Stay Ahead, Stay ONMINE

Anthropic’s chief scientist on 5 ways agents will be even better in 2025

Agents are the hottest thing in tech right now. Top firms from Google DeepMind to OpenAI to Anthropic are racing to augment large language models with the ability to carry out tasks by themselves. Known as agentic AI in industry jargon, such systems have fast become the new target of Silicon Valley buzz. Everyone from Nvidia to Salesforce is talking about how they are going to upend the industry.  “We believe that, in 2025, we may see the first AI agents ‘join the workforce’ and materially change the output of companies,” Sam Altman claimed in a blog post last week. In the broadest sense, an agent is a software system that goes off and does something, often with minimal to zero supervision. The more complex that thing is, the smarter the agent needs to be. For many, large language models are now smart enough to power agents that can do a whole range of useful tasks for us, such as filling out forms, looking up a recipe and adding the ingredients to an online grocery basket, or using a search engine to do last-minute research before a meeting and producing a quick bullet-point summary. In October, Anthropic showed off one of the most advanced agents yet: an extension of its Claude large language model called computer use. As the name suggests, it lets you direct Claude to use a computer much as a person would, by moving a cursor, clicking buttons, and typing text. Instead of simply having a conversation with Claude, you can now ask it to carry out on-screen tasks for you. Anthropic notes that the feature is still cumbersome and error-prone. But it is already available to a handful of testers, including third-party developers at companies such as DoorDash, Canva, and Asana. Computer use is a glimpse of what’s to come for agents. To learn what’s coming next, MIT Technology Review talked to Anthropic’s cofounder and chief scientist Jared Kaplan. Here are five ways that agents are going to get even better in 2025. (Kaplan’s answers have been lightly edited for length and clarity.) 1/ Agents will get better at using tools “I think there are two axes for thinking about what AI is capable of. One is a question of how complex the task is that a system can do. And as AI systems get smarter, they’re getting better in that direction. But another direction that’s very relevant is what kinds of environments or tools the AI can use.  “So, like, if you go back almost 10 years now to [DeepMind’s Go-playing model] AlphaGo, we had AI systems that were superhuman in terms of how well they could play board games. But if all you can work with is a board game, then that’s a very restrictive environment. It’s not actually useful, even if it’s very smart. With text models, and then multimodal models, and now computer use—and perhaps in the future with robotics—you’re moving toward bringing AI into different situations and tasks, and making it useful.  “We were excited about computer use basically for that reason. Until recently, with large language models, it’s been necessary to give them a very specific prompt, give them very specific tools, and then they’re restricted to a specific kind of environment. What I see is that computer use will probably improve quickly in terms of how well models can do different tasks and more complex tasks. And also to realize when they’ve made mistakes, or realize when there’s a high-stakes question and it needs to ask the user for feedback.” 2/ Agents will understand context   “Claude needs to learn enough about your particular situation and the constraints that you operate under to be useful. Things like what particular role you’re in, what styles of writing or what needs you and your organization have. “I think that we’ll see improvements there where Claude will be able to search through things like your documents, your Slack, etc., and really learn what’s useful for you. That’s underemphasized a bit with agents. It’s necessary for systems to be not only useful but also safe, doing what you expected. “Another thing is that a lot of tasks won’t require Claude to do much reasoning. You don’t need to sit and think for hours before opening Google Docs or something. And so I think that a lot of what we’ll see is not just more reasoning but the application of reasoning when it’s really useful and important, but also not wasting time when it’s not necessary.” 3/ Agents will make coding assistants better “We wanted to get a very initial beta of computer use out to developers to get feedback while the system was relatively primitive. But as these systems get better, they might be more widely used and really collaborate with you on different activities. “I think DoorDash, the Browser Company, and Canva are all experimenting with, like, different kinds of browser interactions and designing them with the help of AI. “My expectation is that we’ll also see further improvements to coding assistants. That’s something that’s been very exciting for developers. There’s just a ton of interest in using Claude 3.5 for coding, where it’s not just autocomplete like it was a couple of years ago. It’s really understanding what’s wrong with code, debugging it—running the code, seeing what happens, and fixing it.” 4/ Agents will need to be made safe “We founded Anthropic because we expected AI to progress very quickly and [thought] that, inevitably, safety concerns were going to be relevant. And I think that’s just going to become more and more visceral this year, because I think these agents are going to become more and more integrated into the work we do. We need to be ready for the challenges, like prompt injection.  [Prompt injection is an attack in which a malicious prompt is passed to a large language model in ways that its developers did not foresee or intend. One way to do this is to add the prompt to websites that models might visit.] “Prompt injection is probably one of the No.1 things we’re thinking about in terms of, like, broader usage of agents. I think it’s especially important for computer use, and it’s something we’re working on very actively, because if computer use is deployed at large scale, then there could be, like, pernicious websites or something that try to convince Claude to do something that it shouldn’t do. “And with more advanced models, there’s just more risk. We have a robust scaling policy where, as AI systems become sufficiently capable, we feel like we need to be able to really prevent them from being misused. For example, if they could help terrorists—that kind of thing. “So I’m really excited about how AI will be useful—it’s actually also accelerating us a lot internally at Anthropic, with people using Claude in all kinds of ways, especially with coding. But, yeah, there’ll be a lot of challenges as well. It’ll be an interesting year.”

Agents are the hottest thing in tech right now. Top firms from Google DeepMind to OpenAI to Anthropic are racing to augment large language models with the ability to carry out tasks by themselves. Known as agentic AI in industry jargon, such systems have fast become the new target of Silicon Valley buzz. Everyone from Nvidia to Salesforce is talking about how they are going to upend the industry. 

“We believe that, in 2025, we may see the first AI agents ‘join the workforce’ and materially change the output of companies,” Sam Altman claimed in a blog post last week.

In the broadest sense, an agent is a software system that goes off and does something, often with minimal to zero supervision. The more complex that thing is, the smarter the agent needs to be. For many, large language models are now smart enough to power agents that can do a whole range of useful tasks for us, such as filling out forms, looking up a recipe and adding the ingredients to an online grocery basket, or using a search engine to do last-minute research before a meeting and producing a quick bullet-point summary.

In October, Anthropic showed off one of the most advanced agents yet: an extension of its Claude large language model called computer use. As the name suggests, it lets you direct Claude to use a computer much as a person would, by moving a cursor, clicking buttons, and typing text. Instead of simply having a conversation with Claude, you can now ask it to carry out on-screen tasks for you.

Anthropic notes that the feature is still cumbersome and error-prone. But it is already available to a handful of testers, including third-party developers at companies such as DoorDash, Canva, and Asana.

Computer use is a glimpse of what’s to come for agents. To learn what’s coming next, MIT Technology Review talked to Anthropic’s cofounder and chief scientist Jared Kaplan. Here are five ways that agents are going to get even better in 2025.

(Kaplan’s answers have been lightly edited for length and clarity.)

1/ Agents will get better at using tools

“I think there are two axes for thinking about what AI is capable of. One is a question of how complex the task is that a system can do. And as AI systems get smarter, they’re getting better in that direction. But another direction that’s very relevant is what kinds of environments or tools the AI can use. 

“So, like, if you go back almost 10 years now to [DeepMind’s Go-playing model] AlphaGo, we had AI systems that were superhuman in terms of how well they could play board games. But if all you can work with is a board game, then that’s a very restrictive environment. It’s not actually useful, even if it’s very smart. With text models, and then multimodal models, and now computer use—and perhaps in the future with robotics—you’re moving toward bringing AI into different situations and tasks, and making it useful. 

“We were excited about computer use basically for that reason. Until recently, with large language models, it’s been necessary to give them a very specific prompt, give them very specific tools, and then they’re restricted to a specific kind of environment. What I see is that computer use will probably improve quickly in terms of how well models can do different tasks and more complex tasks. And also to realize when they’ve made mistakes, or realize when there’s a high-stakes question and it needs to ask the user for feedback.”

2/ Agents will understand context  

“Claude needs to learn enough about your particular situation and the constraints that you operate under to be useful. Things like what particular role you’re in, what styles of writing or what needs you and your organization have.

Jared Kaplan

“I think that we’ll see improvements there where Claude will be able to search through things like your documents, your Slack, etc., and really learn what’s useful for you. That’s underemphasized a bit with agents. It’s necessary for systems to be not only useful but also safe, doing what you expected.

“Another thing is that a lot of tasks won’t require Claude to do much reasoning. You don’t need to sit and think for hours before opening Google Docs or something. And so I think that a lot of what we’ll see is not just more reasoning but the application of reasoning when it’s really useful and important, but also not wasting time when it’s not necessary.”

3/ Agents will make coding assistants better

“We wanted to get a very initial beta of computer use out to developers to get feedback while the system was relatively primitive. But as these systems get better, they might be more widely used and really collaborate with you on different activities.

“I think DoorDash, the Browser Company, and Canva are all experimenting with, like, different kinds of browser interactions and designing them with the help of AI.

“My expectation is that we’ll also see further improvements to coding assistants. That’s something that’s been very exciting for developers. There’s just a ton of interest in using Claude 3.5 for coding, where it’s not just autocomplete like it was a couple of years ago. It’s really understanding what’s wrong with code, debugging it—running the code, seeing what happens, and fixing it.”

4/ Agents will need to be made safe

“We founded Anthropic because we expected AI to progress very quickly and [thought] that, inevitably, safety concerns were going to be relevant. And I think that’s just going to become more and more visceral this year, because I think these agents are going to become more and more integrated into the work we do. We need to be ready for the challenges, like prompt injection. 

[Prompt injection is an attack in which a malicious prompt is passed to a large language model in ways that its developers did not foresee or intend. One way to do this is to add the prompt to websites that models might visit.]

“Prompt injection is probably one of the No.1 things we’re thinking about in terms of, like, broader usage of agents. I think it’s especially important for computer use, and it’s something we’re working on very actively, because if computer use is deployed at large scale, then there could be, like, pernicious websites or something that try to convince Claude to do something that it shouldn’t do.

“And with more advanced models, there’s just more risk. We have a robust scaling policy where, as AI systems become sufficiently capable, we feel like we need to be able to really prevent them from being misused. For example, if they could help terrorists—that kind of thing.

“So I’m really excited about how AI will be useful—it’s actually also accelerating us a lot internally at Anthropic, with people using Claude in all kinds of ways, especially with coding. But, yeah, there’ll be a lot of challenges as well. It’ll be an interesting year.”

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Oil Rises but Logs Second Weekly Loss

Oil rose on Friday but still notched a second weekly loss as the market continued to weigh the threat to output from sanctions on Russia against a looming oversupply. West Texas Intermediate futures rose around 0.5% to settle below $60 a barrel, but were still down for the week. Adding to fears of a glut, oil prices have also been buffeted by swings in equity markets this week. Meanwhile, the White House’s move to clamp down on the buying of Russian crude led oil trading giant Gunvor Group to withdraw an offer for the international assets of Lukoil PJSC. The fate of the assets, which include stakes in oil fields, refineries and gas stations, remains unclear. One possible exception to that crackdown could emerge soon: President Donald Trump signaled an openness to exempting Hungary from sanctions on Russian energy purchases as he hosted Prime Minister Viktor Orban, briefly pushing futures to intraday lows. The development appeared to allay shortage fears, given that Budapest imports over 90% of its crude from Moscow. Senior industry figures have warned the latest US curbs on Russia’s two largest oil companies are beginning to have an impact on the market, particularly in diesel, where prices have been surging in recent days, with time spreads for the fuel signaling supply pressure. At the same time, the US measures have come against a backdrop of oversupply that has weighed on key crude oil metrics. The spread between the nearest West Texas Intermediate futures closed at the weakest level since February on Thursday. “If the market flips to contango, we may see more bearish funds enter the crude space,” said Dennis Kissler, senior vice president for trading at BOK Financial said of the potential that longer-dated contracts trade at a premium to nearer-term ones. “Most traders remain surprised

Read More »

Ship With Russia Oil Makes Rare Move Offshore India

A tanker carrying crude from recently-sanctioned Rosneft PJSC has made a rare cargo transfer off Mumbai, as the Trump administration ramps up its scrutiny of India’s oil trade with Russia. But the unusual move has puzzled traders. The cargo was transferred from one blacklisted tanker to another sanctioned ship, meaning there’s been no attempt to hide its origin — typical of such a move — and the crude is still heading for an Indian port: Kochi in the south, rather than Mumbai on the west coast. India’s purchases of Russian oil have drawn the ire of President Donald Trump, and the US penalties on Rosneft along with Lukoil PJSC are expected to severely impact the trade. The market is keenly watching for disruptions to established flows before a grace period related to the sanctions ends later this month. “What we’re seeing now is this uncertainty in the market about what the sanctions risks are,” said Rachel Ziemba, an analyst at the Center for a New American Security in Washington. “The net result is more ship-to-ship transfers, more subterfuge, longer routes, more complicated transactions.” The Fortis took around 720,000 barrels of Russian Urals from Ailana on Tuesday near Mumbai, according to ship-tracking data compiled by Bloomberg, Kpler and Vortexa. The cargo was collected from the Baltic port of Ust-Luga before the US sanctioned Rosneft, and Ailana had idled in the area for nearly two weeks with no clear reason.  Ailana is on its way back to Russia, while Fortis is expected to arrive at Kochi early next week with the cargo, ship-tracking data shows. Both vessels have been sanctioned by the European Union and the UK. Fortis’ owner and manager — Vietnam-based Pacific Logistic & Maritime and North Star Ship Management — didn’t respond to emailed requests for comment. There are no contact details on maritime database

Read More »

Southwest Power Pool to develop 765-kV regional transmission ‘backbone’

Listen to the article 4 min This audio is auto-generated. Please let us know if you have feedback. Dive Brief: The Southwest Power Pool board of directors on Wednesday approved an $8.6 billion slate of 50 transmission projects across its 14-state footprint. The projects are intended to help the grid operator meet peak demand, which it expects will double, to reach 109 GW, in the next 10 years. Key to the 2025 Integrated Transmission Plan is development of a 765-kV regional transmission “backbone” that can carry four times the power SPP’s existing 345-kV lines do, and do so more efficiently. The grid operator’s transmission system “is at capacity and forecasted load growth will only exacerbate the existing strain,” it said. “Simply adding new generation will not resolve the challenges.” 765-kV transmission lines are the highest operating voltages in the U.S. but are new in both SPP and in the neighboring Electric Reliability Council of Texas market. Texas regulators approved the higher voltage lines for the first time in April. Dive Insight: Transmission developers in SPP and ERCOT are turning to 765-kV projects to mitigate line losses and move greater volumes of power into demand centers at a time when electricity demand is expected to rise significantly. “With the new load being integrated into the system, SPP could see an increase in the footprint’s annual energy consumption by as much as 136%,” the grid operator said in its ITP. “Investments in transmission are the key to keep costs low, maintain reliability, and power economic growth.” Even under conservative assumptions, SPP forecasts a 35% increase in demand, “making timely transmission investment essential,” the grid operator said. SPP selected Xcel Energy in February to construct the first 765-kV lines in its footprint. Those lines were identified in its 2024 plan. AEP Texas will build

Read More »

The week in 5 numbers: Gas valuations soar but solar leads new capacity

The price gas power merger and acquisitions have reached in some markets, according to energy analytics firm Enverus. The artificial intelligence boom, along with expectations of increased manufacturing and electrification, is driving a surge in natural gas investment, but thermal generation remains risky, some analysts say, drawing parallels to the dot com bubble at the turn of the century. 

Read More »

Our laws must catch up to data centers’ rising power

Alexandra Klass is the James G. Degnan Professor of Law at Michigan Law, and Dave Owen is the Albert Abramson ’54 Distinguished Professor of Law at UC Law San Francisco. The United States faces massive growth in electricity demand. If utilities’ projections are right, data centers will drive much of that growth. And if utilities try to meet that demand in traditional ways, the results could be bad for consumers, the environment and the tech industry. Those traditional ways assume that utilities must meet the needs of electricity customers at all times. This requires utilities to build new power plants and transmission and distribution lines and (in most states) pass those costs, plus a profit margin, on to consumers. Utilities also will not allow major new users to connect to the grid until those users’ needs can be met. These principles are a poor fit for the present moment. Building new power plants and transmission lines has become increasingly difficult. If data centers must wait until that infrastructure is fully built, they may wait for years. Worse, utilities and government officials are citing the potential data-center boom as a reason to extend the life of old, expensive, and heavily polluting coal plants or to build new gas plants. If they do so, and if they pass those costs on to consumers, retail electricity prices and pollution will rise. And if current demand projections turn out to be overestimates — which has happened during past tech booms — consumers will pay for new power plants that never needed to be built. But this unfortunate scenario is not inevitable. We are scholars of energy, natural resources, and environmental law, and in a paper we explore a better way of meeting this moment. Our inspiration comes from legal systems for allocating water, particularly in

Read More »

Oil Market Appears ‘Torn’

The oil market appears “torn”. That’s what Standard Chartered Bank Energy Research Head Emily Ashford outlined in a report sent to Rigzone by the Standard Chartered team this week, which included a Brent price forecast from Standard Chartered’s machine learning model for next Monday. “The market appears torn between the overwhelming media narrative of an impending supply glut just over the horizon on the one hand, and increasingly unpredictable U.S. policy with a focus on some of the largest producers, and the demand implications of the evolving tariff/trade war landscape on the other,” Ashford said in the statement. “Front-month Brent crude prices closed at $68.89 per barrel on 3 November, just $0.01 per barrel higher than our machine learning model SCORPIO’s forecast set last week,” Ashford added. “This week the model sees an increase of $1.67 per barrel to $66.56 per barrel settlement on Monday 10 November, mainly driven by data from the U.S. (pointing sideways but bullish altogether),” Ashford continued. In the report, Ashford cautioned that “the ongoing U.S. shutdown means that some key data releases remain on pause”. Ashford highlighted in the report that Standard Chartered’s “core view” is that crude oil sentiment “is currently overwhelmingly negative”. “We expect near-term weakness driven by perceived market oversupply and global demand indicators,” Ashford noted. “Low prices then start to quash U.S. shale output growth, and if OPEC+’s return of barrels is sustained, the market will highlight tightness and geographic concentration of spare capacity, which we expect to be supportive in the medium term,” Ashford added. Standard Chartered’s report projected that the ICE Brent nearby future crude oil price will average $68.50 per barrel overall in 2025 and $63.50 per barrel overall in 2026. The report forecast that the commodity will come in at $65 per barrel in the fourth quarter

Read More »

Designing the AI Century: 7×24 Exchange Fall ’25 Charts the New Data Center Industrial Stack

SMRs and the AI Power Gap: Steve Fairfax Separates Promise from Physics If NVIDIA’s Sean Young made the case for AI factories, Steve Fairfax offered a sobering counterweight: even the smartest factories can’t run without power—and not just any power, but constant, high-availability, clean generation at a scale utilities are increasingly struggling to deliver. In his keynote “Small Modular Reactors for Data Centers,” Fairfax, president of Oresme and one of the data center industry’s most seasoned voices on reliability, walked through the long arc from nuclear fusion research to today’s resurgent interest in fission at modular scale. His presentation blended nuclear engineering history with pragmatic counsel for AI-era infrastructure leaders: SMRs are promising, but their road to reality is paved with physics, fuel, and policy—not PowerPoint. From Fusion Research to Data Center Reliability Fairfax began with his own story—a career that bridges nuclear reliability and data center engineering. As a young physicist and electrical engineer at MIT, he helped build the Alcator C-MOD fusion reactor, a 400-megawatt research facility that heated plasma to 100 million degrees with 3 million amps of current. The magnet system alone drew 265,000 amps at 1,400 volts, producing forces measured in millions of pounds. It was an extreme experiment in controlled power, and one that shaped his later philosophy: design for failure, test for truth, and assume nothing lasts forever. When the U.S. cooled on fusion power in the 1990s, Fairfax applied nuclear reliability methods to data center systems—quantifying uptime and redundancy with the same math used for reactor safety. By 1994, he was consulting for hyperscale pioneers still calling 10 MW “monstrous.” Today’s 400 MW campuses, he noted, are beginning to look a lot more like reactors in their energy intensity—and increasingly, in their regulatory scrutiny. Defining the Small Modular Reactor Fairfax defined SMRs

Read More »

Top network and data center events 2025 & 2026

Denise Dubie is a senior editor at Network World with nearly 30 years of experience writing about the tech industry. Her coverage areas include AIOps, cybersecurity, networking careers, network management, observability, SASE, SD-WAN, and how AI transforms enterprise IT. A seasoned journalist and content creator, Denise writes breaking news and in-depth features, and she delivers practical advice for IT professionals while making complex technology accessible to all. Before returning to journalism, she held senior content marketing roles at CA Technologies, Berkshire Grey, and Cisco. Denise is a trusted voice in the world of enterprise IT and networking.

Read More »

Google’s cheaper, faster TPUs are here, while users of other AI processors face a supply crunch

Opportunities for the AI industry LLM vendors such as OpenAI and Anthropic, which still have relatively young code bases and are continuously evolving them, also have much to gain from the arrival of Ironwood for training their models, said Forrester vice president and principal analyst Charlie Dai. In fact, Anthropic has already agreed to procure 1 million TPUs for training and its models and using them for inferencing. Other, smaller vendors using Google’s TPUs for training models include Lightricks and Essential AI. Google has seen a steady increase in demand for its TPUs (which it also uses to run interna services), and is expected to buy $9.8 billion worth of TPUs from Broadcom this year, compared to $6.2 billion and $2.04 billion in 2024 and 2023 respectively, according to Harrowell. “This makes them the second-biggest AI chip program for cloud and enterprise data centers, just tailing Nvidia, with approximately 5% of the market. Nvidia owns about 78% of the market,” Harrowell said. The legacy problem While some analysts were optimistic about the prospects for TPUs in the enterprise, IDC research director Brandon Hoff said enterprises will most likely to stay away from Ironwood or TPUs in general because of their existing code base written for other platforms. “For enterprise customers who are writing their own inferencing, they will be tied into Nvidia’s software platform,” Hoff said, referring to CUDA, the software platform that runs on Nvidia GPUs. CUDA was released to the public in 2007, while the first version of TensorFlow has only been around since 2015.

Read More »

Cisco launches AI infrastructure, AI practitioner certifications

“This new certification focuses on artificial intelligence and machine learning workloads, helping technical professionals become AI-ready and successfully embed AI into their workflows,” said Pat Merat, vice president at Learn with Cisco, in a blog detailing the new AI Infrastructure Specialist certification. “The certification validates a candidate’s comprehensive knowledge in designing, implementing, operating, and troubleshooting AI solutions across Cisco infrastructure.” Separately, the AITECH certification is part of the Cisco AI Infrastructure track, which complements its existing networking, data center, and security certifications. Cisco says the AITECH cert training is intended for network engineers, system administrators, solution architects, and other IT professionals who want to learn how AI impacts enterprise infrastructure. The training curriculum covers topics such as: Utilizing AI for code generation, refactoring, and using modern AI-assisted coding workflows. Using generative AI for exploratory data analysis, data cleaning, transformation, and generating actionable insights. Designing and implementing multi-step AI-assisted workflows and understanding complex agentic systems for automation. Learning AI-powered requirements, evaluating customization approaches, considering deployment strategies, and designing robust AI workflows. Evaluating, fine-tuning, and deploying pre-trained AI models, and implementing Retrieval Augmented Generation (RAG) systems. Monitoring, maintaining, and optimizing AI-powered workflows, ensuring data integrity and security. AITECH certification candidates will learn how to use AI to enhance productivity, automate routine tasks, and support the development of new applications. The training program includes hands-on labs and simulations to demonstrate practical use cases for AI within Cisco and multi-vendor environments.

Read More »

Chip-to-Grid Gets Bought: Eaton, Vertiv, and Daikin Deals Imply a New Thermal Capital Cycle

This week delivered three telling acquisitions that mark a turning point for the global data center supply chain; and more specifically, for the high-density liquid cooling mega-play now unfolding across the power-thermal continuum. Eaton is acquiring Boyd Thermal for $9.5 billion from Goldman Sachs Asset Management. Vertiv is buying PurgeRite for about $1 billion from Milton Street Capital. And Daikin Applied has moved to acquire Chilldyne, one of the most proven negative-pressure direct-to-chip pioneers. On paper, they’re three distinct transactions. In reality, they’re chapters in the same story: the acceleration of strategic vertical integration around thermal infrastructure for AI-class compute. The Equity Layer: Private Capital Builds, Strategics Buy From an equity standpoint, these are classic handoff moments between private-equity construction and corporate consolidation. Goldman Sachs built Boyd Thermal into a global platform spanning cold plates, CDUs, and high-density liquid loop design, now sold to Eaton at an enterprise multiple north of 5× 2026E revenue. Milton Street Capital took PurgeRite from a specialist contractor in fluid flushing and commissioning into a nationwide services platform. And Daikin, long synonymous with chillers and air-side thermal, is crossing the liquid Rubicon by buying its way into the D2C ecosystem. Each deal crystallizes a simple fact: liquid cooling is no longer an adjunct; it’s core infrastructure. Private equity did its job scaling the parts. Strategic players are now paying up for the system. Eaton’s Bid: The Chip-to-Grid Thesis For Eaton, Boyd Thermal is the final missing piece in its “chip-to-grid” thesis. The company already owns the electrical side of the data center: UPS, busway, switchgear, and monitoring. Boyd plugs the thermal gap, allowing Eaton to market full rack-to-substation solutions for AI loads in the 50–100 kW+ range. It’s a statement acquisition that places Eaton squarely against Schneider Electric, Vertiv and ABB in the race to

Read More »

Space: The final frontier for data processing

There are, however, a couple of reasons why data centers in space are being considered. There are plenty of reports about how the increased amount of AI processing is affecting power consumption within data centers; the World Economic Forum has estimated that the power required to handle AI is increasing at a rate of between 26% and 36% annually. Therefore, it is not surprising that organizations are looking at other options. But an even more pressing reason for orbiting data centers is to handle the amount of data that is being produced by existing satellites, Judge said. “Essentially, satellites are gathering a lot more data than can be sent to earth, because downlinks are a bottleneck,” he noted. “With AI capacity in orbit, they could potentially analyze more of this data, extract more useful information, and send insights back to earth. My overall feeling is that any more data processing in space is going to be driven by space processing needs.” And China may already be ahead of the game. Last year, Guoxing Aerospace  launched 12 satellites, forming a space-based computing network dubbed the Three-Body Computing Constellation. When completed, it will contain 2,800 satellites, all handling the orchestration and processing of data, taking edge computing to a new dimension.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »