Stay Ahead, Stay ONMINE

AI coding is now everywhere. But not everyone is convinced.

Depending who you ask, AI-powered coding is either giving software developers an unprecedented productivity boost or churning out masses of poorly designed code that saps their attention and sets software projects up for serious long term-maintenance problems. The problem is right now, it’s not easy to know which is true. As tech giants pour billions into large language models (LLMs), coding has been touted as the technology’s killer app. Both Microsoft CEO Satya Nadella and Google CEO Sundar Pichai have claimed that around a quarter of their companies’ code is now AI-generated. And in March, Anthropic’s CEO, Dario Amodei, predicted that within six months 90% of all code would be written by AI. It’s an appealing and obvious use case. Code is a form of language, we need lots of it, and it’s expensive to produce manually. It’s also easy to tell if it works—run a program and it’s immediately evident whether it’s functional. This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next. Executives enamored with the potential to break through human bottlenecks are pushing engineers to lean into an AI-powered future. But after speaking to more than 30 developers, technology executives, analysts, and researchers, MIT Technology Review found that the picture is not as straightforward as it might seem.   For some developers on the front lines, initial enthusiasm is waning as they bump up against the technology’s limitations. And as a growing body of research suggests that the claimed productivity gains may be illusory, some are questioning whether the emperor is wearing any clothes. The pace of progress is complicating the picture, though. A steady drumbeat of new model releases mean these tools’ capabilities and quirks are constantly evolving. And their utility often depends on the tasks they are applied to and the organizational structures built around them. All of this leaves developers navigating confusing gaps between expectation and reality.  Is it the best of times or the worst of times (to channel Dickens) for AI coding? Maybe both. A fast-moving field It’s hard to avoid AI coding tools these days. There are a dizzying array of products available, both from model developers like Anthropic, OpenAI, and Google and from companies like Cursor and Windsurf, which wrap these models in polished code-editing software. And according to Stack Overflow’s 2025 Developer Survey, they’re being adopted rapidly, with 65% of developers now using them at least weekly. AI coding tools first emerged around 2016 but were supercharged with the arrival of LLMs. Early versions functioned as little more than autocomplete for programmers, suggesting what to type next. Today they can analyze entire code bases, edit across files, fix bugs, and even generate documentation explaining how the code works. All this is guided through natural-language prompts via a chat interface. “Agents”—autonomous LLM-powered coding tools that can take a high-level plan and build entire programs independently—represent the latest frontier in AI coding. This leap was enabled by the latest reasoning models, which can tackle complex problems step by step and, crucially, access external tools to complete tasks. “This is how the model is able to code, as opposed to just talk about coding,” says Boris Cherny, head of Claude Code, Anthropic’s coding agent. Ask AIWhy it matters to you?BETAHere’s why this story might matter to you, according to AI. This is a beta feature and AI hallucinates—it might get weirdTell me why it matters These agents have made impressive progress on software engineering benchmarks—standardized tests that measure model performance. When OpenAI introduced the SWE-bench Verified benchmark in August 2024, offering a way to evaluate agents’ success at fixing real bugs in open-source repositories, the top model solved just 33% of issues. A year later, leading models consistently score above 70%.  In February, Andrej Karpathy, a founding member of OpenAI and former director of AI at Tesla, coined the term “vibe coding”—meaning an approach where people describe software in natural language and let AI write, refine, and debug the code. Social media abounds with developers who have bought into this vision, claiming massive productivity boosts. But while some developers and companies report such productivity gains, the hard evidence is more mixed. Early studies from GitHub, Google, and Microsoft—all vendors of AI tools—found developers completing tasks 20% to 55% faster. But a September report from the consultancy Bain & Company described real-world savings as “unremarkable.” Data from the developer analytics firm GitClear shows that most engineers are producing roughly 10% more durable code—code that isn’t deleted or rewritten within weeks—since 2022, likely thanks to AI. But that gain has come with sharp declines in several measures of code quality. Stack Overflow’s survey also found trust and positive sentiment toward AI tools falling significantly for the first time. And most provocatively, a July study by the nonprofit research organization Model Evaluation & Threat Research (METR) showed that while experienced developers believed AI made them 20% faster, objective tests showed they were actually 19% slower. Growing disillusionment For Mike Judge, principal developer at the software consultancy Substantial, the METR study struck a nerve. He was an enthusiastic early adopter of AI tools, but over time he grew frustrated with their limitations and the modest boost they brought to his productivity. “I was complaining to people because I was like, ‘It’s helping me but I can’t figure out how to make it really help me a lot,’” he says. “I kept feeling like the AI was really dumb, but maybe I could trick it into being smart if I found the right magic incantation.” When asked by a friend, Judge had estimated the tools were providing a roughly 25% speedup. So when he saw similar estimates attributed to developers in the METR study he decided to test his own. For six weeks, he guessed how long a task would take, flipped a coin to decide whether to use AI or code manually, and timed himself. To his surprise, AI slowed him down by an median of 21%—mirroring the METR results. This got Judge crunching the numbers. If these tools were really speeding developers up, he reasoned, you should see a massive boom in new apps, website registrations, video games, and projects on GitHub. He spent hours and several hundred dollars analyzing all the publicly available data and found flat lines everywhere. “Shouldn’t this be going up and to the right?” says Judge. “Where’s the hockey stick on any of these graphs? I thought everybody was so extraordinarily productive.” The obvious conclusion, he says, is that AI tools provide little productivity boost for most developers.  Developers interviewed by MIT Technology Review generally agree on where AI tools excel: producing “boilerplate code” (reusable chunks of code repeated in multiple places with little modification), writing tests, fixing bugs, and explaining unfamiliar code to new developers. Several noted that AI helps overcome the “blank page problem” by offering an imperfect first stab to get a developer’s creative juices flowing. It can also let nontechnical colleagues quickly prototype software features, easing the load on already overworked engineers. These tasks can be tedious, and developers are typically  glad to hand them off. But they represent only a small part of an experienced engineer’s workload. For the more complex problems where engineers really earn their bread, many developers told MIT Technology Review, the tools face significant hurdles. Perhaps the biggest problem is that LLMs can hold only a limited amount of information in their “context window”—essentially their working memory. This means they struggle to parse large code bases and are prone to forgetting what they’re doing on longer tasks. “It gets really nearsighted—it’ll only look at the thing that’s right in front of it,” says Judge. “And if you tell it to do a dozen things, it’ll do 11 of them and just forget that last one.” DEREK BRAHNEY LLMs’ myopia can lead to headaches for human coders. While an LLM-generated response to a problem may work in isolation, software is made up of hundreds of interconnected modules. If these aren’t built with consideration for other parts of the software, it can quickly lead to a tangled, inconsistent code base that’s hard for humans to parse and, more important, to maintain. Developers have traditionally addressed this by following conventions—loosely defined coding guidelines that differ widely between projects and teams. “AI has this overwhelming tendency to not understand what the existing conventions are within a repository,” says Bill Harding, the CEO of GitClear. “And so it is very likely to come up with its own slightly different version of how to solve a problem.” The models also just get things wrong. Like all LLMs, coding models are prone to “hallucinating”—it’s an issue built into how they work. But because the code they output looks so polished, errors can be difficult to detect, says James Liu, director of software engineering at the advertising technology company Mediaocean. Put all these flaws together, and using these tools can feel a lot like pulling a lever on a one-armed bandit. “Some projects you get a 20x improvement in terms of speed or efficiency,” says Liu. “On other things, it just falls flat on its face, and you spend all this time trying to coax it into granting you the wish that you wanted and it’s just not going to.” Judge suspects this is why engineers often overestimate productivity gains. “You remember the jackpots. You don’t remember sitting there plugging tokens into the slot machine for two hours,” he says. And it can be particularly pernicious if the developer is unfamiliar with the task. Judge remembers getting AI to help set up a Microsoft cloud service called an Azure Functions, which he’d never used before. He thought it would take about two hours, but nine hours later he threw in the towel. “It kept leading me down these rabbit holes and I didn’t know enough about the topic to be able to tell it ‘Hey, this is nonsensical,’” he says. The debt begins to mount up Developers constantly make trade-offs between speed of development and the maintainability of their code—creating what’s known as “technical debt,” says Geoffrey G. Parker, professor of engineering innovation at Dartmouth College. Each shortcut adds complexity and makes the code base harder to manage, accruing “interest” that must eventually be repaid by restructuring the code. As this debt piles up, adding new features and maintaining the software becomes slower and more difficult. Accumulating technical debt is inevitable in most projects, but AI tools make it much easier for time-pressured engineers to cut corners, says GitClear’s Harding. And GitClear’s data suggests this is happening at scale. Since 2020, the company has seen a significant rise in the amount of copy-pasted code—an indicator that developers are reusing more code snippets, most likely based on AI suggestions—and an even bigger decline in the amount of code moved from one place to another, which happens when developers clean up their code base. And as models improve, the code they produce is becoming increasingly verbose and complex, says Tariq Shaukat, CEO of Sonar, which makes tools for checking code quality. This is driving down the number of obvious bugs and security vulnerabilities, he says, but at the cost of increasing the number of “code smells”—harder-to-pinpoint flaws that lead to maintenance problems and technical debt.  Recent research by Sonar found that these make up more than 90% of the issues found in code generated by leading AI models. “Issues that are easy to spot are disappearing, and what’s left are much more complex issues that take a while to find,” says Shaukat. “That’s what worries us about this space at the moment. You’re almost being lulled into a false sense of security.” If AI tools make it increasingly difficult to maintain code, that could have significant security implications, says Jessica Ji, a security researcher at Georgetown University. “The harder it is to update things and fix things, the more likely a code base or any given chunk of code is to become insecure over time,” says Ji. There are also more specific security concerns, she says. Researchers have discovered a worrying class of hallucinations where models reference nonexistent software packages in their code. Attackers can exploit this by creating packages with those names that harbor vulnerabilities, which the model or developer may then unwittingly incorporate into software.  LLMs are also vulnerable to “data-poisoning attacks,” where hackers seed the publicly available data sets models train on with data that alters the model’s behavior in undesirable ways, such as generating insecure code when triggered by specific phrases. In October, research by Anthropic found that as few as 250 malicious documents can introduce this kind of back door into an LLM regardless of its size. The converted Despite these issues, though, there’s probably no turning back. “Odds are that writing every line of code on a keyboard by hand—those days are quickly slipping behind us,” says Kyle Daigle, chief operating officer at the Microsoft-owned code-hosting platform GitHub, which produces a popular AI-powered tool called Copilot (not to be confused with the Microsoft product of the same name). The Stack Overflow report found that despite growing distrust in the technology, usage has increased rapidly and consistently over the past three years. Erin Yepis, a senior analyst at Stack Overflow, says this suggests that engineers are taking advantage of the tools with a clear-eyed view of the risks. The report also found that frequent users tend to be more enthusiastic and more than half of developers are not using the latest coding agents, perhaps explaining why many remain underwhelmed by the technology. Those latest tools can be a revelation. Trevor Dilley, CTO at the software development agency Twenty20 Ideas, says he had found some value in AI editors’ autocomplete functions, but when he tried anything more complex it would “fail catastrophically.” Then in March, while on vacation with his family, he set the newly released Claude Code to work on one of his hobby projects. It completed a four-hour task in two minutes, and the code was better than what he would have written. “I was like, Whoa,” he says. “That, for me, was the moment, really. There’s no going back from here.” Dilley has since cofounded a startup called DevSwarm, which is creating software that can marshal multiple agents to work in parallel on a piece of software. The challenge, says Armin Ronacher, a prominent open-source developer, is that the learning curve for these tools is shallow but long. Until March he’d remained unimpressed by AI tools, but after leaving his job at the software company Sentry in April to launch a startup, he started experimenting with agents. “I basically spent a lot of months doing nothing but this,” he says. “Now, 90% of the code that I write is AI-generated.” Getting to that point involved extensive trial and error, to figure out which problems tend to trip the tools up and which they can handle efficiently. Today’s models can tackle most coding tasks with the right guardrails, says Ronacher, but these can be very task and project specific. To get the most out of these tools, developers must surrender control over individual lines of code and focus on the overall software architecture, says Nico Westerdale, chief technology officer at the veterinary staffing company IndeVets. He recently built a data science platform 100,000 lines of code long almost exclusively by prompting models rather than writing the code himself. Westerdale’s process starts with an extended conversation with the modelagent to develop a detailed plan for what to build and how. He then guides it through each step. It rarely gets things right on the first try and needs constant wrangling, but if you force it to stick to well-defined design patterns, the models can produce high-quality, easily maintainable code, says Westerdale. He reviews every line, and the code is as good as anything he’s ever produced, he says: “I’ve just found it absolutely revolutionary,. It’s also frustrating, difficult, a different way of thinking, and we’re only just getting used to it.” But while individual developers are learning how to use these tools effectively, getting consistent results across a large engineering team is significantly harder. AI tools amplify both the good and bad aspects of your engineering culture, says Ryan J. Salva, senior director of product management at Google. With strong processes, clear coding patterns, and well-defined best practices, these tools can shine.  DEREK BRAHNEY But if your development process is disorganized, they’ll only magnify the problems. It’s also essential to codify that institutional knowledge so the models can draw on it effectively. “A lot of work needs to be done to help build up context and get the tribal knowledge out of our heads,” he says. The cryptocurrency exchange Coinbase has been vocal about its adoption of AI tools. CEO Brian Armstrong made headlines in August when he revealed that the company had fired staff unwilling to adopt AI tools. But Coinbase’s head of platform, Rob Witoff, tells MIT Technology Review that while they’ve seen massive productivity gains in some areas, the impact has been patchy. For simpler tasks like restructuring the code base and writing tests, AI-powered workflows have achieved speedups of up to 90%. But gains are more modest for other tasks, and the disruption caused by overhauling existing processes often counteracts the increased coding speed, says Witoff. One factor is that AI tools let junior developers produce far more code,. As in almost all engineering teams, this code has to be reviewed by others, normally more senior developers, to catch bugs and ensure it meets quality standards. But the sheer volume of code now being churned out i whichs quickly saturatinges the ability of midlevel staff to review changes. “This is the cycle we’re going through almost every month, where we automate a new thing lower down in the stack, which brings more pressure higher up in the stack,” he says. “Then we’re looking at applying automation to that higher-up piece.” Developers also spend only 20% to 40% of their time coding, says Jue Wang, a partner at Bain, so even a significant speedup there often translates to more modest overall gains. Developers spend the rest of their time analyzing software problems and dealing with customer feedback, product strategy, and administrative tasks. To get significant efficiency boosts, companies may need to apply generative AI to all these other processes too, says Jue, and that is still in the works. Rapid evolution Programming with agents is a dramatic departure from previous working practices, though, so it’s not surprising companies are facing some teething issues. These are also very new products that are changing by the day. “Every couple months the model improves, and there’s a big step change in the model’s coding capabilities and you have to get recalibrated,” says Anthropic’s Cherny. For example, in June Anthropic introduced a built-in planning mode to Claude; it has since been replicated by other providers. In October, the company also enabled Claude to ask users questions when it needs more context or faces multiple possible solutions, which Cherny says helps it avoid the tendency to simply assume which path is the best way forward. Most significant, Anthropic has added features that make Claude better at managing its own context. When it nears the limits of its working memory, it summarizes key details and uses them to start a new context window, effectively giving it an “infinite” one, says Cherny. Claude can also invoke sub-agents to work on smaller tasks, so it no longer has to hold all aspects of the project in its own head. The company claims that its latest model, Claude 4.5 Sonnet, can now code autonomously for more than 30 hours without major performance degradation. Novel approaches to software development could also sidestep coding agents’ other flaws. MIT professor Max Tegmark has introduced something he calls “vericoding,” which could allow agents to produce entirely bug-free code from a natural-language description. It builds on an approach known as “formal verification,” where developers create a mathematical model of their software that can prove incontrovertibly that it functions correctly. This approach is used in high-stakes areas like flight-control systems and cryptographic libraries, but it remains costly and time-consuming, limiting its broader use. Rapid improvements in LLMs’ mathematical capabilities have opened up the tantalizing possibility of models that produce not only software but the mathematical proof that it’s bug free, says Tegmark. “You just give the specification, and the AI comes back with provably correct code,” he says. “You don’t have to touch the code. You don’t even have to ever look at the code.” When tested on about 2,000 vericoding problems in Dafny—a language designed for formal verification—the best LLMs solved over 60%, according to non-peer-reviewed research by Tegmark’s group. This was achieved with off-the-shelf LLMs, and Tegmark expects that training specifically for vericoding could improve scores rapidly. And counterintuitively, Tthe speed at which AI generates code could actuallylso ease maintainability concerns. Alex Worden, principal engineer at the business software giant Intuit, notes that maintenance is often difficult because engineers reuse components across projects, creating a tangle of dependencies where one change triggers cascading effects across the code base. Reusing code used to save developers time, but in a world where AI can produce hundreds of lines of code in seconds, that imperative has gone, says Worden. Instead, he advocates for “disposable code,” where each component is generated independently by AI without regard for whether it follows design patterns or conventions. They are then connected via APIs—sets of rules that let components request information or services from each other. Each component’s inner workings are not dependent on other parts of the code base, making it possible to rip them out and replace them without wider impact, says Worden.  “The industry is still concerned about humans maintaining AI-generated code,” he says. “I question how long humans will look at or care about code.” A narrowing talent pipeline For the foreseeable future, though, humans will still need to understand and maintain the code that underpins their projects. And one of the most pernicious side effects of AI tools may be a shrinking pool of people capable of doing so.  Early evidence suggests that fears around the job-destroying effects of AI may be justified. A recent Stanford University study found that employment among software developers aged 22 to 25 fell nearly 20% between 2022 and 2025, coinciding with the rise of AI-powered coding tools. Experienced developers could face difficulties too. Luciano Nooijen, an engineer at the video-game infrastructure developer Companion Group, used AI tools heavily in his day job, where they were provided for free. But when he began a side project without access to those tools, he found himself struggling with tasks that previously came naturally. “I was feeling so stupid because things that used to be instinct became manual, sometimes even cumbersome,” says Nooijen. Just as athletes still perform basic drills, he thinks the only way to maintain an instinct for coding is to regularly practice the grunt work. That’s why he’s largely abandoned AI tools, though he admits that deeper motivations are also at play.  Part of the reason Nooijen and other developers MIT Technology Review spoke to are pushing back against AI tools is a sense that they are hollowing out the parts of their jobs that they love. “I got into software engineering because I like working with computers. I like making machines do things that I want,” Nooijen says. “It’s just not fun sitting there with my work being done for me.”

Depending who you ask, AI-powered coding is either giving software developers an unprecedented productivity boost or churning out masses of poorly designed code that saps their attention and sets software projects up for serious long term-maintenance problems.

The problem is right now, it’s not easy to know which is true.

As tech giants pour billions into large language models (LLMs), coding has been touted as the technology’s killer app. Both Microsoft CEO Satya Nadella and Google CEO Sundar Pichai have claimed that around a quarter of their companies’ code is now AI-generated. And in March, Anthropic’s CEO, Dario Amodei, predicted that within six months 90% of all code would be written by AI. It’s an appealing and obvious use case. Code is a form of language, we need lots of it, and it’s expensive to produce manually. It’s also easy to tell if it works—run a program and it’s immediately evident whether it’s functional.


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


Executives enamored with the potential to break through human bottlenecks are pushing engineers to lean into an AI-powered future. But after speaking to more than 30 developers, technology executives, analysts, and researchers, MIT Technology Review found that the picture is not as straightforward as it might seem.  

For some developers on the front lines, initial enthusiasm is waning as they bump up against the technology’s limitations. And as a growing body of research suggests that the claimed productivity gains may be illusory, some are questioning whether the emperor is wearing any clothes.

The pace of progress is complicating the picture, though. A steady drumbeat of new model releases mean these tools’ capabilities and quirks are constantly evolving. And their utility often depends on the tasks they are applied to and the organizational structures built around them. All of this leaves developers navigating confusing gaps between expectation and reality. 

Is it the best of times or the worst of times (to channel Dickens) for AI coding? Maybe both.

A fast-moving field

It’s hard to avoid AI coding tools these days. There are a dizzying array of products available, both from model developers like Anthropic, OpenAI, and Google and from companies like Cursor and Windsurf, which wrap these models in polished code-editing software. And according to Stack Overflow’s 2025 Developer Survey, they’re being adopted rapidly, with 65% of developers now using them at least weekly.

AI coding tools first emerged around 2016 but were supercharged with the arrival of LLMs. Early versions functioned as little more than autocomplete for programmers, suggesting what to type next. Today they can analyze entire code bases, edit across files, fix bugs, and even generate documentation explaining how the code works. All this is guided through natural-language prompts via a chat interface.

“Agents”—autonomous LLM-powered coding tools that can take a high-level plan and build entire programs independently—represent the latest frontier in AI coding. This leap was enabled by the latest reasoning models, which can tackle complex problems step by step and, crucially, access external tools to complete tasks. “This is how the model is able to code, as opposed to just talk about coding,” says Boris Cherny, head of Claude Code, Anthropic’s coding agent.

Ask AI

Why it matters to you?BETA
Here’s why this story might matter to you, according to AI. This is a beta feature and AI hallucinates—it might get weird

These agents have made impressive progress on software engineering benchmarks—standardized tests that measure model performance. When OpenAI introduced the SWE-bench Verified benchmark in August 2024, offering a way to evaluate agents’ success at fixing real bugs in open-source repositories, the top model solved just 33% of issues. A year later, leading models consistently score above 70%

In February, Andrej Karpathy, a founding member of OpenAI and former director of AI at Tesla, coined the term “vibe coding”—meaning an approach where people describe software in natural language and let AI write, refine, and debug the code. Social media abounds with developers who have bought into this vision, claiming massive productivity boosts.

But while some developers and companies report such productivity gains, the hard evidence is more mixed. Early studies from GitHub, Google, and Microsoft—all vendors of AI tools—found developers completing tasks 20% to 55% faster. But a September report from the consultancy Bain & Company described real-world savings as “unremarkable.”

Data from the developer analytics firm GitClear shows that most engineers are producing roughly 10% more durable code—code that isn’t deleted or rewritten within weeks—since 2022, likely thanks to AI. But that gain has come with sharp declines in several measures of code quality. Stack Overflow’s survey also found trust and positive sentiment toward AI tools falling significantly for the first time. And most provocatively, a July study by the nonprofit research organization Model Evaluation & Threat Research (METR) showed that while experienced developers believed AI made them 20% faster, objective tests showed they were actually 19% slower.

Growing disillusionment

For Mike Judge, principal developer at the software consultancy Substantial, the METR study struck a nerve. He was an enthusiastic early adopter of AI tools, but over time he grew frustrated with their limitations and the modest boost they brought to his productivity. “I was complaining to people because I was like, ‘It’s helping me but I can’t figure out how to make it really help me a lot,’” he says. “I kept feeling like the AI was really dumb, but maybe I could trick it into being smart if I found the right magic incantation.”

When asked by a friend, Judge had estimated the tools were providing a roughly 25% speedup. So when he saw similar estimates attributed to developers in the METR study he decided to test his own. For six weeks, he guessed how long a task would take, flipped a coin to decide whether to use AI or code manually, and timed himself. To his surprise, AI slowed him down by an median of 21%—mirroring the METR results.

This got Judge crunching the numbers. If these tools were really speeding developers up, he reasoned, you should see a massive boom in new apps, website registrations, video games, and projects on GitHub. He spent hours and several hundred dollars analyzing all the publicly available data and found flat lines everywhere.

“Shouldn’t this be going up and to the right?” says Judge. “Where’s the hockey stick on any of these graphs? I thought everybody was so extraordinarily productive.” The obvious conclusion, he says, is that AI tools provide little productivity boost for most developers. 

Developers interviewed by MIT Technology Review generally agree on where AI tools excel: producing “boilerplate code” (reusable chunks of code repeated in multiple places with little modification), writing tests, fixing bugs, and explaining unfamiliar code to new developers. Several noted that AI helps overcome the “blank page problem” by offering an imperfect first stab to get a developer’s creative juices flowing. It can also let nontechnical colleagues quickly prototype software features, easing the load on already overworked engineers.

These tasks can be tedious, and developers are typically  glad to hand them off. But they represent only a small part of an experienced engineer’s workload. For the more complex problems where engineers really earn their bread, many developers told MIT Technology Review, the tools face significant hurdles.

Perhaps the biggest problem is that LLMs can hold only a limited amount of information in their “context window”—essentially their working memory. This means they struggle to parse large code bases and are prone to forgetting what they’re doing on longer tasks. “It gets really nearsighted—it’ll only look at the thing that’s right in front of it,” says Judge. “And if you tell it to do a dozen things, it’ll do 11 of them and just forget that last one.”

DEREK BRAHNEY

LLMs’ myopia can lead to headaches for human coders. While an LLM-generated response to a problem may work in isolation, software is made up of hundreds of interconnected modules. If these aren’t built with consideration for other parts of the software, it can quickly lead to a tangled, inconsistent code base that’s hard for humans to parse and, more important, to maintain.

Developers have traditionally addressed this by following conventions—loosely defined coding guidelines that differ widely between projects and teams. “AI has this overwhelming tendency to not understand what the existing conventions are within a repository,” says Bill Harding, the CEO of GitClear. “And so it is very likely to come up with its own slightly different version of how to solve a problem.”

The models also just get things wrong. Like all LLMs, coding models are prone to “hallucinating”—it’s an issue built into how they work. But because the code they output looks so polished, errors can be difficult to detect, says James Liu, director of software engineering at the advertising technology company Mediaocean. Put all these flaws together, and using these tools can feel a lot like pulling a lever on a one-armed bandit. “Some projects you get a 20x improvement in terms of speed or efficiency,” says Liu. “On other things, it just falls flat on its face, and you spend all this time trying to coax it into granting you the wish that you wanted and it’s just not going to.”

Judge suspects this is why engineers often overestimate productivity gains. “You remember the jackpots. You don’t remember sitting there plugging tokens into the slot machine for two hours,” he says.

And it can be particularly pernicious if the developer is unfamiliar with the task. Judge remembers getting AI to help set up a Microsoft cloud service called an Azure Functions, which he’d never used before. He thought it would take about two hours, but nine hours later he threw in the towel. “It kept leading me down these rabbit holes and I didn’t know enough about the topic to be able to tell it ‘Hey, this is nonsensical,’” he says.

The debt begins to mount up

Developers constantly make trade-offs between speed of development and the maintainability of their code—creating what’s known as “technical debt,” says Geoffrey G. Parker, professor of engineering innovation at Dartmouth College. Each shortcut adds complexity and makes the code base harder to manage, accruing “interest” that must eventually be repaid by restructuring the code. As this debt piles up, adding new features and maintaining the software becomes slower and more difficult.

Accumulating technical debt is inevitable in most projects, but AI tools make it much easier for time-pressured engineers to cut corners, says GitClear’s Harding. And GitClear’s data suggests this is happening at scale. Since 2020, the company has seen a significant rise in the amount of copy-pasted code—an indicator that developers are reusing more code snippets, most likely based on AI suggestions—and an even bigger decline in the amount of code moved from one place to another, which happens when developers clean up their code base.

And as models improve, the code they produce is becoming increasingly verbose and complex, says Tariq Shaukat, CEO of Sonar, which makes tools for checking code quality. This is driving down the number of obvious bugs and security vulnerabilities, he says, but at the cost of increasing the number of “code smells”—harder-to-pinpoint flaws that lead to maintenance problems and technical debt. 

Recent research by Sonar found that these make up more than 90% of the issues found in code generated by leading AI models. “Issues that are easy to spot are disappearing, and what’s left are much more complex issues that take a while to find,” says Shaukat. “That’s what worries us about this space at the moment. You’re almost being lulled into a false sense of security.”

If AI tools make it increasingly difficult to maintain code, that could have significant security implications, says Jessica Ji, a security researcher at Georgetown University. “The harder it is to update things and fix things, the more likely a code base or any given chunk of code is to become insecure over time,” says Ji.

There are also more specific security concerns, she says. Researchers have discovered a worrying class of hallucinations where models reference nonexistent software packages in their code. Attackers can exploit this by creating packages with those names that harbor vulnerabilities, which the model or developer may then unwittingly incorporate into software. 

LLMs are also vulnerable to “data-poisoning attacks,” where hackers seed the publicly available data sets models train on with data that alters the model’s behavior in undesirable ways, such as generating insecure code when triggered by specific phrases. In October, research by Anthropic found that as few as 250 malicious documents can introduce this kind of back door into an LLM regardless of its size.

The converted

Despite these issues, though, there’s probably no turning back. “Odds are that writing every line of code on a keyboard by hand—those days are quickly slipping behind us,” says Kyle Daigle, chief operating officer at the Microsoft-owned code-hosting platform GitHub, which produces a popular AI-powered tool called Copilot (not to be confused with the Microsoft product of the same name).

The Stack Overflow report found that despite growing distrust in the technology, usage has increased rapidly and consistently over the past three years. Erin Yepis, a senior analyst at Stack Overflow, says this suggests that engineers are taking advantage of the tools with a clear-eyed view of the risks. The report also found that frequent users tend to be more enthusiastic and more than half of developers are not using the latest coding agents, perhaps explaining why many remain underwhelmed by the technology.

Those latest tools can be a revelation. Trevor Dilley, CTO at the software development agency Twenty20 Ideas, says he had found some value in AI editors’ autocomplete functions, but when he tried anything more complex it would “fail catastrophically.” Then in March, while on vacation with his family, he set the newly released Claude Code to work on one of his hobby projects. It completed a four-hour task in two minutes, and the code was better than what he would have written.

“I was like, Whoa,” he says. “That, for me, was the moment, really. There’s no going back from here.” Dilley has since cofounded a startup called DevSwarm, which is creating software that can marshal multiple agents to work in parallel on a piece of software.

The challenge, says Armin Ronacher, a prominent open-source developer, is that the learning curve for these tools is shallow but long. Until March he’d remained unimpressed by AI tools, but after leaving his job at the software company Sentry in April to launch a startup, he started experimenting with agents. “I basically spent a lot of months doing nothing but this,” he says. “Now, 90% of the code that I write is AI-generated.”

Getting to that point involved extensive trial and error, to figure out which problems tend to trip the tools up and which they can handle efficiently. Today’s models can tackle most coding tasks with the right guardrails, says Ronacher, but these can be very task and project specific.

To get the most out of these tools, developers must surrender control over individual lines of code and focus on the overall software architecture, says Nico Westerdale, chief technology officer at the veterinary staffing company IndeVets. He recently built a data science platform 100,000 lines of code long almost exclusively by prompting models rather than writing the code himself.

Westerdale’s process starts with an extended conversation with the modelagent to develop a detailed plan for what to build and how. He then guides it through each step. It rarely gets things right on the first try and needs constant wrangling, but if you force it to stick to well-defined design patterns, the models can produce high-quality, easily maintainable code, says Westerdale. He reviews every line, and the code is as good as anything he’s ever produced, he says: “I’ve just found it absolutely revolutionary,. It’s also frustrating, difficult, a different way of thinking, and we’re only just getting used to it.”

But while individual developers are learning how to use these tools effectively, getting consistent results across a large engineering team is significantly harder. AI tools amplify both the good and bad aspects of your engineering culture, says Ryan J. Salva, senior director of product management at Google. With strong processes, clear coding patterns, and well-defined best practices, these tools can shine. 

DEREK BRAHNEY

But if your development process is disorganized, they’ll only magnify the problems. It’s also essential to codify that institutional knowledge so the models can draw on it effectively. “A lot of work needs to be done to help build up context and get the tribal knowledge out of our heads,” he says.

The cryptocurrency exchange Coinbase has been vocal about its adoption of AI tools. CEO Brian Armstrong made headlines in August when he revealed that the company had fired staff unwilling to adopt AI tools. But Coinbase’s head of platform, Rob Witoff, tells MIT Technology Review that while they’ve seen massive productivity gains in some areas, the impact has been patchy. For simpler tasks like restructuring the code base and writing tests, AI-powered workflows have achieved speedups of up to 90%. But gains are more modest for other tasks, and the disruption caused by overhauling existing processes often counteracts the increased coding speed, says Witoff.

One factor is that AI tools let junior developers produce far more code,. As in almost all engineering teams, this code has to be reviewed by others, normally more senior developers, to catch bugs and ensure it meets quality standards. But the sheer volume of code now being churned out i whichs quickly saturatinges the ability of midlevel staff to review changes. “This is the cycle we’re going through almost every month, where we automate a new thing lower down in the stack, which brings more pressure higher up in the stack,” he says. “Then we’re looking at applying automation to that higher-up piece.”

Developers also spend only 20% to 40% of their time coding, says Jue Wang, a partner at Bain, so even a significant speedup there often translates to more modest overall gains. Developers spend the rest of their time analyzing software problems and dealing with customer feedback, product strategy, and administrative tasks. To get significant efficiency boosts, companies may need to apply generative AI to all these other processes too, says Jue, and that is still in the works.

Rapid evolution

Programming with agents is a dramatic departure from previous working practices, though, so it’s not surprising companies are facing some teething issues. These are also very new products that are changing by the day. “Every couple months the model improves, and there’s a big step change in the model’s coding capabilities and you have to get recalibrated,” says Anthropic’s Cherny.

For example, in June Anthropic introduced a built-in planning mode to Claude; it has since been replicated by other providers. In October, the company also enabled Claude to ask users questions when it needs more context or faces multiple possible solutions, which Cherny says helps it avoid the tendency to simply assume which path is the best way forward.

Most significant, Anthropic has added features that make Claude better at managing its own context. When it nears the limits of its working memory, it summarizes key details and uses them to start a new context window, effectively giving it an “infinite” one, says Cherny. Claude can also invoke sub-agents to work on smaller tasks, so it no longer has to hold all aspects of the project in its own head. The company claims that its latest model, Claude 4.5 Sonnet, can now code autonomously for more than 30 hours without major performance degradation.

Novel approaches to software development could also sidestep coding agents’ other flaws. MIT professor Max Tegmark has introduced something he calls “vericoding,” which could allow agents to produce entirely bug-free code from a natural-language description. It builds on an approach known as “formal verification,” where developers create a mathematical model of their software that can prove incontrovertibly that it functions correctly. This approach is used in high-stakes areas like flight-control systems and cryptographic libraries, but it remains costly and time-consuming, limiting its broader use.

Rapid improvements in LLMs’ mathematical capabilities have opened up the tantalizing possibility of models that produce not only software but the mathematical proof that it’s bug free, says Tegmark. “You just give the specification, and the AI comes back with provably correct code,” he says. “You don’t have to touch the code. You don’t even have to ever look at the code.”

When tested on about 2,000 vericoding problems in Dafny—a language designed for formal verification—the best LLMs solved over 60%, according to non-peer-reviewed research by Tegmark’s group. This was achieved with off-the-shelf LLMs, and Tegmark expects that training specifically for vericoding could improve scores rapidly.

And counterintuitively, Tthe speed at which AI generates code could actuallylso ease maintainability concerns. Alex Worden, principal engineer at the business software giant Intuit, notes that maintenance is often difficult because engineers reuse components across projects, creating a tangle of dependencies where one change triggers cascading effects across the code base. Reusing code used to save developers time, but in a world where AI can produce hundreds of lines of code in seconds, that imperative has gone, says Worden.

Instead, he advocates for “disposable code,” where each component is generated independently by AI without regard for whether it follows design patterns or conventions. They are then connected via APIs—sets of rules that let components request information or services from each other. Each component’s inner workings are not dependent on other parts of the code base, making it possible to rip them out and replace them without wider impact, says Worden. 

“The industry is still concerned about humans maintaining AI-generated code,” he says. “I question how long humans will look at or care about code.”

A narrowing talent pipeline

For the foreseeable future, though, humans will still need to understand and maintain the code that underpins their projects. And one of the most pernicious side effects of AI tools may be a shrinking pool of people capable of doing so. 

Early evidence suggests that fears around the job-destroying effects of AI may be justified. A recent Stanford University study found that employment among software developers aged 22 to 25 fell nearly 20% between 2022 and 2025, coinciding with the rise of AI-powered coding tools.

Experienced developers could face difficulties too. Luciano Nooijen, an engineer at the video-game infrastructure developer Companion Group, used AI tools heavily in his day job, where they were provided for free. But when he began a side project without access to those tools, he found himself struggling with tasks that previously came naturally. “I was feeling so stupid because things that used to be instinct became manual, sometimes even cumbersome,” says Nooijen.

Just as athletes still perform basic drills, he thinks the only way to maintain an instinct for coding is to regularly practice the grunt work. That’s why he’s largely abandoned AI tools, though he admits that deeper motivations are also at play. 

Part of the reason Nooijen and other developers MIT Technology Review spoke to are pushing back against AI tools is a sense that they are hollowing out the parts of their jobs that they love. “I got into software engineering because I like working with computers. I like making machines do things that I want,” Nooijen says. “It’s just not fun sitting there with my work being done for me.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

ExxonMobil bumps up 2030 target for Permian production

ExxonMobil Corp., Houston, is looking to grow production in the Permian basin to about 2.5 MMboe/d by 2030, an increase of 200,000 boe/d from executives’ previous forecasts and a jump of more than 45% from this year’s output. Helping drive that higher target is an expected 2030 cost profile that

Read More »

WoodMac Says Eni Find Reinforces Kutei as One of Hottest Plays

Eni’s latest discovery in Indonesia reinforces the Kutei Basin’s reputation as one of the hottest global exploration plays of recent years. That’s what Andrew Harwood, Wood Mackenzie (WoodMac) Vice President, Corporate Research, said in a statement sent to Rigzone, adding that the find “will add to Indonesia’s gas resources when the country increasingly focuses on gas availability”. “It provides options for Indonesia as the nation balances domestic demand needs with future export opportunities,” Harwood said. Harwood noted that the Konta-1 discovery “adds momentum to Eni’s existing plans to invest in and develop new gas sources for the currently underutilized Bontang LNG plant”. “The Konta-1 discovery lies in the northern Muara Bakau area, close to Eni’s pre-FID Kutei North Hub. It provides future tie-back upside and offers Plan B for Eni if the un-appraised Geng North underperforms initial expectations,” he added. Harwood also said Eni’s latest find encourages the company’s ongoing exploration campaign, which he pointed out runs into 2026. “Wood Mackenzie’s pick of prospects in line for drilling is Geliga, which holds multi trillion cubic foot potential,” he stated. Harwood went on to note that 2026 “looks exciting for Eni’s Indonesian portfolio with several major milestones ahead”. “These include exploration campaign results, a final investment decision on the Northern hub development, and the launch of ‘NewCo’ – the strategic satellite venture between Eni and Petronas,” he highlighted. In a statement sent to Rigzone recently, Eni announced a “significant gas discovery” in the Konta-1 exploration well off the coast of East Kalimantan in Indonesia. “Estimates indicate 600 billion cubic feet of gas initially in place (GIIP) with a potential upside beyond one trillion cubic feet,” Eni said in the statement. “Konta-1 was drilled to a depth of 4,575 meters [15,009 feet] in 570 meters [1,870 feet] water depth, encountering gas in

Read More »

China Fossil Fuel Generation Set for First Drop in Decade

China’s fossil fuel power plants are on track to chart their first annual drop in generation in a decade as renewables flood the grid to meet rising demand.  Thermal electricity output fell 4.2 percent in November, according to data published by the National Bureau of Statistics on Monday. Generation from coal and gas-fired plants is down 0.7 percent this year, on track for the first annual decline since 2015 unless there’s a sharp jump in December. China’s massive fleet of coal power stations is the world’s leading source of greenhouse gases fueling global warming. Even though the nation is continuing to build more of the plants, their use is plateauing as huge investments in renewables meet growing consumption needs.  Wind power jumped 22 percent in November from the previous year, while large solar farms saw a 23 percent rise in generation, additional data released Monday showed.  Even as power-sector emissions in China drop, they’ve been largely offset by rising pollution from a growing fleet of chemicals and plastics factories, according to the Centre for Research on Energy and Clean Air.  The nation’s coal output fell on an annual basis for a fifth month, while oil and natural gas continued to rise toward annual production records. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

Smart growth, lower costs: How fuel cells support utility expansion

As utilities work to expand capacity and modernize aging infrastructure to meet growing demand, they face a new imperative: doing more with every dollar invested. Analysts project capital expenditures by U.S. investor-owned electric utilities will reach $1.4 trillion between 2025 and 2030, nearly twice the amount spent during the entire previous decade.  To maintain today’s investment momentum and strengthen reliability and resilience, utilities have an opportunity to look beyond cost control and pursue strategies that deliver broader long-term value. That means seeking systems that maximize output, efficiency and uptime.  In today’s energy landscape, fuel cells are becoming increasingly relevant. They provide modular, reliable power that helps utilities extract more value from their investments while addressing rising demand and aging infrastructure. With high electrical efficiency, modular design and exceptional reliability, advanced fuel cell systems enable utilities to generate more value from their assets and streamline their day-to-day operations. Powering More with Less: Fuel Cells Redefine Efficiency Fuel cells outperform traditional combustion-based generators by converting fuel into electricity through an electrochemical reaction, rather than by burning it. This translates into roughly 15% to 20% higher efficiency than most open-cycle gas turbines or reciprocating engines. That improved conversion efficiency means each kilowatt-hour requires less fuel, increasing energy productivity and reducing exposure to fuel-price swings.  Among the various types of fuel cells, solid oxide fuel cells(SOFCs) offer the greatest advantages. Operating at high temperatures and utilizing a solid ceramic electrolyte, rather than relying on precious metals, corrosive acids or molten materials, SOFCs are a modern technology that converts fuels such as natural gas or hydrogen into electricity with exceptional efficiency and durability. Conversion efficiencies can reach up to 65% and when integrated with combined heat and power (CHP) configurations, the total system efficiency can exceed 90%.  Meeting Demand Faster with Fuel Cells With demand surging,

Read More »

What’s ahead for utilities: Navigating demand, AI and customer affordability

Utilities are entering a transformative year, with surging demand, affordability concerns, cybersecurity challenges and the increasing integration of artificial intelligence reshaping the industry. Utilities that thrive in this complex environment will need to adopt disciplined, analytics-driven strategies to ensure resilience, reliability and affordability. The forces driving change are significant and utilities must act decisively to navigate these challenges while building trust with customers and regulators. For a comprehensive analysis of the trends and strategies driving the future of utilities, download the full report. Surging Demand Requires Proactive Grid Management One of the most pressing issues is the unprecedented demand growth fueled by data centers, AI workloads and advanced manufacturing. Global power demand from data centers alone is expected to rise by 165% by 2030, with AI-driven workloads accounting for nearly a third of that increase. This surge in demand is straining transmission and distribution grids, which are already hampered by regulatory and permitting delays. Utilities must rethink traditional planning cycles and adopt predictive load forecasting tools to anticipate new energy use patterns with greater accuracy. Advanced transmission technologies, such as dynamic line ratings and topology optimization, can help increase grid capacity and efficiency, ensuring utilities remain competitive. Modernizing interconnection processes is also vital, as delays in connecting new loads to the grid can hinder progress. By deploying digital workflow tools and creating public-facing hosting capacity maps, utilities can streamline interconnection requests and enable developers to make informed decisions about project siting. Customer Affordability at a Tipping Point Massive grid investments to support electrification, data centers and climate resilience are driving rates higher, while inflation continues to strain household budgets. Since 2021, electricity prices have risen by 30%, leaving nearly 80 million Americans struggling to pay their utility bills. Utilities must adopt customer-centric solutions to address these concerns. Predictive analytics can

Read More »

Equinor Greenlights Johan Castberg Tieback

Equinor ASA and its partners have agreed to proceed with the first project to be connected to the Johan Castberg field. Johan Castberg started production in March as only the third development on Norway’s side of the Barents Sea, according to information on government website Norskpetroleum.no. The other two, Snøhvit and Goliat, came online 2007 and 2016 respectively. “Recoverable oil in the new subsea development [the Isflak discovery] is estimated at 46 million barrels, and start-up is planned as early as the fourth quarter of 2028”, the Norwegian primarily state-owned company said in an online statement. Isflak, the first of several discoveries planned to be tied back to Johan Castberg, was discovered 2021. Its development is estimated to cost over NOK 4 billion, according to the statement. “A rapid development is possible because we can copy standardized solutions from Johan Castberg. The reservoir is in the same license and is similar to the discoveries we have developed previously, which means that we can copy equipment and well solutions. Johan Castberg has been developed as a future hub in the area”, said Equinor senior vice president for project development Trond Bokn. Equinor said, “The development solution for the Isflak discovery consists of two wells in a new subsea template tied back to existing subsea facilities via pipelines and umbilicals, and all new infrastructure is located within the current Johan Castberg license”. “Equinor has therefore applied to the Ministry of Energy for confirmation that Equinor has fulfilled the impact assessment obligation and exemption from the requirement for a plan for development and operation”, it said. “Global combustion emissions have been assessed in line with new practice”. Johan Castberg has raised Norway’s production capacity by up to 220,000 barrels per day, with estimated recoverable volumes of 450-650 million barrels, according to Equinor. The

Read More »

TotalEnergies, Repsol, HitecVision Form UK North Sea Leader

TotalEnergies SE and NEO NEXT Energy Ltd, recently created by Repsol UK Ltd and HitecVision AS, have entered into a deal to combine their exploration and production assets in the United Kingdom and thereby create what they say would be the top producer in the UK North Sea. France’s TotalEnergies would own 47.5 percent of the resulting company, to be called NEO NEXT+. Norway-based HitecVision, a capital investor in Europe’s energy sector, and Repsol UK will retain 28.88 percent and 23.63 percent respectively, according to online statements by the parties. Repsol UK is 75 percent owned by Spanish integrated energy company Repsol SA and 25 percent owned by the United States’ EIG Global Energy Partners, which acquired a 25 percent stake in Repsol SA’s entire upstream portfolio in 2023 for $4.8 billion. HitecVision and Repsol UK had merged their North Sea assets into NEO NEXT earlier this year with interests of 55 percent and 45 percent respectively. NEO NEXT+ would “encompass a large and diverse asset portfolio including notably NEO Energy’s [HitecVision subsidiary] and Repsol UK’s interests in the Elgin/Franklin complex and the Penguins, Mariner, Shearwater and Culzean fields, enriched by TotalEnergies’ UK upstream assets, notably including its interests in the Elgin/Franklin complex and the Alwyn North, Dunbar and Culzean fields”, TotalEnergies said in a statement on its website. “With TotalEnergies as its leading shareholder, NEO NEXT+ will become the largest independent oil and gas producer in the UK with a production over 250,000 barrels of oil equivalent per day in 2026, ideally positioned to maximize the value of its portfolio, deliver strong financial returns and ensure a long-term sustainable and resilient future for its oil and gas business”, TotalEnergies said. TotalEnergies’ upstream portfolio in the UK averaged 121,000 barrels of oil equivalent a day (boed) last year, accounting for about 27 percent of the

Read More »

Executive Roundtable: Converging Disciplines in the AI Buildout

At Data Center Frontier, we rely on industry leaders to help us understand the most urgent challenges facing digital infrastructure. And in the fourth quarter of 2025, the data center industry is adjusting to a new kind of complexity.  AI-scale infrastructure is redefining what “mission critical” means, from megawatt density and modular delivery to the chemistry of cooling fluids and the automation of energy systems. Every project has arguably in effect now become an ecosystem challenge, demanding that electrical, mechanical, construction, and environmental disciplines act as one.  For this quarter’s Executive Roundtable, DCF convened subject matter experts from Ecolab, EdgeConneX, Rehlko and Schneider Electric – leaders spanning the full chain of facilities design, deployment, and operation. Their insights illuminate how liquid cooling, energy management, and sustainable process design in data centers are now converging to set the pace for the AI era. Our distinguished executive panelists for this quarter include: Rob Lowe, Director RD&E – Global High Tech, Ecolab Phillip Marangella, Chief Marketing and Product Officer, EdgeConneX Ben Rapp, Manager, Strategic Project Development, Rehlko Joe Reele, Vice President, Datacenter Solution Architects, Schneider Electric Today: Engineering the New Normal – Liquid Cooling at Scale  Today’s kickoff article grapples with how, as liquid cooling technology transitions to default hyperscale design, the challenge is no longer if, but how to scale builds safely, repeatably, and globally.  Cold plates, immersion, dielectric fluids, and liquid-to-chip loops are converging into factory-integrated building blocks, yet variability in chemistry, serviceability, materials, commissioning practices, and long-term maintenance threatens to fragment adoption just as demand accelerates.  Success now hinges on shared standards and tighter collaboration across OEMs, builders, and process specialists worldwide. So how do developers coordinate across the ecosystem to make liquid cooling a safe, maintainable global default? What’s Ahead in the Roundtable Over the coming days, our panel

Read More »

DCF Trends Summit 2025: AI for Good – How Operators, Vendors and Cooling Specialists See the Next Phase of AI Data Centers

At the 2025 Data Center Frontier Trends Summit (Aug. 26-28) in Reston, Va., the conversation around AI and infrastructure moved well past the hype. In a panel sponsored by Schneider Electric—“AI for Good: Building for AI Workloads and Using AI for Smarter Data Centers”—three industry leaders explored what it really means to design, cool and operate the new class of AI “factories,” while also turning AI inward to run those facilities more intelligently. Moderated by Data Center Frontier Editor in Chief Matt Vincent, the session brought together: Steve Carlini, VP, Innovation and Data Center Energy Management Business, Schneider Electric Sudhir Kalra, Chief Data Center Operations Officer, Compass Datacenters Andrew Whitmore, VP of Sales, Motivair Together, they traced both sides of the “AI for Good” equation: building for AI workloads at densities that would have sounded impossible just a few years ago, and using AI itself to reduce risk, improve efficiency and minimize environmental impact. From Bubble Talk to “AI Factories” Carlini opened by acknowledging the volatility surrounding AI investments, citing recent headlines and even Sam Altman’s public use of the word “bubble” to describe the current phase of exuberance. “It’s moving at an incredible pace,” Carlini noted, pointing out that roughly half of all VC money this year has flowed into AI, with more already spent than in all of the previous year. Not every investor will win, he said, and some companies pouring in hundreds of billions may not recoup their capital. But for infrastructure, the signal is clear: the trajectory is up and to the right. GPU generations are cycling faster than ever. Densities are climbing from high double-digits per rack toward hundreds of kilowatts. The hyperscale “AI factories,” as NVIDIA calls them, are scaling to campus capacities measured in gigawatts. Carlini reminded the audience that in 2024,

Read More »

FinOps Foundation sharpens FOCUS to reduce cloud cost chaos

“The big change that’s really started to happen in late 2024 early 2025 is that the FinOps practice started to expand past the cloud,” Storment said. “A lot of organizations got really good at using FinOps to manage the value of cloud, and then their organizations went, ‘oh, hey, we’re living in this happily hybrid state now where we’ve got cloud, SaaS, data center. Can you also apply the FinOps practice to our SaaS? Or can you apply it to our Snowflake? Can you apply it to our data center?’” The FinOps Foundation’s community has grown to approximately 100,000 practitioners. The organization now includes major cloud vendors, hardware providers like Nvidia and AMD, data center operators and data cloud platforms like Snowflake and Databricks. Some 96 of the Fortune 100 now participate in FinOps Foundation programs. The practice itself has shifted in two directions. It has moved left into earlier architectural and design processes, becoming more proactive rather than reactive. It has also moved up organizationally, from director-level cloud management roles to SVP and COO positions managing converged technology portfolios spanning multiple infrastructure types. This expansion has driven the evolution of FOCUS beyond its original cloud billing focus. Enterprises are implementing FOCUS as an internal standard for chargeback reporting even when their providers don’t generate native FOCUS data. Some newer cloud providers, particularly those focused on AI infrastructure, are using the FOCUS specification to define their billing data structures from the ground up rather than retrofitting existing systems. The FOCUS 1.3 release reflects this maturation, addressing technical gaps that have emerged as organizations apply cost management practices across increasingly complex hybrid environments. FOCUS 1.3 exposes cost allocation logic for shared infrastructure The most significant technical enhancement in FOCUS 1.3 addresses a gap in how shared infrastructure costs are allocated and

Read More »

Aetherflux joins the race to launch orbital data centers by 2027

Enterprises will connect to and manage orbital workloads “the same way they manage cloud workloads today,” using optical links, the spokesperson added. The company’s approach is to “continuously launch new hardware and quickly integrate the latest architectures,” with older systems running lower-priority tasks to serve out the full useful lifetime of their high-end GPUs. The company declined to disclose pricing. Aetherflux plans to launch about 30 satellites at a time on SpaceX Falcon 9 rockets. Before the data center launch, the company will launch a power-beaming demonstration satellite in 2026 to test transmission of one kilowatt of energy from orbit to ground stations, using infrared lasers. Competition in the sector has intensified in recent months. In November, Starcloud launched its Starcloud-1 satellite carrying an Nvidia H100 GPU, which is 100 times more powerful than any previous GPU flown in space, according to the company, and demonstrated running Google’s Gemma AI model in orbit. In the same month, Google announced Project Suncatcher, with a 2027 demonstration mission planned. Analysts see limited near-term applications Despite the competitive activity, orbital data centers won’t replace terrestrial cloud regions for general hosting through 2030, said Ashish Banerjee, senior principal analyst at Gartner. Instead, they suit specific workloads, including meeting data sovereignty requirements for jurisdictionally complex scenarios, offering disaster recovery immune to terrestrial risks, and providing asynchronous high-performance computing, he said. “Orbital centers are ideal for high-compute, low-I/O batch jobs,” Banerjee said. “Think molecular folding simulations for pharma, massive Monte Carlo financial simulations, or training specific AI model weights. If the job takes 48 hours, the 500ms latency penalty of LEO is irrelevant.” One immediate application involves processing satellite-generated data in orbit, he said. Earth observation satellites using synthetic aperture radar generate roughly 10 gigabytes per second, but limited downlink bandwidth creates bottlenecks. Processing data in

Read More »

Here’s what Oracle’s soaring infrastructure spend could mean for enterprises

He said he had earlier told analysts in a separate call that margins for AI workloads in these data centers would be in the 30% to 40% range over the life of a customer contract. Kehring reassured that there would be demand for the data centers when they were completed, pointing to Oracle’s increasing remaining performance obligations, or services contracted but not yet delivered, up $68 billion on the previous quarter, saying that Oracle has been seeing unprecedented demand for AI workloads driven by the likes of Meta and Nvidia. Rising debt and margin risks raise flags for CIOs For analysts, though, the swelling debt load is hard to dismiss, even with Oracle’s attempts to de-risk its spend and squeeze more efficiency out of its buildouts. Gogia sees Oracle already under pressure, with the financial ecosystem around the company pricing the risk — one of the largest debts in corporate history, crossing $100 billion even before the capex spend this quarter — evident in the rising cost of insuring the debt and the shift in credit outlook. “The combination of heavy capex, negative free cash flow, increasing financing cost and long-dated revenue commitments forms a structural pressure that will invariably finds its way into the commercial posture of the vendor,” Gogia said, hinting at an “eventual” increase in pricing of the company’s offerings. He was equally unconvinced by Magouyrk’s assurances about the margin profile of AI workloads as he believes that AI infrastructure, particularly GPU-heavy clusters, delivers significantly lower margins in the early years because utilisation takes time to ramp.

Read More »

New Nvidia software gives data centers deeper visibility into GPU thermals and reliability

Addressing the challenge Modern AI accelerators now draw more than 700W per GPU, and multi-GPU nodes can reach 6kW, creating concentrated heat zones, rapid power swings, and a higher risk of interconnect degradation in dense racks, according to Manish Rawat, semiconductor analyst at TechInsights. Traditional cooling methods and static power planning increasingly struggle to keep pace with these loads. “Rich vendor telemetry covering real-time power draw, bandwidth behavior, interconnect health, and airflow patterns shifts operators from reactive monitoring to proactive design,” Rawat said. “It enables thermally aware workload placement, faster adoption of liquid or hybrid cooling, and smarter network layouts that reduce heat-dense traffic clusters.” Rawat added that the software’s fleet-level configuration insights can also help operators catch silent errors caused by mismatched firmware or driver versions. This can improve training reproducibility and strengthen overall fleet stability. “Real-time error and interconnect health data also significantly accelerates root-cause analysis, reducing MTTR and minimizing cluster fragmentation,” Rawat said. These operational pressures can shape budget decisions and infrastructure strategy at the enterprise level.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »