Stay Ahead, Stay ONMINE

DeepSeek R1’s bold bet on reinforcement learning: How it outpaced OpenAI at 3% of the cost

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More DeepSeek R1’s Monday release has sent shockwaves through the AI community, disrupting assumptions about what’s required to achieve cutting-edge AI performance. Matching OpenAI’s o1 at just 3%-5% of the cost, this open-source model has not only […]

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More


DeepSeek R1’s Monday release has sent shockwaves through the AI community, disrupting assumptions about what’s required to achieve cutting-edge AI performance. Matching OpenAI’s o1 at just 3%-5% of the cost, this open-source model has not only captivated developers but also challenges enterprises to rethink their AI strategies.

The model has rocketed to the top-trending model being downloaded on HuggingFace (109,000, as of this writing) – as developers rush to try it out and seek to understand what it means for their AI development. Users are commenting that DeepSeek’s accompanying search feature (which you can find at DeepSeek’s site) is now superior to competitors like OpenAI and Perplexity, and is only rivaled by Google’s Gemini Deep Research.

The implications for enterprise AI strategies are profound: With reduced costs and open access, enterprises now have an alternative to costly proprietary models like OpenAI’s. DeepSeek’s release could democratize access to cutting-edge AI capabilities, enabling smaller organizations to compete effectively in the AI arms race.

This story focuses on exactly how DeepSeek managed this feat, and what it means for the vast number of users of AI models. For enterprises developing AI-driven solutions, DeepSeek’s breakthrough challenges assumptions of OpenAI’s dominance — and offers a blueprint for cost-efficient innovation. It’s the “how” DeepSeek did what it did that should be the most educational here.

DeepSeek’s breakthrough: Moving to pure reinforcement learning

In November, DeepSeek made headlines with its announcement that it had achieved performance surpassing OpenAI’s o1, but at the time it only offered a limited R1-lite-preview model. With Monday’s full release of R1 and the accompanying technical paper, the company revealed a surprising innovation: a deliberate departure from the conventional supervised fine-tuning (SFT) process widely used in training large language models (LLMs).

SFT, a standard step in AI development, involves training models on curated datasets to teach step-by-step reasoning, often referred to as chain-of-thought (CoT). It is considered essential for improving reasoning capabilities. However, DeepSeek challenged this assumption by skipping SFT entirely, opting instead to rely on reinforcement learning (RL) to train the model.

This bold move forced DeepSeek-R1 to develop independent reasoning abilities, avoiding the brittleness often introduced by prescriptive datasets. While some flaws emerge – leading the team to reintroduce a limited amount of SFT during the final stages of building the model – the results confirmed the fundamental breakthrough: reinforcement learning alone could drive substantial performance gains.

The company got much of the way using open source – a conventional and unsurprising way

First, some background on how DeepSeek got to where it did. DeepSeek, a 2023 spin-off from Chinese hedge-fund High-Flyer Quant, began by developing AI models for its proprietary chatbot before releasing them for public use.  Little is known about the company’s exact approach, but it quickly open sourced its models, and it’s extremely likely that the company built upon the open projects produced by Meta, for example the Llama model, and ML library Pytorch. 

To train its models, High-Flyer Quant secured over 10,000 Nvidia GPUs before U.S. export restrictions, and reportedly expanded to 50,000 GPUs through alternative supply routes, despite trade barriers. This pales compared to leading AI labs like OpenAI, Google, and Anthropic, which operate with more than 500,000 GPUs each.  

DeepSeek’s ability to achieve competitive results with limited resources highlights how ingenuity and resourcefulness can challenge the high-cost paradigm of training state-of-the-art LLMs.

Despite speculation, DeepSeek’s full budget is unknown

DeepSeek reportedly trained its base model — called V3 — on a $5.58 million budget over two months, according to Nvidia engineer Jim Fan. While the company hasn’t divulged the exact training data it used (side note: critics say this means DeepSeek isn’t truly open-source), modern techniques make training on web and open datasets increasingly accessible. Estimating the total cost of training DeepSeek-R1 is challenging. While running 50,000 GPUs suggests significant expenditures (potentially hundreds of millions of dollars), precise figures remain speculative.

What’s clear, though, is that DeepSeek has been very innovative from the get-go. Last year, reports emerged about some initial innovations it was making, around things like Mixture of Experts and Multi-Head Latent Attention.

How DeepSeek-R1 got to the “aha moment”

The journey to DeepSeek-R1’s final iteration began with an intermediate model, DeepSeek-R1-Zero, which was trained using pure reinforcement learning. By relying solely on RL, DeepSeek incentivized this model to think independently, rewarding both correct answers and the logical processes used to arrive at them.

This approach led to an unexpected phenomenon: The model began allocating additional processing time to more complex problems, demonstrating an ability to prioritize tasks based on their difficulty. DeepSeek’s researchers described this as an “aha moment,” where the model itself identified and articulated novel solutions to challenging problems (see screenshot below). This milestone underscored the power of reinforcement learning to unlock advanced reasoning capabilities without relying on traditional training methods like SFT.

Source: DeepSeek-R1 paper. Don’t let this graphic intimidate you. The key takeaway is the red line, where the model literally used the phrase “aha moment.” Researchers latched onto this as a striking example of the model’s ability to rethink problems in an anthropomorphic tone. For the researchers, they said it was their own “aha moment.”

The researchers conclude: “It underscores the power and beauty of reinforcement learning: rather than explicitly teaching the model on how to solve a problem, we simply provide it with the right incentives, and it autonomously develops advanced problem-solving strategies.”

More than RL

However, it’s true that the model needed more than just RL. The paper goes on to talk about how despite the RL creating unexpected and powerful reasoning behaviors, this intermediate model DeepSeek-R1-Zero did face some challenges, including poor readability, and language mixing (starting in Chinese and switching over to English, for example). So only then did the team decide to create a new model, which would become the final DeepSeek-R1 model. This model, again based on the V3 base model, was first injected with limited SFT – focused on a “small amount of long CoT data” or what was called cold-start data, to fix some of the challenges. After that, it was put through the same reinforcement learning process of R1-Zero. The paper then talks about how R1 went through some final rounds of fine-tuning.

The ramifications

One question is why there has been so much surprise by the release. It’s not like open source models are new. Open Source models have a huge logic and momentum behind them. Their free cost and malleability is why we reported recently that these models are going to win in the enterprise.

Meta’s open-weights model Llama 3, for example, exploded in popularity last year, as it was fine-tuned by developers wanting their own custom models. Similarly, now DeepSeek-R1 is already being used to distill its reasoning into an array of other, much smaller models – the difference being that DeepSeek offers industry-leading performance. This includes running tiny versions of the model on mobile phones, for example.

DeepSeek-R1 not only performs better than the leading open source alternative, Llama 3. It shows its entire chain of thought of its answers transparently. Meta’s Llama hasn’t been instructed to do this as a default; it takes aggressive prompting of Llama to do this.

The transparency has also provided a PR black-eye to OpenAI, which has so far hidden its chains of thought from users, citing competitive reasons and not to confuse users when a model gets something wrong. Transparency allows developers to pinpoint and address errors in a model’s reasoning, streamlining customizations to meet enterprise requirements more effectively.

For enterprise decision-makers, DeepSeek’s success underscores a broader shift in the AI landscape: leaner, more efficient development practices are increasingly viable. Organizations may need to reevaluate their partnerships with proprietary AI providers, considering whether the high costs associated with these services are justified when open-source alternatives can deliver comparable, if not superior, results.

To be sure, no massive lead

While DeepSeek’s innovation is groundbreaking, by no means has it established a commanding market lead. Because it published its research, other model companies will learn from it, and adapt. Meta and Mistral, the French open source model company, may be a beat behind, but it will probably only be a few months before they catch up. As Meta’s lead researcher Yann Lecun put it: “The idea is that everyone profits from everyone else’s ideas. No one ‘outpaces’ anyone and no country ‘loses’ to another. No one has a monopoly on good ideas. Everyone’s learning from everyone else.” So it’s execution that matters.

Ultimately, it’s the consumers, startups and other users who will win the most, because DeepSeek’s offerings will continue to drive the price of using these models near zero (again aside from cost of running models at inference). This rapid commoditization could pose challenges – indeed, massive pain – for leading AI providers that have invested heavily in proprietary infrastructure. As many commentators have put it, including Chamath Palihapitiya, an investor and former executive at Meta, this could mean that years of OpEx and CapEx by OpenAI and others will be wasted.

There is substantial commentary about whether it is ethical to use the DeepSeek-R1 model because of the biases instilled in it by Chinese laws, for example that it shouldn’t answer questions about the Chinese government’s brutal crackdown at Tiananmen Square. Despite ethical concerns around biases, many developers view these biases as infrequent edge cases in real-world applications – and they can be mitigated through fine-tuning. Moreover, they point to different, but analogous biases that are held by models from OpenAI and other companies. Meta’s Llama has emerged as a popular open model despite its data sets not being made public, and despite hidden biases, and lawsuits being filed against it as a result.

Questions abound around the ROI of big investments by OpenAI

This all raises big questions about the investment plans pursued by OpenAI, Microsoft and others. OpenAI’s $500 billion Stargate project reflects its commitment to building massive data centers to power its advanced models. Backed by partners like Oracle and Softbank, this strategy is premised on the belief that achieving artificial general intelligence (AGI) requires unprecedented compute resources. However, DeepSeek’s demonstration of a high-performing model at a fraction of the cost challenges the sustainability of this approach, raising doubts about OpenAI’s ability to deliver returns on such a monumental investment.

Entrepreneur and commentator Arnaud Bertrand captured this dynamic, contrasting China’s frugal, decentralized innovation with the U.S. reliance on centralized, resource-intensive infrastructure: “It’s about the world realizing that China has caught up — and in some areas overtaken — the U.S. in tech and innovation, despite efforts to prevent just that.” Indeed, yesterday another Chinese company, ByteDance announced Doubao-1.5-pro, which Includes a “Deep Thinking” mode that surpasses OpenAI’s o1 on the AIME benchmark.

Want to dive deeper into how DeepSeek-R1 is reshaping AI development? Check out our in-depth discussion on YouTube, where I explore this breakthrough with ML developer Sam Witteveen. Together, we break down the technical details, implications for enterprises, and what this means for the future of AI:

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

How network diversity protects utility operations in an evolving landscape

From redundancy to resilience: The next level of network diversity Despite billions invested in grid modernization and widespread adoption of dual-carrier approaches, many utilities still find their communications infrastructure vulnerable to disruption. It’s a paradox: utilities have engineered redundancy across power generation and distribution, yet communications—the digital backbone of the modern grid—often lacks the comprehensive diversity needed to truly eliminate single points of failure.  True grid resilience now depends on comprehensive network diversity that enables consistent quality of service, operational flexibility and long-term adaptability. The cost of connectivity blind spots As utilities expand advanced metering infrastructure (AMI), SCADA systems, distributed energy resource (DER) management and connected field operations, the strain on communications networks continues to grow. Relying on a single technology exposes utilities to significant risk—from natural disasters and carrier outages to rural coverage gaps and network congestion. The result: delayed outage restoration, compromised grid visibility and operational inefficiencies that undermine reliability and customer trust. The versatility imperative: Why utilities can’t just “upgrade” Utility communications can’t follow the consumer tech cycle. Equipment often remains in service for 20 to 30 years, even as wireless standards evolve from private radio networks to LTE, 4G, 5G and emerging spectrum such as Anterix Band 106. Each shift brings new performance expectations—but utilities can’t afford to rip and replace infrastructure every few years. Instead, they need adaptable, field-proven solutions that bridge technologies and spectrum generations, ensuring consistent, secure connectivity today while accommodating tomorrow’s innovations without interrupting critical operations. Three pillars of network diversity While many utilities have already adopted dual-carrier strategies, the expanding complexity of modern grid operations demands a renewed look at comprehensive network diversity. True resilience comes from a multi-path approach—one that enables seamless communication under any condition. Three key strategies define this new standard of reliability. A. Public-to-public redundancy Dual-radio routers

Read More »

Why conductor strength matters for grid reliability

As utilities work to strengthen and modernize America’s electric grid, they face growing mechanical and environmental challenges below and between the lines. Buried grounding networks, pole grounds and substation grids must all withstand decades of stress from soil movement, moisture, corrosion and fault current events. Each of these physical forces can compromise a system’s electrical integrity — making mechanical strength as vital as electrical performance in ensuring long-term reliability. In earlier decades, utility conductors were relatively short, stationary and installed in stable soil. Today’s infrastructure is different. Expansion into remote terrain, widespread undergrounding and the integration of renewable and distributed resources have multiplied the number of grounding paths and exposed more cable to movement, vibration and stress. These systems must remain reliable through decades of shifting soils, thermal cycling and fault events — all while supporting uninterrupted power delivery. When a grounding conductor fails, the results can be costly. Broken bonds or weakened terminations can increase ground resistance, trigger equipment faults or leave assets unprotected from lightning and surge events. Repairs often require excavation, downtime and new material — expenses that compound across large service territories. In short, mechanical failure doesn’t just compromise safety; it undermines reliability, budgets and public confidence. That’s why conductor strength has become a defining factor in grid resilience. Copper-Clad Steel (CCS) conductors are engineered to meet this demand. By metallurgically bonding a copper layer to a high-tensile-strength steel core, CCS combines the conductivity of copper with the durability of steel. The result is a grounding conductor that resists stretching, breakage and deformation while maintaining long-term electrical integrity. Unlike soft copper, which can elongate or fracture under mechanical strain, CCS retains its shape and strength even after repeated mechanical or thermal stress. That strength translates into reliability you can measure. Stronger conductors stay tight at terminations, maintain

Read More »

Russian Crude Output Rose Last Month

Russia’s crude oil production edged up in October, but remained below its OPEC+ quota as international pressure mounted on the country’s energy sector. Russia pumped an average 9.411 million barrels a day last month, people with knowledge of the data said, asking not to be identified discussing confidential information. While that’s 43,000 barrels a day higher than in September, it’s 70,000 a day below a quota that includes compensation cuts for previous overproduction, Bloomberg calculations show. Oil watchers are closely following Russian production data to assess the impact of sanctions — and Ukrainian drone strikes — against the country’s energy industry. The latest US penalties on the sector, which hit oil giants Rosneft PJSC and Lukoil PJSC, have already eroded crude exports as some refiners in India, China and Turkey prove less willing to take sanctioned barrels. Meanwhile, Ukrainian attacks have intensified, putting pressure on Russia’s crude-processing sector even as refinery owners rush to repair infrastructure.  If Moscow eventually finds itself unable to find buyers for oil from its sanctioned producers, and struggles to restore refining, it’ll be forced to halt output at some fields, risking damage to wells. The Energy Ministry didn’t immediately respond to a request for comment on the production data. Deputy Prime Minister Alexander Novak said last month that the nation has capacity to raise oil production further, but will do it gradually, according to Tass news service. Compensation Cuts Russia, historically one of the biggest laggards in complying with OPEC+ output agreements, has agreed to make additional cuts to compensate for previous overproduction. The monthly schedule for those curbs has been regularly revised, with the latest plan published earlier this month.  It shows that October was the last month when Russia had to make such cuts. Moscow’s pledge to reduce daily output by 10,000 barrels below a quota of 9.491

Read More »

Oil Rises but Logs Second Weekly Loss

Oil rose on Friday but still notched a second weekly loss as the market continued to weigh the threat to output from sanctions on Russia against a looming oversupply. West Texas Intermediate futures rose around 0.5% to settle below $60 a barrel, but were still down for the week. Adding to fears of a glut, oil prices have also been buffeted by swings in equity markets this week. Meanwhile, the White House’s move to clamp down on the buying of Russian crude led oil trading giant Gunvor Group to withdraw an offer for the international assets of Lukoil PJSC. The fate of the assets, which include stakes in oil fields, refineries and gas stations, remains unclear. One possible exception to that crackdown could emerge soon: President Donald Trump signaled an openness to exempting Hungary from sanctions on Russian energy purchases as he hosted Prime Minister Viktor Orban, briefly pushing futures to intraday lows. The development appeared to allay shortage fears, given that Budapest imports over 90% of its crude from Moscow. Senior industry figures have warned the latest US curbs on Russia’s two largest oil companies are beginning to have an impact on the market, particularly in diesel, where prices have been surging in recent days, with time spreads for the fuel signaling supply pressure. At the same time, the US measures have come against a backdrop of oversupply that has weighed on key crude oil metrics. The spread between the nearest West Texas Intermediate futures closed at the weakest level since February on Thursday. “If the market flips to contango, we may see more bearish funds enter the crude space,” said Dennis Kissler, senior vice president for trading at BOK Financial said of the potential that longer-dated contracts trade at a premium to nearer-term ones. “Most traders remain surprised

Read More »

Gunvor Scraps Lukoil Deal

Commodity trader Gunvor Group has withdrawn its offer for the international assets of sanctioned Russian oil producer Lukoil PJSC after the US Treasury Department called it “the Kremlin’s puppet” and said the oil and gas trader would never get a license. Gunvor pushed back on the Treasury comment on social media, calling it “fundamentally misinformed and false.” The Geneva-based company said it would seek to correct a “clear misunderstanding” but that it would withdraw its bid for now. President Trump has been clear that the war must end immediately. As long as Putin continues the senseless killings, the Kremlin’s puppet, Gunvor, will never get a license to operate and profit. — Treasury Department (@USTreasury) November 6, 2025 The comment is a remarkable volte-face after a week in which Gunvor has been in talks with the US Office of Foreign Assets Control, part of the Treasury Department, and other bodies in charge of sanctions to help press its case for a deal that would have transformed it into an integrated oil producing and processing colossus. Gunvor swooped on the assets at the end of last month following the US blacklisting of Lukoil and fellow Russian oil giant Rosneft PJSC, and its exit may leave the door open to other suitors. Gunvor on Thursday also announced it had raised $2.81 billion in a credit facility financed by US arms of global banks. Like other major commodity traders, the firm funds the bulk of its trades of oil, gas and metals around the world with bank financing. For the trader, the comments are likely to revive questions about its connections in Moscow at a time when many oil industry participants are wary of any links to Russia.  The trader’s co-founder, Gennady Timchenko, is a friend of Russian President Vladimir Putin, and when the US imposed sanctions

Read More »

Ship With Russia Oil Makes Rare Move Offshore India

A tanker carrying crude from recently-sanctioned Rosneft PJSC has made a rare cargo transfer off Mumbai, as the Trump administration ramps up its scrutiny of India’s oil trade with Russia. But the unusual move has puzzled traders. The cargo was transferred from one blacklisted tanker to another sanctioned ship, meaning there’s been no attempt to hide its origin — typical of such a move — and the crude is still heading for an Indian port: Kochi in the south, rather than Mumbai on the west coast. India’s purchases of Russian oil have drawn the ire of President Donald Trump, and the US penalties on Rosneft along with Lukoil PJSC are expected to severely impact the trade. The market is keenly watching for disruptions to established flows before a grace period related to the sanctions ends later this month. “What we’re seeing now is this uncertainty in the market about what the sanctions risks are,” said Rachel Ziemba, an analyst at the Center for a New American Security in Washington. “The net result is more ship-to-ship transfers, more subterfuge, longer routes, more complicated transactions.” The Fortis took around 720,000 barrels of Russian Urals from Ailana on Tuesday near Mumbai, according to ship-tracking data compiled by Bloomberg, Kpler and Vortexa. The cargo was collected from the Baltic port of Ust-Luga before the US sanctioned Rosneft, and Ailana had idled in the area for nearly two weeks with no clear reason.  Ailana is on its way back to Russia, while Fortis is expected to arrive at Kochi early next week with the cargo, ship-tracking data shows. Both vessels have been sanctioned by the European Union and the UK. Fortis’ owner and manager — Vietnam-based Pacific Logistic & Maritime and North Star Ship Management — didn’t respond to emailed requests for comment. There are no contact details on maritime database

Read More »

Designing the AI Century: 7×24 Exchange Fall ’25 Charts the New Data Center Industrial Stack

SMRs and the AI Power Gap: Steve Fairfax Separates Promise from Physics If NVIDIA’s Sean Young made the case for AI factories, Steve Fairfax offered a sobering counterweight: even the smartest factories can’t run without power—and not just any power, but constant, high-availability, clean generation at a scale utilities are increasingly struggling to deliver. In his keynote “Small Modular Reactors for Data Centers,” Fairfax, president of Oresme and one of the data center industry’s most seasoned voices on reliability, walked through the long arc from nuclear fusion research to today’s resurgent interest in fission at modular scale. His presentation blended nuclear engineering history with pragmatic counsel for AI-era infrastructure leaders: SMRs are promising, but their road to reality is paved with physics, fuel, and policy—not PowerPoint. From Fusion Research to Data Center Reliability Fairfax began with his own story—a career that bridges nuclear reliability and data center engineering. As a young physicist and electrical engineer at MIT, he helped build the Alcator C-MOD fusion reactor, a 400-megawatt research facility that heated plasma to 100 million degrees with 3 million amps of current. The magnet system alone drew 265,000 amps at 1,400 volts, producing forces measured in millions of pounds. It was an extreme experiment in controlled power, and one that shaped his later philosophy: design for failure, test for truth, and assume nothing lasts forever. When the U.S. cooled on fusion power in the 1990s, Fairfax applied nuclear reliability methods to data center systems—quantifying uptime and redundancy with the same math used for reactor safety. By 1994, he was consulting for hyperscale pioneers still calling 10 MW “monstrous.” Today’s 400 MW campuses, he noted, are beginning to look a lot more like reactors in their energy intensity—and increasingly, in their regulatory scrutiny. Defining the Small Modular Reactor Fairfax defined SMRs

Read More »

Top network and data center events 2025 & 2026

Denise Dubie is a senior editor at Network World with nearly 30 years of experience writing about the tech industry. Her coverage areas include AIOps, cybersecurity, networking careers, network management, observability, SASE, SD-WAN, and how AI transforms enterprise IT. A seasoned journalist and content creator, Denise writes breaking news and in-depth features, and she delivers practical advice for IT professionals while making complex technology accessible to all. Before returning to journalism, she held senior content marketing roles at CA Technologies, Berkshire Grey, and Cisco. Denise is a trusted voice in the world of enterprise IT and networking.

Read More »

Google’s cheaper, faster TPUs are here, while users of other AI processors face a supply crunch

Opportunities for the AI industry LLM vendors such as OpenAI and Anthropic, which still have relatively young code bases and are continuously evolving them, also have much to gain from the arrival of Ironwood for training their models, said Forrester vice president and principal analyst Charlie Dai. In fact, Anthropic has already agreed to procure 1 million TPUs for training and its models and using them for inferencing. Other, smaller vendors using Google’s TPUs for training models include Lightricks and Essential AI. Google has seen a steady increase in demand for its TPUs (which it also uses to run interna services), and is expected to buy $9.8 billion worth of TPUs from Broadcom this year, compared to $6.2 billion and $2.04 billion in 2024 and 2023 respectively, according to Harrowell. “This makes them the second-biggest AI chip program for cloud and enterprise data centers, just tailing Nvidia, with approximately 5% of the market. Nvidia owns about 78% of the market,” Harrowell said. The legacy problem While some analysts were optimistic about the prospects for TPUs in the enterprise, IDC research director Brandon Hoff said enterprises will most likely to stay away from Ironwood or TPUs in general because of their existing code base written for other platforms. “For enterprise customers who are writing their own inferencing, they will be tied into Nvidia’s software platform,” Hoff said, referring to CUDA, the software platform that runs on Nvidia GPUs. CUDA was released to the public in 2007, while the first version of TensorFlow has only been around since 2015.

Read More »

Cisco launches AI infrastructure, AI practitioner certifications

“This new certification focuses on artificial intelligence and machine learning workloads, helping technical professionals become AI-ready and successfully embed AI into their workflows,” said Pat Merat, vice president at Learn with Cisco, in a blog detailing the new AI Infrastructure Specialist certification. “The certification validates a candidate’s comprehensive knowledge in designing, implementing, operating, and troubleshooting AI solutions across Cisco infrastructure.” Separately, the AITECH certification is part of the Cisco AI Infrastructure track, which complements its existing networking, data center, and security certifications. Cisco says the AITECH cert training is intended for network engineers, system administrators, solution architects, and other IT professionals who want to learn how AI impacts enterprise infrastructure. The training curriculum covers topics such as: Utilizing AI for code generation, refactoring, and using modern AI-assisted coding workflows. Using generative AI for exploratory data analysis, data cleaning, transformation, and generating actionable insights. Designing and implementing multi-step AI-assisted workflows and understanding complex agentic systems for automation. Learning AI-powered requirements, evaluating customization approaches, considering deployment strategies, and designing robust AI workflows. Evaluating, fine-tuning, and deploying pre-trained AI models, and implementing Retrieval Augmented Generation (RAG) systems. Monitoring, maintaining, and optimizing AI-powered workflows, ensuring data integrity and security. AITECH certification candidates will learn how to use AI to enhance productivity, automate routine tasks, and support the development of new applications. The training program includes hands-on labs and simulations to demonstrate practical use cases for AI within Cisco and multi-vendor environments.

Read More »

Chip-to-Grid Gets Bought: Eaton, Vertiv, and Daikin Deals Imply a New Thermal Capital Cycle

This week delivered three telling acquisitions that mark a turning point for the global data center supply chain; and more specifically, for the high-density liquid cooling mega-play now unfolding across the power-thermal continuum. Eaton is acquiring Boyd Thermal for $9.5 billion from Goldman Sachs Asset Management. Vertiv is buying PurgeRite for about $1 billion from Milton Street Capital. And Daikin Applied has moved to acquire Chilldyne, one of the most proven negative-pressure direct-to-chip pioneers. On paper, they’re three distinct transactions. In reality, they’re chapters in the same story: the acceleration of strategic vertical integration around thermal infrastructure for AI-class compute. The Equity Layer: Private Capital Builds, Strategics Buy From an equity standpoint, these are classic handoff moments between private-equity construction and corporate consolidation. Goldman Sachs built Boyd Thermal into a global platform spanning cold plates, CDUs, and high-density liquid loop design, now sold to Eaton at an enterprise multiple north of 5× 2026E revenue. Milton Street Capital took PurgeRite from a specialist contractor in fluid flushing and commissioning into a nationwide services platform. And Daikin, long synonymous with chillers and air-side thermal, is crossing the liquid Rubicon by buying its way into the D2C ecosystem. Each deal crystallizes a simple fact: liquid cooling is no longer an adjunct; it’s core infrastructure. Private equity did its job scaling the parts. Strategic players are now paying up for the system. Eaton’s Bid: The Chip-to-Grid Thesis For Eaton, Boyd Thermal is the final missing piece in its “chip-to-grid” thesis. The company already owns the electrical side of the data center: UPS, busway, switchgear, and monitoring. Boyd plugs the thermal gap, allowing Eaton to market full rack-to-substation solutions for AI loads in the 50–100 kW+ range. It’s a statement acquisition that places Eaton squarely against Schneider Electric, Vertiv and ABB in the race to

Read More »

Space: The final frontier for data processing

There are, however, a couple of reasons why data centers in space are being considered. There are plenty of reports about how the increased amount of AI processing is affecting power consumption within data centers; the World Economic Forum has estimated that the power required to handle AI is increasing at a rate of between 26% and 36% annually. Therefore, it is not surprising that organizations are looking at other options. But an even more pressing reason for orbiting data centers is to handle the amount of data that is being produced by existing satellites, Judge said. “Essentially, satellites are gathering a lot more data than can be sent to earth, because downlinks are a bottleneck,” he noted. “With AI capacity in orbit, they could potentially analyze more of this data, extract more useful information, and send insights back to earth. My overall feeling is that any more data processing in space is going to be driven by space processing needs.” And China may already be ahead of the game. Last year, Guoxing Aerospace  launched 12 satellites, forming a space-based computing network dubbed the Three-Body Computing Constellation. When completed, it will contain 2,800 satellites, all handling the orchestration and processing of data, taking edge computing to a new dimension.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »