port Reopens

Oil ticked lower as signs that activity had resumed at a key Russian port were countered by wider geopolitical risks to prices. West Texas Intermediate fell 0.3% to settle below $60 a barrel after adding more than 2% on Friday following an attack on Russia’s Novorossiysk facility. Two tankers moored on Sunday at the port, indicating operational activity. The dollar strengthened, making commodities priced in the currency less attractive.  The attack on Novorossiysk by Ukrainian forces, along with Iran’s seizure of an oil tanker near the Strait of Hormuz, injected a fresh geopolitical premium into prices as the market faces pressure from an emerging global surplus.  Traders are also monitoring the Trump Administration’s plans in oil-rich Venezuela. US President Donald Trump said on Monday he is not ruling out sending troops to the South American country and said he is willing to talk to counterpart Nicolas Maduro. Elsewhere, crude oil exports from Sudan were disrupted after a series of attacks hit energy facilities in the country, which serves as a key conduit for crude from landlocked South Sudan. Those risks are countering moves by OPEC+ and producers from outside of the group to ramp up output. The increases leave most traders expecting a significant surplus over the coming months.  “Brent crude oil prices continue to fluctuate in a $60-$70 a-barrel range, with the market focus shifting to how Russian oil exports will evolve over the coming months,” UBS analyst Giovanni Staunovo wrote in a note. “The market appears skeptical that Russia will struggle to export its oil barrels.” Moscow’s oil has begun to trade at a significant discount in recent days as the deadline nears for fresh sanctions on its two major producers to kick in. Prices are at the lowest level in over two-and-a-half years, according to Argus Media

Read More »

Joint Statement by the U.S. and the Baltic Countries Following the 2025 Baltic 3+1 Energy Dialogue

On November 7, the Ministers of Energy for the three Baltic countries of Estonia, Latvia, and Lithuania and the U.S. Secretary of Energy convened for a fifth 3+1 Energy Dialogue in Athens, Greece, on the margins of the Partnership for Transatlantic Energy Cooperation (P-TEC) Ministerial. Estonia’s Minister of Energy and Environment Andres Sutt, Latvia’s Minister for Climate and Energy Kaspars Melnis, Lithuania’s Minister of Energy Žygimantas Vaičiūnas, and U.S. Secretary of Energy Chris Wright reaffirmed their shared commitment to strengthening transatlantic relations and deepening the strategic partnership; increasing the security, resilience and protection of critical energy infrastructure; growing U.S. liquified natural gas (LNG) imports for European independence from Russian energy and to support Ukraine; and enabling innovative nuclear deployment. The ministers also celebrated the success of their joint multi-year effort to desynchronize the Baltic electricity grid from Russia and synchronize with the Continental European network, which was achieved in February of this year.   The Ministers and Secretary discussed ongoing critical energy infrastructure security and resilience concerns acutely affecting the Baltic region, but applicable globally, including: physical security of undersea cables and pipelines and physical and cyber-security of electricity grid infrastructure ranging from the bulk power system to behind-the-meter technologies. The group noted recent exercises conducted by the U.S. Department of Energy and experts at the Pacific Northwest National Laboratory in Riga, Latvia to enhance responsiveness to grid disruptions and pledged to continue cooperation on infrastructure security.   The Ministers and Secretary also noted the importance of the security of energy supply, emphasizing that there can be no national security without energy security. They discussed a shared desire to increase the import of abundant U.S. LNG to the Baltic region and the whole of Europe. They also considered the possibility of transferring imported LNG to Ukraine on the basis of negotiated agreements

Read More »

The quiet revolution in energy: How private innovation is reshaping the grid

Over the past five years, the energy transition has been loud in some places.  We have seen data centers booming, capacity prices climbing, renewables surging and virtual power plants gaining traction. But beneath those headlines, a revolution message has been unfolding, sector by sector, driven not by policy or utilities but by private businesses stepping into roles once reserved for monopolies. Take Caterpillar, for example. Long known for its heavy machinery, the company now offers a Distributed Energy Resource Management System (DERMS) platform, an unexpected pivot that underscores how deeply energy intelligence is being woven into commercial and industrial operations. From retail and manufacturing to real estate and tech, companies are learning that energy is no longer a fixed cost. It’s a controllable variable, one that can be optimized, monetized and aligned with long-term business strategy. Commercial Customers: The Grid’s Unsung Stabilizers At the center of this shift are commercial customers, who are increasingly the steady force in an uncertain grid. Unlike residential users, whose Peak Load Contribution (PLC) is largely uncontrollable and often meaningless for planning or cost-reduction purposes, commercial PLCs can be actively managed. And that’s where the real innovation is happening. Multifamily communities are increasingly operating like commercial customers, and that shift is transforming their role on the grid. By pairing the right supply contracts with DERMS platforms, multifamily developers and operators can now manage usage, flexibility and capacity just like office parks or manufacturing sites have done for years. This isn’t theoretical; it’s already underway. Properties are optimizing load, reducing costs and contributing to grid stability by applying commercial-grade energy intelligence to what was once a passive residential segment. The result: a fast-growing, data-driven force for grid support emerging from the multifamily sector. From Energy Management to Energy Mastery Nationwide Energy Partners (NEP) has seen this

Read More »

Nvidia’s first exascale system is the 4th fastest supercomputer in the world

The world’s fourth exascale supercomputer has arrived, pitting Nvidia’s proprietary chip technologies against the x86 systems that have dominated supercomputing for decades. For the 66th edition of the TOP500, El Capitan holds steady at No. 1 while JUPITER Booster becomes the fourth exascale system on the list. The JUPITER Booster supercomputer, installed in Germany, uses Nvidia CPUs and GPUs and delivers a peak performance of exactly 1 exaflop, according to the November TOP500 list of supercomputers, released on Monday. The exaflop measurement is considered a major milestone in pushing computing performance to the limits. Today’s computers are typically measured in gigaflops and teraflops—and an exaflop translates to 1 billion gigaflops. Nvidia’s GPUs dominate AI servers installed in data centers as computing shifts to AI. As part of this shift, AI servers with Nvidia’s ARM-based Grace CPUs are emerging as a high-performance alternative to x86 chips. JUPITER is the fourth-fastest supercomputer in the world, behind three systems with x86 chips from AMD and Intel, according to TOP500. The top three supercomputers on the TOP500 list are in the U.S. and owned by the U.S. Department of Energy. The top two supercomputers—the 1.8-exaflop El Capitan at Lawrence Livermore National Laboratory and the 1.35-exaflop Frontier at Oak Ridge National Laboratory—use AMD CPUs and GPUs. The third-ranked 1.01-exaflop Aurora at Argonne National Laboratory uses Intel CPUs and GPUs. Intel scrapped its GPU roadmap after the release of Aurora and is now restructuring operations. The JUPITER Booster, which was assembled by France-based Eviden, has Nvidia’s GH200 superchip, which links two Nvidia Hopper GPUs with CPUs based on ARM designs. The CPU and GPU are connected via Nvidia’s proprietary NVLink interconnect, which is based on InfiniBand and provides bandwidth of up to 900 gigabytes per second. JUPITER first entered the Top500 list at 793 petaflops, but

Read More »

Samsung’s 60% memory price hike signals higher data center costs for enterprises

Industry-wide price surge driven by AI Samsung is not alone in raising prices. In October, TrendForce reported that Samsung and SK Hynix raised DRAM and NAND flash prices by up to 30% for Q4. Similarly, SK Hynix said during its October earnings call that its HBM, DRAM, and NAND capacity is “essentially sold out” for 2026, with the company posting record quarterly operating profit exceeding $8 billion, driven by surging AI demand. Industry analysts attributed the price increases to manufacturers redirecting production capacity. HBM production for AI accelerators consumes three times the wafer capacity of standard DRAM, according to a TrendForce report, citing remarks from Micron’s Chief Business Officer. After two years of oversupply, memory inventories have dropped to approximately eight weeks from over 30 weeks in early 2023. “The memory industry is tightening faster than expected as AI server demand for HBM, DDR5, and enterprise SSDs far outpaces supply growth,” said Manish Rawat, semiconductor analyst at TechInsights. “Even with new fab capacity coming online, much of it is dedicated to HBM, leaving conventional DRAM and NAND undersupplied. Memory is shifting from a cyclical commodity to a strategic bottleneck where suppliers can confidently enforce price discipline.” This newfound pricing power was evident in Samsung’s approach to contract negotiations. “Samsung’s delayed pricing announcement signals tough behind-the-scenes negotiations, with Samsung ultimately securing the aggressive hike it wanted,” Rawat said. “The move reflects a clear power shift toward chipmakers: inventories are normalized, supply is tight, and AI demand is unavoidable, leaving buyers with little room to negotiate.” Charlie Dai, VP and principal analyst at Forrester, said the 60% increase “signals confidence in sustained AI infrastructure growth and underscores memory’s strategic role as the bottleneck in accelerated computing.” Servers to cost 10-25% more For enterprises building AI infrastructure, these supply dynamics translate directly into

Read More »

Arista, Palo Alto bolster AI data center security

“Based on this inspection, the NGFW creates a comprehensive, application-aware security policy. It then instructs the Arista fabric to enforce that policy at wire speed for all subsequent, similar flows,” Kotamraju wrote. “This ‘inspect-once, enforce-many’ model delivers granular zero trust security without the performance bottlenecks of hairpinning all traffic through a firewall or forcing a costly, disruptive network redesign.” The second capability is a dynamic quarantine feature that enables the Palo Alto NGFWs to identify evasive threats using Cloud-Delivered Security Services (CDSS). “These services, such as Advanced WildFire for zero-day malware and Advanced Threat Prevention for unknown exploits, leverage global threat intelligence to detect and block attacks that traditional security misses,” Kotamraju wrote. The Arista fabric can intelligently offload trusted, high-bandwidth “elephant flows” from the firewall after inspection, freeing it to focus on high-risk traffic. When a threat is detected, the NGFW signals Arista CloudVision, which programs the network switches to automatically quarantine the compromised workload at hardware line-rate, according to Kotamraju: “This immediate response halts the lateral spread of a threat without creating a performance bottleneck or requiring manual intervention.” The third feature is unified policy orchestration, where Palo Alto Networks’ management plane centralizes zone-based and microperimeter policies, and CloudVision MSS responds with the offload and enforcement of Arista switches. “This treats the entire geo-distributed network as a single logical switch, allowing workloads to be migrated freely across cloud networks and security domains,” Srikanta and Barbieri wrote. Lastly, the Arista Validated Design (AVD) data models enable network-as-a-code, integrating with CI/CD pipelines. AVDs can also be generated by Arista’s AVA (Autonomous Virtual Assist) AI agents that incorporate best practices, testing, guardrails, and generated configurations. “Our integration directly resolves this conflict by creating a clean architectural separation that decouples the network fabric from security policy. This allows the NetOps team (managing the Arista

Read More »

AMD outlines ambitious plan for AI-driven data centers

“There are very beefy workloads that you must have that performance for to run the enterprise,” he said. “The Fortune 500 mainstream enterprise customers are now … adopting Epyc faster than anyone. We’ve seen a 3x adoption this year. And what that does is drives back to the on-prem enterprise adoption, so that the hybrid multi-cloud is end-to-end on Epyc.” One of the key focus areas for AMD’s Epyc strategy has been our ecosystem build out. It has almost 180 platforms, from racks to blades to towers to edge devices, and 3,000 solutions in the market on top of those platforms. One of the areas where AMD pushes into the enterprise is what it calls industry or vertical workloads. “These are the workloads that drive the end business. So in semiconductors, that’s telco, it’s the network, and the goal there is to accelerate those workloads and either driving more throughput or drive faster time to market or faster time to results. And we almost double our competition in terms of faster time to results,” said McNamara. And it’s paying off. McNamara noted that over 60% of the Fortune 100 are using AMD, and that’s growing quarterly. “We track that very, very closely,” he said. The other question is are they getting new customer acquisitions, customers with Epyc for the first time? “We’ve doubled that year on year.” AMD didn’t just brag, it laid out a road map for the next two years, and 2026 is going to be a very busy year. That will be the year that new CPUs, both client and server, built on the Zen 6 architecture begin to appear. On the server side, that means the Venice generation of Epyc server processors. Zen 6 processors will be built on 2 nanometer design generated by (you guessed

Read More »

Building the Regional Edge: DartPoints CEO Scott Willis on High-Density AI Workloads in Non-Tier-One Markets

When DartPoints CEO Scott Willis took the stage on “the Distributed Edge” panel at the 2025 Data Center Frontier Trends Summit, his message resonated across a room full of developers, operators, and hyperscale strategists: the future of AI infrastructure will be built far beyond the nation’s tier-one metros. On the latest episode of the Data Center Frontier Show, Willis expands on that thesis, mapping out how DartPoints has positioned itself for a moment when digital infrastructure inevitably becomes more distributed, and why that moment has now arrived. DartPoints’ strategy centers on what Willis calls the “regional edge”—markets in the Midwest, Southeast, and South Central regions that sit outside traditional cloud hubs but are increasingly essential to the evolving AI economy. These are not tower-edge micro-nodes, nor hyperscale mega-campuses. Instead, they are regional data centers designed to serve enterprises with colocation, cloud, hybrid cloud, multi-tenant cloud, DRaaS, and backup workloads, while increasingly accommodating the AI-driven use cases shaping the next phase of digital infrastructure. As inference expands and latency-sensitive applications proliferate, Willis sees the industry’s momentum bending toward the very markets DartPoints has spent years cultivating. Interconnection as Foundation for Regional AI Growth A key part of the company’s differentiation is its interconnection strategy. Every DartPoints facility is built to operate as a deeply interconnected environment, drawing in all available carriers within a market and stitching sites together through a regional fiber fabric. Willis describes fiber as the “nervous system” of the modern data center, and for DartPoints that means creating an interconnection model robust enough to support a mix of enterprise cloud, multi-site disaster recovery, and emerging AI inference workloads. The company is already hosting latency-sensitive deployments in select facilities—particularly inference AI and specialized healthcare applications—and Willis expects such deployments to expand significantly as regional AI architectures become more widely

Read More »

Key takeaways from Cisco Partner Summit

Brian Ortbals, senior vice president from World Wide Technology, which is one of Cisco’s biggest and most important partners stated: “Cisco engaged partners early in the process and took our feedback along the way. We believe now is the right time for these changes as it will enable us to capitalize on the changes in the market.” The reality is, the more successful its more-than-half-a-million partners are, the more successful Cisco will be. Platform approach is coming together When Jeetu Patel took the reigns as chief product officer, one of his goals was to make the Cisco portfolio a “force multiple.” Patel has stated repeatedly that, historically, Cisco acted more as a technology holding company with good products in networking, security, collaboration, data center and other areas. In this case, product breadth was not an advantage, as everything must be sold as “best of breed,” which is a tough ask of the salesforce and partner community. Since then, there have been many examples of the coming together of the portfolio to create products that leverage the breadth of the platform. The latest is the Unified Edge appliance, an all-in-one solution that brings together compute, networking, storage and security. Cisco has been aggressive with AI products in the data center, and Cisco Unified Edge compliments that work with a device designed to bring AI to edge locations. This is ideally suited for retail, manufacturing, healthcare, factories and other industries where it’s more cost effecting and performative to run AI where the data lives.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »