Stay Ahead, Stay ONMINE

How aging clocks can help us understand why we age—and if we can reverse it

Be honest: Have you ever looked up someone from your childhood on social media with the sole intention of seeing how they’ve aged?  One of my colleagues, who shall remain nameless, certainly has. He recently shared a photo of a former classmate. “Can you believe we’re the same age?” he asked, with a hint of glee in his voice. A relative also delights in this pastime. “Wow, she looks like an old woman,” she’ll say when looking at a picture of someone she has known since childhood. The years certainly are kinder to some of us than others. But wrinkles and gray hairs aside, it can be difficult to know how well—or poorly—someone’s body is truly aging, under the hood. A person who develops age-related diseases earlier in life, or has other biological changes associated with aging (such as elevated cholesterol or markers of inflammation), might be considered “biologically older” than a similar-age person who doesn’t have those changes. Some 80-year-olds will be weak and frail, while others are fit and active.  Doctors have long used functional tests that measure their patients’ strength or the distance they can walk, for example, or simply “eyeball” them to guess whether they look fit enough to survive some treatment regimen, says Tamir Chandra, who studies aging at the Mayo Clinic.  But over the past decade, scientists have been uncovering new methods of looking at the hidden ways our bodies are aging. What they’ve found is changing our understanding of aging itself.  “Aging clocks” are new scientific tools that can measure how our organs are wearing out, giving us insight into our mortality and health. They hint at our biological age. While chronological age is simply how many birthdays we’ve had, biological age is meant to reflect something deeper. It measures how our bodies are handling the passing of time and—perhaps—lets us know how much more of it we have left. And while you can’t change your chronological age, you just might be able to influence your biological age. It’s not just scientists who are using these clocks. Longevity influencers like Bryan Johnson often use them to make the case that they are aging backwards. “My telomeres say I’m 10 years old,” Johnson posted on X in April. The Kardashians have tried them too (Khloé was told on TV that her biological age was 12 years below her chronological age). Even my local health-food store offers biological age testing. Some are pushing the use of clocks even further, using them to sell unproven “anti-aging” supplements. The science is still new, and few experts in the field—some of whom affectionately refer to it as “clock world”—would argue that an aging clock can definitively reveal an individual’s biological age.  But their work is revealing that aging clocks can offer so much more than an insta-brag, a snake-oil pitch—or even just an eye-catching number. In fact, they are helping scientists unravel some of the deepest mysteries in biology: Why do we age? How do we age? When does aging begin? What does it even mean to age? Ultimately, and most importantly, they might soon tell us whether we can reverse the whole process. Clocks kick off The way your genes work can change. Molecules called methyl groups can attach to DNA, controlling the way genes make proteins. This process is called methylation, and it can potentially occur at millions of points along the genome. These epigenetic markers, as they are known, can switch genes on or off, or increase or decrease how much protein they make. They’re not part of our DNA, but they influence how it works. In 2011, Steve Horvath, then a biostatistician at the University of California, Los Angeles, took part in a study that was looking for links between sexual orientation and these epigenetic markers. Steve is straight; he says his twin brother, Markus, who also volunteered, is gay. That study didn’t find a link between DNA methyl­ation and sexual orientation. But when Horvath looked at the data, he noticed a different trend—a very strong link between age and methylation at around 88 points on the genome. He once told me he fell off his chair when he saw it.  Many of the affected genes had already been linked to age-related brain and cardiovascular diseases, but it wasn’t clear how methylation might be related to those diseases.  If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all. In 2013, Horvath collected methylation data from 8,000 tissue and cell samples to create what he called the Horvath clock—essentially a mathematical model that could estimate age on the basis of DNA methylation at 353 points on the genome. From a tissue sample, it was able to detect a person’s age within a range of 2.9 years. That clock changed everything. Its publication in 2013 marked the birth of “clock world.” To some, the possibilities were almost endless. If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all. The epigenetic clock was a success story in “a field that, frankly, doesn’t have a lot of success stories,” says João Pedro de Magalhães, who researches aging at the University of Birmingham, UK. It took a few years, but as more aging researchers heard about the clock, they began incorporating it into their research and even developing their own clocks. Horvath became a bit of a celebrity. Scientists started asking for selfies with him at conferences, he says. Some researchers even made T-shirts bearing the front page of his 2013 paper. Some of the many other aging clocks developed since have become notable in their own right. Examples include the PhenoAge clock, which incorporates health data such as blood cell counts and signs of inflammation along with methyl­ation, and the Dunedin Pace of Aging clock, which tells you how quickly or slowly a person is aging rather than pointing to a specific age. Many of the clocks measure methylation, but some look at other variables, such as proteins in blood or certain carbohydrate molecules that attach to such proteins. Today, there are hundreds or even thousands of clocks out there, says Chiara Herzog, who researches aging at King’s College London and is a member of the Biomarkers of Aging Consortium. Everyone has a favorite. Horvath himself favors his GrimAge clock, which was named after the Grim Reaper because it is designed to predict time to death. That clock was trained on data collected from people who were monitored for decades, many of whom died in that period. Horvath won’t use it to tell people when they might die of old age, he stresses, saying that it wouldn’t be ethical. Instead, it can be used to deliver a biological age that hints at how long a person might expect to live. Someone who is 50 but has a GrimAge of 60 can assume that, compared with the average 50-year-old, they might be a bit closer to the end. GrimAge is not perfect. While it can strongly predict time to death given the health trajectory someone is on, no aging clock can predict if someone will start smoking or get a divorce (which generally speeds aging) or suddenly take up running (which can generally slow it). “People are complicated,” Horvath tells MIT Technology Review. “There’s a huge error bar.” On the whole, the clocks are pretty good at making predictions about health and lifespan. They’ve been able to predict that people over the age of 105 have lower biological ages, which tracks given how rare it is for people to make it past that age. A higher epigenetic age has been linked to declining cognitive function and signs of Alzheimer’s disease, while better physical and cognitive fitness has been linked to a lower epigenetic age. Black-box clocks But accuracy is a challenge for all aging clocks. Part of the problem lies in how they were designed. Most of the clocks were trained to link age with methylation. The best clocks will deliver an estimate that reflects how far a person’s biology deviates from the average. Aging clocks are still judged on how well they can predict a person’s chronological age, but you don’t want them to be too close, says Lucas Paulo de Lima Camillo, head of machine learning at Shift Bioscience, who was awarded $10,000 by the Biomarkers of Aging Consortium for developing a clock that could estimate age within a range of 2.55 years. None of the clocks are precise enough to predict the biological age of a single person. Putting the same biological sample through five different clocks will give you five wildly different results.LEON EDLER “There’s this paradox,” says Camillo. If a clock is really good at predicting chronological age, that’s all it will tell you—and it probably won’t reveal much about your biological age. No one needs an aging clock to tell them how many birthdays they’ve had. Camillo says he’s noticed that when the clocks get too close to “perfect” age prediction, they actually become less accurate at predicting mortality. Therein lies the other central issue for scientists who develop and use aging clocks: What is the thing they are really measuring? It is a difficult question for a field whose members notoriously fail to agree on the basics. (Everything from the definition of aging to how it occurs and why is up for debate among the experts.) They do agree that aging is incredibly complex. A methylation-based aging clock might tell you about how that collection of chemical markers compares across individuals, but at best, it’s only giving you an idea of their “epigenetic age,” says Chandra. There are probably plenty of other biological markers that might reveal other aspects of aging, he says: “None of the clocks measure everything.”  We don’t know why some methyl groups appear or disappear with age, either. Are these changes causing damage? Or are they a by-product of it? Are the epigenetic patterns seen in a 90-year-old a sign of deterioration? Or have they been responsible for keeping that person alive into very old age? To make matters even more complicated, two different clocks can give similar answers by measuring methylation at entirely different regions of the genome. No one knows why, or which regions might be the best ones to focus on. “The biomarkers have this black-box quality,” says Jesse Poganik at Brigham and Women’s Hospital in Boston. “Some of them are probably causal, some of them may be adaptive … and some of them may just be neutral”: either “there’s no reason for them not to happen” or “they just happen by random chance.” What we know is that, as things stand, none of the clocks are precise enough to predict the biological age of a single person (sorry, Khloé). Putting the same biological sample through five different clocks will give you five wildly different results. Even the same clock can give you different answers if you put a sample through it more than once. “They’re not yet individually predictive,” says Herzog. “We don’t know what [a clock result] means for a person, [or if] they’re more or less likely to develop disease.” And it’s why plenty of aging researchers—even those who regularly use the clocks in their work—haven’t bothered to measure their own epigenetic age. “Let’s say I do a clock and it says that my biological age … is five years older than it should be,” says Magalhães. “So what?” He shrugs. “I don’t see much point in it.” You might think this lack of clarity would make aging clocks pretty useless in a clinical setting. But plenty of clinics are offering them anyway. Some longevity clinics are more careful, and will regularly test their patients with a range of clocks, noting their results and tracking them over time. Others will simply offer an estimate of biological age as part of a longevity treatment package. And then there are the people who use aging clocks to sell supplements. While no drug or supplement has been definitively shown to make people live longer, that hasn’t stopped the lightly regulated wellness industry from pushing a range of “treatments” that range from lotions to herbal pills all the way through to stem-cell injections. Some of these people come to aging meetings. I was in the audience at an event when one CEO took to the stage to claim he had reversed his own biological age by 18 years—thanks to the supplement he was selling. Tom Weldon of Ponce de Leon Health told us his gray hair was turning brown. His biological age was supposedly reversing so rapidly that he had reached “longevity escape velocity.” But if the people who buy his supplements expect some kind of Benjamin Button effect, they might be disappointed. His company hasn’t yet conducted a randomized controlled trial to demonstrate any anti-aging effects of that supplement, called Rejuvant. Weldon says that such a trial would take years and cost millions of dollars, and that he’d “have to increase the price of our product more than four times” to pay for one. (The company has so far tested the active ingredient in mice and carried out a provisional trial in people.) More generally, Horvath says he “gets a bad taste in [his] mouth” when people use the clocks to sell products and “make a quick buck.” But he thinks that most of those sellers have genuine faith in both the clocks and their products. “People truly believe their own nonsense,” he says. “They are so passionate about what they discovered, they fall into this trap of believing [their] own prejudices.”  The accuracy of the clocks is at a level that makes them useful for research, but not for individual predictions. Even if a clock did tell someone they were five years younger than their chronological age, that wouldn’t necessarily mean the person could expect to live five years longer, says Magalhães. “The field of aging has long been a rich ground for snake-oil salesmen and hype,” he says. “It comes with the territory.” (Weldon, for his part, says Rejuvant is the only product that has “clinically meaningful” claims.)  In any case, Magalhães adds that he thinks any publicity is better than no publicity. And there’s the rub. Most people in the longevity field seem to have mixed feelings about the trendiness of aging clocks and how they are being used. They’ll agree that the clocks aren’t ready for consumer prime time, but they tend to appreciate the attention. Longevity research is expensive, after all. With a surge in funding and an explosion in the number of biotech companies working on longevity, aging scientists are hopeful that innovation and progress will follow.  So they want to be sure that the reputation of aging clocks doesn’t end up being tarnished by association. Because while influencers and supplement sellers are using their “biological ages” to garner attention, scientists are now using these clocks to make some remarkable discoveries. Discoveries that are changing the way we think about aging. How to be young again Two little mice lie side by side, anesthetized and unconscious, as Jim White prepares his scalpel. The animals are of the same breed but look decidedly different. One is a youthful three-month-old, its fur thick, black, and glossy. By comparison, the second mouse, a 20-month-old, looks a little the worse for wear. Its fur is graying and patchy. Its whiskers are short, and it generally looks kind of frail. But the two mice are about to have a lot more in common. White, with some help from a colleague, makes incisions along the side of each mouse’s body and into the upper part of an arm and leg on the same side. He then carefully stitches the two animals together—membranes, fascia, and skin.  The procedure takes around an hour, and the mice are then roused from their anesthesia. At first, the two still-groggy animals pull away from each other. But within a few days, they seem to have accepted that they now share their bodies. Soon their circulatory systems will fuse, and the animals will share a blood flow too. “People are complicated. There’s a huge error bar.” — Steve Horvath, former biostatistician at the University of California, Los AngelesLEON EDLER White, who studies aging at Duke University, has been stitching mice together for years; he has performed this strange procedure, known as heterochronic parabiosis, more than a hundred times. And he’s seen a curious phenomenon occur. The older mice appear to benefit from the arrangement. They seem to get younger. Experiments with heterochronic parabiosis have been performed for decades, but typically scientists keep the mice attached to each other for only a few weeks, says White. In their experiment, he and his colleagues left the mice attached for three months—equivalent to around 10 human years. The team then carefully separated the animals to assess how each of them had fared. “You’d think that they’d want to separate immediately,” says White. “But when you detach them … they kind of follow each other around.” The most striking result of that experiment was that the older mice who had been attached to a younger mouse ended up living longer than other mice of a similar age. “[They lived] around 10% longer, but [they] also maintained a lot of [their] function,” says White. They were more active and maintained their strength for longer, he adds. When his colleagues, including Poganik, applied aging clocks to the mice, they found that their epigenetic ages were lower than expected. “The young circulation slowed aging in the old mice,” says White. The effect seemed to last, too—at least for a little while. “It preserved that youthful state for longer than we expected,” he says. The young mice went the other way and appeared biologically older, both while they were attached to the old mice and shortly after they were detached. But in their case, the effect seemed to be short-lived, says White: “The young mice went back to being young again.”  To White, this suggests that something about the “youthful state” might be programmed in some way. That perhaps it is written into our DNA. Maybe we don’t have to go through the biological process of aging.  This gets at a central debate in the aging field: What is aging, and why does it happen? Some believe it’s simply a result of accumulated damage. Some believe that the aging process is programmed; just as we grow limbs, develop a brain, reach puberty, and experience menopause, we are destined to deteriorate. Others think programs that play an important role in our early development just turn out to be harmful later in life by chance. And there are some scientists who agree with all of the above. White’s theory is that being old is just “a loss of youth,” he says. If that’s the case, there’s a silver lining: Knowing how youth is lost might point toward a way to somehow regain it, perhaps by restoring those youthful programs in some way.  Dogs and dolphins Horvath’s eponymous clock was developed by measuring methylation in DNA samples taken from tissues around the body. It seems to represent aging in all these tissues, which is why Horvath calls it a pan-tissue clock. Given that our organs are thought to age differently, it was remarkable that a single clock could measure aging in so many of them. But Horvath had ambitious plans for an even more universal clock: a pan-species model that could measure aging in all mammals. He started out, in 2017, with an email campaign that involved asking hundreds of scientists around the world to share samples of tissues from animals they had worked with. He tried zoos, too.    The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it. “I learned that people had spent careers collecting [animal] tissues,” he says. “They had freezers full of [them].” Amenable scientists would ship those frozen tissues, or just DNA, to Horvath’s lab in California, where he would use them to train a new model. Horvath says he initially set out to profile 30 different species. But he ended up receiving around 15,000 samples from 200 scientists, representing 348 species—including everything from dogs to dolphins. Could a single clock really predict age in all of them? “I truly felt it would fail,” says Horvath. “But it turned out that I was completely wrong.” He and his colleagues developed a clock that assessed methylation at 36,000 locations on the genome. The result, which was published in 2023 as the pan-mammalian clock, can estimate the age of any mammal and even the maximum lifespan of the species. The data set is open to anyone who wants to download it, he adds: “I hope people will mine the data to find the secret of how to extend a healthy lifespan.” The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it. Comparisons between mammals also support the idea that the slower methylation changes occur, the longer the lifespan of the animal, says Nelly Olova, an epigeneticist who researches aging at the University of Edinburgh in the UK. “DNA methylation slowly erodes with age,” she says. “We still have the instructions in place, but they become a little messier.” The research in different mammals suggests that cells can take only so much change before they stop functioning. “There’s a finite amount of change that the cell can tolerate,” she says. “If the instructions become too messy and noisy … it cannot support life.” Olova has been investigating exactly when aging clocks first begin to tick—in other words, the point at which aging starts. Clocks can be trained on data from volunteers, and by matching the patterns of methylation on their DNA to their chronological age. The trained clocks are then typically used to estimate the biological age of adults. But they can also be used on samples from children. Or babies. They can be used to work out the biological age of cells that make up embryos.  In her research, Olova used adult skin cells, which—thanks to Nobel Prize–winning research in the 2000s—can be “reprogrammed” back to a state resembling that of the pluripotent stem cells found in embryos. When Olova and her colleagues used a “partial reprogramming” approach to take cells close to that state, they found that the closer they got to the entirely reprogrammed state, the “younger” the cells were.  It was around 20 days after the cells had been reprogrammed into stem cells that they reached the biological age of zero according to the clock used, says Olova. “It was a bit surreal,” she says. “The pluripotent cells measure as minus 0.5; they’re slightly below zero.” Vadim Gladyshev, a prominent aging researcher at Harvard University, has since proposed that the same negative level of aging might apply to embryos. After all, some kind of rejuvenation happens during the early stages of embryo formation—an aged egg cell and an aged sperm cell somehow create a brand-new cell. The slate is wiped clean. Gladyshev calls this point “ground zero.” He posits that it’s reached sometime during the “mid-embryonic state.” At this point, aging begins. And so does “organismal life,” he argues. “It’s interesting how this coincides with philosophical questions about when life starts,” says Olova.  Some have argued that life begins when sperm meets egg, while others have suggested that the point when embryonic cells start to form some kind of unified structure is what counts. The ground zero point is when the body plan is set out and cells begin to organize accordingly, she says. “Before that, it’s just a bunch of cells.” This doesn’t mean that life begins at the embryonic state, but it does suggest that this is when aging begins—perhaps as the result of “a generational clearance of damage,” says Poganik. It is early days—no pun intended—for this research, and the science is far from settled. But knowing when aging begins could help inform attempts to rewind the clock. If scientists can pinpoint an ideal biological age for cells, perhaps they can find ways to get old cells back to that state. There might be a way to slow aging once cells reach a certain biological age, too.  “Presumably, there may be opportunities for targeting aging before … you’re full of gray hair,” says Poganik. “It could mean that there is an ideal window for intervention which is much earlier than our current geriatrics-based approach.” When young meets old When White first started stitching mice together, he would sit and watch them for hours. “I was like, look at them go! They’re together, and they don’t even care!” he says. Since then, he’s learned a few tricks. He tends to work with female mice, for instance—the males tend to bicker and nip at each other, he says. The females, on the other hand, seem to get on well.  The effect their partnership appears to have on their biological ages, if only temporarily, is among the ways aging clocks are helping us understand that biological age is plastic to some degree. White and his colleagues have also found, for instance, that stress seems to increase biological age, but that the effect can be reversed once the stress stops. Both pregnancy and covid-19 infections have a similar reversible effect. Poganik wonders if this finding might have applications for human organ transplants. Perhaps there’s a way to measure the biological age of an organ before it is transplanted and somehow rejuvenate organs before surgery.  But new data from aging clocks suggests that this might be more complicated than it sounds. Poganik and his colleagues have been using methylation clocks to measure the biological age of samples taken from recently transplanted hearts in living people.  If being old is simply a case of losing our youthfulness, then that might give us a clue to how we can somehow regain it. Young hearts do well in older bodies, but the biological age of these organs eventually creeps up to match that of their recipient. The same is true for older hearts in younger bodies, says Poganik, who has not yet published his findings. “After a few months, the tissue may assimilate the biological age of the organism,” he says.  If that’s the case, the benefits of young organs might be short-lived. It also suggests that scientists working on ways to rejuvenate individual organs may need to focus their anti-aging efforts on more systemic means of rejuvenation—for example, stem cells that repopulate the blood. Reprogramming these cells to a youthful state, perhaps one a little closer to “ground zero,” might be the way to go. Whole-body rejuvenation might be some way off, but scientists are still hopeful that aging clocks might help them find a way to reverse aging in people. “We have the machinery to reset our epigenetic clock to a more youthful state,” says White. “That means we have the ability to turn the clock backwards.” 

Be honest: Have you ever looked up someone from your childhood on social media with the sole intention of seeing how they’ve aged? 

One of my colleagues, who shall remain nameless, certainly has. He recently shared a photo of a former classmate. “Can you believe we’re the same age?” he asked, with a hint of glee in his voice. A relative also delights in this pastime. “Wow, she looks like an old woman,” she’ll say when looking at a picture of someone she has known since childhood. The years certainly are kinder to some of us than others.

But wrinkles and gray hairs aside, it can be difficult to know how well—or poorly—someone’s body is truly aging, under the hood. A person who develops age-related diseases earlier in life, or has other biological changes associated with aging (such as elevated cholesterol or markers of inflammation), might be considered “biologically older” than a similar-age person who doesn’t have those changes. Some 80-year-olds will be weak and frail, while others are fit and active. 

Doctors have long used functional tests that measure their patients’ strength or the distance they can walk, for example, or simply “eyeball” them to guess whether they look fit enough to survive some treatment regimen, says Tamir Chandra, who studies aging at the Mayo Clinic. 

But over the past decade, scientists have been uncovering new methods of looking at the hidden ways our bodies are aging. What they’ve found is changing our understanding of aging itself. 

“Aging clocks” are new scientific tools that can measure how our organs are wearing out, giving us insight into our mortality and health. They hint at our biological age. While chronological age is simply how many birthdays we’ve had, biological age is meant to reflect something deeper. It measures how our bodies are handling the passing of time and—perhaps—lets us know how much more of it we have left. And while you can’t change your chronological age, you just might be able to influence your biological age.

It’s not just scientists who are using these clocks. Longevity influencers like Bryan Johnson often use them to make the case that they are aging backwards. “My telomeres say I’m 10 years old,” Johnson posted on X in April. The Kardashians have tried them too (Khloé was told on TV that her biological age was 12 years below her chronological age). Even my local health-food store offers biological age testing. Some are pushing the use of clocks even further, using them to sell unproven “anti-aging” supplements.

The science is still new, and few experts in the field—some of whom affectionately refer to it as “clock world”—would argue that an aging clock can definitively reveal an individual’s biological age. 

But their work is revealing that aging clocks can offer so much more than an insta-brag, a snake-oil pitch—or even just an eye-catching number. In fact, they are helping scientists unravel some of the deepest mysteries in biology: Why do we age? How do we age? When does aging begin? What does it even mean to age?

Ultimately, and most importantly, they might soon tell us whether we can reverse the whole process.

Clocks kick off

The way your genes work can change. Molecules called methyl groups can attach to DNA, controlling the way genes make proteins. This process is called methylation, and it can potentially occur at millions of points along the genome. These epigenetic markers, as they are known, can switch genes on or off, or increase or decrease how much protein they make. They’re not part of our DNA, but they influence how it works.

In 2011, Steve Horvath, then a biostatistician at the University of California, Los Angeles, took part in a study that was looking for links between sexual orientation and these epigenetic markers. Steve is straight; he says his twin brother, Markus, who also volunteered, is gay.

That study didn’t find a link between DNA methyl­ation and sexual orientation. But when Horvath looked at the data, he noticed a different trend—a very strong link between age and methylation at around 88 points on the genome. He once told me he fell off his chair when he saw it

Many of the affected genes had already been linked to age-related brain and cardiovascular diseases, but it wasn’t clear how methylation might be related to those diseases. 

If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all.

In 2013, Horvath collected methylation data from 8,000 tissue and cell samples to create what he called the Horvath clock—essentially a mathematical model that could estimate age on the basis of DNA methylation at 353 points on the genome. From a tissue sample, it was able to detect a person’s age within a range of 2.9 years.

That clock changed everything. Its publication in 2013 marked the birth of “clock world.” To some, the possibilities were almost endless. If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all.

The epigenetic clock was a success story in “a field that, frankly, doesn’t have a lot of success stories,” says João Pedro de Magalhães, who researches aging at the University of Birmingham, UK.

It took a few years, but as more aging researchers heard about the clock, they began incorporating it into their research and even developing their own clocks. Horvath became a bit of a celebrity. Scientists started asking for selfies with him at conferences, he says. Some researchers even made T-shirts bearing the front page of his 2013 paper.

Some of the many other aging clocks developed since have become notable in their own right. Examples include the PhenoAge clock, which incorporates health data such as blood cell counts and signs of inflammation along with methyl­ation, and the Dunedin Pace of Aging clock, which tells you how quickly or slowly a person is aging rather than pointing to a specific age. Many of the clocks measure methylation, but some look at other variables, such as proteins in blood or certain carbohydrate molecules that attach to such proteins.

Today, there are hundreds or even thousands of clocks out there, says Chiara Herzog, who researches aging at King’s College London and is a member of the Biomarkers of Aging Consortium. Everyone has a favorite. Horvath himself favors his GrimAge clock, which was named after the Grim Reaper because it is designed to predict time to death.

That clock was trained on data collected from people who were monitored for decades, many of whom died in that period. Horvath won’t use it to tell people when they might die of old age, he stresses, saying that it wouldn’t be ethical. Instead, it can be used to deliver a biological age that hints at how long a person might expect to live. Someone who is 50 but has a GrimAge of 60 can assume that, compared with the average 50-year-old, they might be a bit closer to the end.

GrimAge is not perfect. While it can strongly predict time to death given the health trajectory someone is on, no aging clock can predict if someone will start smoking or get a divorce (which generally speeds aging) or suddenly take up running (which can generally slow it). “People are complicated,” Horvath tells MIT Technology Review. “There’s a huge error bar.”

On the whole, the clocks are pretty good at making predictions about health and lifespan. They’ve been able to predict that people over the age of 105 have lower biological ages, which tracks given how rare it is for people to make it past that age. A higher epigenetic age has been linked to declining cognitive function and signs of Alzheimer’s disease, while better physical and cognitive fitness has been linked to a lower epigenetic age.

Black-box clocks

But accuracy is a challenge for all aging clocks. Part of the problem lies in how they were designed. Most of the clocks were trained to link age with methylation. The best clocks will deliver an estimate that reflects how far a person’s biology deviates from the average. Aging clocks are still judged on how well they can predict a person’s chronological age, but you don’t want them to be too close, says Lucas Paulo de Lima Camillo, head of machine learning at Shift Bioscience, who was awarded $10,000 by the Biomarkers of Aging Consortium for developing a clock that could estimate age within a range of 2.55 years.

a cartoon alarm clock shrugging
None of the clocks are precise enough to predict the biological age of a single person. Putting the same biological sample through five different clocks will give you five wildly different results.
LEON EDLER

“There’s this paradox,” says Camillo. If a clock is really good at predicting chronological age, that’s all it will tell you—and it probably won’t reveal much about your biological age. No one needs an aging clock to tell them how many birthdays they’ve had. Camillo says he’s noticed that when the clocks get too close to “perfect” age prediction, they actually become less accurate at predicting mortality.

Therein lies the other central issue for scientists who develop and use aging clocks: What is the thing they are really measuring? It is a difficult question for a field whose members notoriously fail to agree on the basics. (Everything from the definition of aging to how it occurs and why is up for debate among the experts.)

They do agree that aging is incredibly complex. A methylation-based aging clock might tell you about how that collection of chemical markers compares across individuals, but at best, it’s only giving you an idea of their “epigenetic age,” says Chandra. There are probably plenty of other biological markers that might reveal other aspects of aging, he says: “None of the clocks measure everything.” 

We don’t know why some methyl groups appear or disappear with age, either. Are these changes causing damage? Or are they a by-product of it? Are the epigenetic patterns seen in a 90-year-old a sign of deterioration? Or have they been responsible for keeping that person alive into very old age?

To make matters even more complicated, two different clocks can give similar answers by measuring methylation at entirely different regions of the genome. No one knows why, or which regions might be the best ones to focus on.

“The biomarkers have this black-box quality,” says Jesse Poganik at Brigham and Women’s Hospital in Boston. “Some of them are probably causal, some of them may be adaptive … and some of them may just be neutral”: either “there’s no reason for them not to happen” or “they just happen by random chance.”

What we know is that, as things stand, none of the clocks are precise enough to predict the biological age of a single person (sorry, Khloé). Putting the same biological sample through five different clocks will give you five wildly different results.

Even the same clock can give you different answers if you put a sample through it more than once. “They’re not yet individually predictive,” says Herzog. “We don’t know what [a clock result] means for a person, [or if] they’re more or less likely to develop disease.”

And it’s why plenty of aging researchers—even those who regularly use the clocks in their work—haven’t bothered to measure their own epigenetic age. “Let’s say I do a clock and it says that my biological age … is five years older than it should be,” says Magalhães. “So what?” He shrugs. “I don’t see much point in it.”

You might think this lack of clarity would make aging clocks pretty useless in a clinical setting. But plenty of clinics are offering them anyway. Some longevity clinics are more careful, and will regularly test their patients with a range of clocks, noting their results and tracking them over time. Others will simply offer an estimate of biological age as part of a longevity treatment package.

And then there are the people who use aging clocks to sell supplements. While no drug or supplement has been definitively shown to make people live longer, that hasn’t stopped the lightly regulated wellness industry from pushing a range of “treatments” that range from lotions to herbal pills all the way through to stem-cell injections.

Some of these people come to aging meetings. I was in the audience at an event when one CEO took to the stage to claim he had reversed his own biological age by 18 years—thanks to the supplement he was selling. Tom Weldon of Ponce de Leon Health told us his gray hair was turning brown. His biological age was supposedly reversing so rapidly that he had reached “longevity escape velocity.”

But if the people who buy his supplements expect some kind of Benjamin Button effect, they might be disappointed. His company hasn’t yet conducted a randomized controlled trial to demonstrate any anti-aging effects of that supplement, called Rejuvant. Weldon says that such a trial would take years and cost millions of dollars, and that he’d “have to increase the price of our product more than four times” to pay for one. (The company has so far tested the active ingredient in mice and carried out a provisional trial in people.)

More generally, Horvath says he “gets a bad taste in [his] mouth” when people use the clocks to sell products and “make a quick buck.” But he thinks that most of those sellers have genuine faith in both the clocks and their products. “People truly believe their own nonsense,” he says. “They are so passionate about what they discovered, they fall into this trap of believing [their] own prejudices.” 

The accuracy of the clocks is at a level that makes them useful for research, but not for individual predictions. Even if a clock did tell someone they were five years younger than their chronological age, that wouldn’t necessarily mean the person could expect to live five years longer, says Magalhães. “The field of aging has long been a rich ground for snake-oil salesmen and hype,” he says. “It comes with the territory.” (Weldon, for his part, says Rejuvant is the only product that has “clinically meaningful” claims.) 

In any case, Magalhães adds that he thinks any publicity is better than no publicity.

And there’s the rub. Most people in the longevity field seem to have mixed feelings about the trendiness of aging clocks and how they are being used. They’ll agree that the clocks aren’t ready for consumer prime time, but they tend to appreciate the attention. Longevity research is expensive, after all. With a surge in funding and an explosion in the number of biotech companies working on longevity, aging scientists are hopeful that innovation and progress will follow. 

So they want to be sure that the reputation of aging clocks doesn’t end up being tarnished by association. Because while influencers and supplement sellers are using their “biological ages” to garner attention, scientists are now using these clocks to make some remarkable discoveries. Discoveries that are changing the way we think about aging.

How to be young again

Two little mice lie side by side, anesthetized and unconscious, as Jim White prepares his scalpel. The animals are of the same breed but look decidedly different. One is a youthful three-month-old, its fur thick, black, and glossy. By comparison, the second mouse, a 20-month-old, looks a little the worse for wear. Its fur is graying and patchy. Its whiskers are short, and it generally looks kind of frail.

But the two mice are about to have a lot more in common. White, with some help from a colleague, makes incisions along the side of each mouse’s body and into the upper part of an arm and leg on the same side. He then carefully stitches the two animals together—membranes, fascia, and skin. 

The procedure takes around an hour, and the mice are then roused from their anesthesia. At first, the two still-groggy animals pull away from each other. But within a few days, they seem to have accepted that they now share their bodies. Soon their circulatory systems will fuse, and the animals will share a blood flow too.

cartoon man in profile with a stick of a wrist watch around a lit stick of dynamite in his mouth
“People are complicated. There’s a huge error bar.” — Steve Horvath, former biostatistician at the University of California, Los Angeles
LEON EDLER

White, who studies aging at Duke University, has been stitching mice together for years; he has performed this strange procedure, known as heterochronic parabiosis, more than a hundred times. And he’s seen a curious phenomenon occur. The older mice appear to benefit from the arrangement. They seem to get younger.

Experiments with heterochronic parabiosis have been performed for decades, but typically scientists keep the mice attached to each other for only a few weeks, says White. In their experiment, he and his colleagues left the mice attached for three months—equivalent to around 10 human years. The team then carefully separated the animals to assess how each of them had fared. “You’d think that they’d want to separate immediately,” says White. “But when you detach them … they kind of follow each other around.”

The most striking result of that experiment was that the older mice who had been attached to a younger mouse ended up living longer than other mice of a similar age. “[They lived] around 10% longer, but [they] also maintained a lot of [their] function,” says White. They were more active and maintained their strength for longer, he adds.

When his colleagues, including Poganik, applied aging clocks to the mice, they found that their epigenetic ages were lower than expected. “The young circulation slowed aging in the old mice,” says White. The effect seemed to last, too—at least for a little while. “It preserved that youthful state for longer than we expected,” he says.

The young mice went the other way and appeared biologically older, both while they were attached to the old mice and shortly after they were detached. But in their case, the effect seemed to be short-lived, says White: “The young mice went back to being young again.” 

To White, this suggests that something about the “youthful state” might be programmed in some way. That perhaps it is written into our DNA. Maybe we don’t have to go through the biological process of aging. 

This gets at a central debate in the aging field: What is aging, and why does it happen? Some believe it’s simply a result of accumulated damage. Some believe that the aging process is programmed; just as we grow limbs, develop a brain, reach puberty, and experience menopause, we are destined to deteriorate. Others think programs that play an important role in our early development just turn out to be harmful later in life by chance. And there are some scientists who agree with all of the above.

White’s theory is that being old is just “a loss of youth,” he says. If that’s the case, there’s a silver lining: Knowing how youth is lost might point toward a way to somehow regain it, perhaps by restoring those youthful programs in some way. 

Dogs and dolphins

Horvath’s eponymous clock was developed by measuring methylation in DNA samples taken from tissues around the body. It seems to represent aging in all these tissues, which is why Horvath calls it a pan-tissue clock. Given that our organs are thought to age differently, it was remarkable that a single clock could measure aging in so many of them.

But Horvath had ambitious plans for an even more universal clock: a pan-species model that could measure aging in all mammals. He started out, in 2017, with an email campaign that involved asking hundreds of scientists around the world to share samples of tissues from animals they had worked with. He tried zoos, too.   

The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it.

“I learned that people had spent careers collecting [animal] tissues,” he says. “They had freezers full of [them].” Amenable scientists would ship those frozen tissues, or just DNA, to Horvath’s lab in California, where he would use them to train a new model.

Horvath says he initially set out to profile 30 different species. But he ended up receiving around 15,000 samples from 200 scientists, representing 348 species—including everything from dogs to dolphins. Could a single clock really predict age in all of them?

“I truly felt it would fail,” says Horvath. “But it turned out that I was completely wrong.” He and his colleagues developed a clock that assessed methylation at 36,000 locations on the genome. The result, which was published in 2023 as the pan-mammalian clock, can estimate the age of any mammal and even the maximum lifespan of the species. The data set is open to anyone who wants to download it, he adds: “I hope people will mine the data to find the secret of how to extend a healthy lifespan.”

The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it.

Comparisons between mammals also support the idea that the slower methylation changes occur, the longer the lifespan of the animal, says Nelly Olova, an epigeneticist who researches aging at the University of Edinburgh in the UK. “DNA methylation slowly erodes with age,” she says. “We still have the instructions in place, but they become a little messier.” The research in different mammals suggests that cells can take only so much change before they stop functioning.

“There’s a finite amount of change that the cell can tolerate,” she says. “If the instructions become too messy and noisy … it cannot support life.”

Olova has been investigating exactly when aging clocks first begin to tick—in other words, the point at which aging starts. Clocks can be trained on data from volunteers, and by matching the patterns of methylation on their DNA to their chronological age. The trained clocks are then typically used to estimate the biological age of adults. But they can also be used on samples from children. Or babies. They can be used to work out the biological age of cells that make up embryos. 

In her research, Olova used adult skin cells, which—thanks to Nobel Prize–winning research in the 2000s—can be “reprogrammed” back to a state resembling that of the pluripotent stem cells found in embryos. When Olova and her colleagues used a “partial reprogramming” approach to take cells close to that state, they found that the closer they got to the entirely reprogrammed state, the “younger” the cells were. 

It was around 20 days after the cells had been reprogrammed into stem cells that they reached the biological age of zero according to the clock used, says Olova. “It was a bit surreal,” she says. “The pluripotent cells measure as minus 0.5; they’re slightly below zero.”

Vadim Gladyshev, a prominent aging researcher at Harvard University, has since proposed that the same negative level of aging might apply to embryos. After all, some kind of rejuvenation happens during the early stages of embryo formation—an aged egg cell and an aged sperm cell somehow create a brand-new cell. The slate is wiped clean.

Gladyshev calls this point “ground zero.” He posits that it’s reached sometime during the “mid-embryonic state.” At this point, aging begins. And so does “organismal life,” he argues. “It’s interesting how this coincides with philosophical questions about when life starts,” says Olova. 

Some have argued that life begins when sperm meets egg, while others have suggested that the point when embryonic cells start to form some kind of unified structure is what counts. The ground zero point is when the body plan is set out and cells begin to organize accordingly, she says. “Before that, it’s just a bunch of cells.”

This doesn’t mean that life begins at the embryonic state, but it does suggest that this is when aging begins—perhaps as the result of “a generational clearance of damage,” says Poganik.

It is early days—no pun intended—for this research, and the science is far from settled. But knowing when aging begins could help inform attempts to rewind the clock. If scientists can pinpoint an ideal biological age for cells, perhaps they can find ways to get old cells back to that state. There might be a way to slow aging once cells reach a certain biological age, too. 

“Presumably, there may be opportunities for targeting aging before … you’re full of gray hair,” says Poganik. “It could mean that there is an ideal window for intervention which is much earlier than our current geriatrics-based approach.”

When young meets old

When White first started stitching mice together, he would sit and watch them for hours. “I was like, look at them go! They’re together, and they don’t even care!” he says. Since then, he’s learned a few tricks. He tends to work with female mice, for instance—the males tend to bicker and nip at each other, he says. The females, on the other hand, seem to get on well. 

The effect their partnership appears to have on their biological ages, if only temporarily, is among the ways aging clocks are helping us understand that biological age is plastic to some degree. White and his colleagues have also found, for instance, that stress seems to increase biological age, but that the effect can be reversed once the stress stops. Both pregnancy and covid-19 infections have a similar reversible effect.

Poganik wonders if this finding might have applications for human organ transplants. Perhaps there’s a way to measure the biological age of an organ before it is transplanted and somehow rejuvenate organs before surgery. 

But new data from aging clocks suggests that this might be more complicated than it sounds. Poganik and his colleagues have been using methylation clocks to measure the biological age of samples taken from recently transplanted hearts in living people. 

If being old is simply a case of losing our youthfulness, then that might give us a clue to how we can somehow regain it.

Young hearts do well in older bodies, but the biological age of these organs eventually creeps up to match that of their recipient. The same is true for older hearts in younger bodies, says Poganik, who has not yet published his findings. “After a few months, the tissue may assimilate the biological age of the organism,” he says. 

If that’s the case, the benefits of young organs might be short-lived. It also suggests that scientists working on ways to rejuvenate individual organs may need to focus their anti-aging efforts on more systemic means of rejuvenation—for example, stem cells that repopulate the blood. Reprogramming these cells to a youthful state, perhaps one a little closer to “ground zero,” might be the way to go.

Whole-body rejuvenation might be some way off, but scientists are still hopeful that aging clocks might help them find a way to reverse aging in people.

“We have the machinery to reset our epigenetic clock to a more youthful state,” says White. “That means we have the ability to turn the clock backwards.” 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Microsoft’s largest quantum site to be built in Denmark

With this strategic move, Denmark will become Microsoft’s global quantum hub. According to the company, the expansion of the Lyngby laboratory will enable the complete core components of the Majorana chip to be manufactured directly on site. This research is based on years of cooperation with leading Danish research institutions,

Read More »

Extreme plots enterprise marketplace for AI agents, tools, apps

Extreme Networks this week previewed an AI marketplace where it plans to offer a curated catalog of AI tools, agents and applications. Called Extreme Exchange, it’s designed to give enterprise customers a way to discover, deploy, and create AI agents, microapps, and workflows in minutes rather than developing such components

Read More »

Adnoc Buy of Covestro Wins Conditional EU Approval

Abu Dhabi National Oil Co. won conditional European Union approval for its EUR 12 billion ($13.9 billion) takeover of Covestro AG after it dealt with EU concerns that its state subsidies could stifle competition.  The European Commission said Friday that an offer from Adnoc to maintain Covestro’s intellectual property in Europe as well as concessions on the company’s unlimited state guarantee from the UAE settled its earlier fears. Those commitments are valid for 10 years. “Commitments offered by Adnoc effectively address the potential negative effects by allowing market participants to access key Covestro patents in the field of sustainability,” EU competition chief Teresa Ribera said in a statement. “Clear, pre-defined access to these patents will enable others to innovate and advance research in an area that is critical for Europe’s future.” The planned purchase of Covestro would give Adnoc – the biggest oil producer in the United Arab Emirates – control over a German company that supplies materials for some of the world’s most prominent phone and carmakers. Adnoc would own Covestro through its investment unit XRG, set up in last year as the company’s international platform for natural gas, chemicals and energy solutions. In July, the commission, the EU’s antitrust arm, opened a full-scale investigation into the deal under tough new foreign subsidies rules. These are aimed at preventing sovereign states from using their financial muscle to crush competition in the 27-nation bloc. EU officials warned at the time that Adnoc’s state funding may give it an unfair advantage over rivals with less-deep pockets. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

The week in 5 numbers: Electricity prices extend rise, regulators rein in data centers

The upper end of Duke Energy’s expanded five-year capital spending plan, which it expects to roll out early next year. Executives attribute the rise in spending to rapid load growth, including many data centers, which they say is likely to continue into the early 2030s. Additional generation added to Duke’s system could exceed 13 GW in the next five years, including 7.5 GW of new gas facilities. Duke is one of many utilities that have bumped their spending in response to projected load growth from artificial intelligence, manufacturing and electrification. 

Read More »

Solar project delays decreased in Q3 2025: EIA

Listen to the article 2 min This audio is auto-generated. Please let us know if you have feedback. Fewer solar developers reported delays in the third quarter of 2025 compared to the same period last year, the Energy Information Administration said in a Monday report. In the third quarter this year, “solar projects representing about 20% of planned capacity reported a delay, a decrease from 25% in the same period in 2024,” EIA said.  “Despite the relatively high number of projects reporting delays in 2024, that year was a record year for U.S. solar capacity additions,” EIA said. Developers added around 31 GW of utility-scale solar capacity last year, though their projections at the beginning of the year forecasted 36 GW in additions.  Optional Caption Courtesy of Energy Information Administration “Because survey respondents may not anticipate the occurrence or duration of delays, ultimate capacity additions tend to be less than the expected amount that developers report to us at the beginning of the year,” EIA said. The agency said in February that it predicts 32.5 GW of utility-scale solar will be added this year, indicating that less solar may come online this year than last year, despite the decrease in delays. EIA also noted that delays are more common than cancellations, and “less than 1% of planned solar capacity is entirely cancelled in a typical month … Much of the reported delayed capacity occurs at projects that are in the late construction or testing phases just before they come online. These delays are typically only for a month or two.” Justin Baca, vice president of markets and research at the Solar Energy Industries Association, said in an email that it’s “important to note that most of the solar capacity that has come online this year began construction last year.” “The

Read More »

Oil Rises as Geopolitics Heat Up

Oil rose after Ukraine attacked a key Russian oil port and Iran seized a tanker near the Strait of Hormuz, injecting a fresh geopolitical premium into prices.  West Texas Intermediate rose 2.4% to settle above $60. Brent also advanced.  A major drone attack damaged an oil depot and a vessel in the vital Black Sea port of Novorossiysk. About 700,000 barrels a day of Russian oil were shipped from there in September and October, according to vessel tracking data compiled by Bloomberg, while a nearby terminal handles more than 1.5 million barrels a day of Kazakh shipments.  Ukraine’s General Staff also said that it struck Rosneft PJSC’s Saratov refinery in Russia’s Volga region. That’s the third attack this month on the facility. The attacks came on the same day that a US defense official said Iranian forces seized a tanker after it passed the vital Strait of Hormuz chokepoint, through which about a fifth of the world’s oil flows. The ship was smuggling 3,000 liters of fuel, state-run Islamic Republic News Agency reports. While authorities are still confirming the nature of the diversion toward the country’s territorial waters, Friday’s event would add to concerns that Iran is turning to hijacking merchant ships again. Though motive remains unclear, Iran’s moves appear less likely to be a concerted effort to inhibit crude flows than a potential response to a US action against the Middle Eastern nation’s exports, said Gregory Brew, a geopolitical analyst at the Eurasia Group. Iran’s exports have been in excess of two million barrels a day over September and October, he added.  The twin concerns come against the backdrop of a tightening of US sanctions against Russia. Curbs on the country’s two largest oil companies, Rosneft and Lukoil PJSC, are due to kick in within days. Those restrictions won’t

Read More »

Energy Department Announces $355 Million to Expand Domestic Production of Critical Minerals and Materials

WASHINGTON—The U.S. Department of Energy (DOE) today announced $355 million for two notices of funding opportunities issued by DOE’s Office of Fossil Energy (FE) to expand domestic production of critical materials essential for advancing U.S. energy production, manufacturing, transportation and national defense. The first funding opportunity provides up to $275 million for American industrial facilities capable of producing valuable minerals from existing industrial and coal byproducts. The second provides up to $80 million to establish Mine of the Future proving grounds for real-world testing of next-generation mining technologies. The Department announced in August its intent to invest $1 billion to advance and scale mining, processing, and manufacturing technologies, delivering on President Trump’s Executive Orders, Unleashing American Energy and Immediate Measures to Increase American Mineral Production. These actions will secure America’s critical material supply chain, increase domestic mineral production, reduce reliance on foreign sources, and strengthen U.S. energy independence. “For too long, the United States has relied on foreign nations for the minerals and materials that power our economy,” said U.S. Secretary of Energy Chris Wright. “We have these resources here at home, but years of complacency ceded America’s mining and industrial base to other nations. Thanks to President Trump’s leadership, we are reversing that trend, rebuilding America’s ability to mine, process, and manufacture the materials essential to our energy and economic security.” “The Mine of the Future – Proving Ground Initiative will be among the Department of Energy’s first major investments into mining technology research and development in almost four decades,” said U.S. Department of Energy Assistant Secretary of the Office of Fossil Energy Kyle Haustveit. “This effort will help establish the United States as the world’s leading producer and processor of non-fuel minerals—creating economic prosperity in fossil energy communities across the country while strengthening critical mineral supply chains for

Read More »

Ukraine Drones Hit Russian Black Sea Oil Terminal

(Update) November 14, 2025, 9:45 AM GMT+1: Article updated with additional details. Ukrainian drones attacked Russia’s giant Black Sea port of Novorossiysk overnight, prompting a state of emergency, as Moscow launched a massive air strike on Kyiv that killed four and damaged several residential buildings. Falling drone debris caused a fire at the Russian depot located at Transneft PJSC’s Sheskharis oil terminal, the regional emergency service said on Telegram early Friday. The blaze was put out after more than 50 units of firefighting equipment were deployed at the site, authorities said, but provided no details on the damage. Novorossiysk Mayor Andrey Kravchenko announced the state of emergency on Telegram. Transneft didn’t immediately respond to a request for comment on the situation at the facility. Global benchmark Brent spiked as much as 3 percent in a rapid move toward $65 a barrel, before paring gains. A container terminal located in the port of Novorossiysk was damaged by falling debris, but continued to operate normally, Delo Group, which runs that facility, said in a statement on Telegram. Russia’s largest grain terminal, also operated by Delo Group, was impacted by drone debris, but continues to function, the Interfax news service reported, citing the terminal’s chief executive officer. Drones hit an unidentified civilian ship in the port of Novorossiysk as well, regional emergency services said, without specifying the type of the vessel. The city’s mayor reported damage to at least three residential buildings in separate statements on Telegram.  In Ukraine, four people were killed after Russia launched about 430 drones and 18 missiles – including ballistic ones – in the strike, President Volodymyr Zelenskiy said on the X platform Friday. Dozens of apartment buildings were damaged in the capital Kyiv, he said. At least 26 people were injured, including two children, and several residential buildings were damaged,

Read More »

Arista, Palo Alto bolster AI data center security

“Based on this inspection, the NGFW creates a comprehensive, application-aware security policy. It then instructs the Arista fabric to enforce that policy at wire speed for all subsequent, similar flows,” Kotamraju wrote. “This ‘inspect-once, enforce-many’ model delivers granular zero trust security without the performance bottlenecks of hairpinning all traffic through a firewall or forcing a costly, disruptive network redesign.” The second capability is a dynamic quarantine feature that enables the Palo Alto NGFWs to identify evasive threats using Cloud-Delivered Security Services (CDSS). “These services, such as Advanced WildFire for zero-day malware and Advanced Threat Prevention for unknown exploits, leverage global threat intelligence to detect and block attacks that traditional security misses,” Kotamraju wrote. The Arista fabric can intelligently offload trusted, high-bandwidth “elephant flows” from the firewall after inspection, freeing it to focus on high-risk traffic. When a threat is detected, the NGFW signals Arista CloudVision, which programs the network switches to automatically quarantine the compromised workload at hardware line-rate, according to Kotamraju: “This immediate response halts the lateral spread of a threat without creating a performance bottleneck or requiring manual intervention.” The third feature is unified policy orchestration, where Palo Alto Networks’ management plane centralizes zone-based and microperimeter policies, and CloudVision MSS responds with the offload and enforcement of Arista switches. “This treats the entire geo-distributed network as a single logical switch, allowing workloads to be migrated freely across cloud networks and security domains,” Srikanta and Barbieri wrote. Lastly, the Arista Validated Design (AVD) data models enable network-as-a-code, integrating with CI/CD pipelines. AVDs can also be generated by Arista’s AVA (Autonomous Virtual Assist) AI agents that incorporate best practices, testing, guardrails, and generated configurations. “Our integration directly resolves this conflict by creating a clean architectural separation that decouples the network fabric from security policy. This allows the NetOps team (managing the Arista

Read More »

AMD outlines ambitious plan for AI-driven data centers

“There are very beefy workloads that you must have that performance for to run the enterprise,” he said. “The Fortune 500 mainstream enterprise customers are now … adopting Epyc faster than anyone. We’ve seen a 3x adoption this year. And what that does is drives back to the on-prem enterprise adoption, so that the hybrid multi-cloud is end-to-end on Epyc.” One of the key focus areas for AMD’s Epyc strategy has been our ecosystem build out. It has almost 180 platforms, from racks to blades to towers to edge devices, and 3,000 solutions in the market on top of those platforms. One of the areas where AMD pushes into the enterprise is what it calls industry or vertical workloads. “These are the workloads that drive the end business. So in semiconductors, that’s telco, it’s the network, and the goal there is to accelerate those workloads and either driving more throughput or drive faster time to market or faster time to results. And we almost double our competition in terms of faster time to results,” said McNamara. And it’s paying off. McNamara noted that over 60% of the Fortune 100 are using AMD, and that’s growing quarterly. “We track that very, very closely,” he said. The other question is are they getting new customer acquisitions, customers with Epyc for the first time? “We’ve doubled that year on year.” AMD didn’t just brag, it laid out a road map for the next two years, and 2026 is going to be a very busy year. That will be the year that new CPUs, both client and server, built on the Zen 6 architecture begin to appear. On the server side, that means the Venice generation of Epyc server processors. Zen 6 processors will be built on 2 nanometer design generated by (you guessed

Read More »

Building the Regional Edge: DartPoints CEO Scott Willis on High-Density AI Workloads in Non-Tier-One Markets

When DartPoints CEO Scott Willis took the stage on “the Distributed Edge” panel at the 2025 Data Center Frontier Trends Summit, his message resonated across a room full of developers, operators, and hyperscale strategists: the future of AI infrastructure will be built far beyond the nation’s tier-one metros. On the latest episode of the Data Center Frontier Show, Willis expands on that thesis, mapping out how DartPoints has positioned itself for a moment when digital infrastructure inevitably becomes more distributed, and why that moment has now arrived. DartPoints’ strategy centers on what Willis calls the “regional edge”—markets in the Midwest, Southeast, and South Central regions that sit outside traditional cloud hubs but are increasingly essential to the evolving AI economy. These are not tower-edge micro-nodes, nor hyperscale mega-campuses. Instead, they are regional data centers designed to serve enterprises with colocation, cloud, hybrid cloud, multi-tenant cloud, DRaaS, and backup workloads, while increasingly accommodating the AI-driven use cases shaping the next phase of digital infrastructure. As inference expands and latency-sensitive applications proliferate, Willis sees the industry’s momentum bending toward the very markets DartPoints has spent years cultivating. Interconnection as Foundation for Regional AI Growth A key part of the company’s differentiation is its interconnection strategy. Every DartPoints facility is built to operate as a deeply interconnected environment, drawing in all available carriers within a market and stitching sites together through a regional fiber fabric. Willis describes fiber as the “nervous system” of the modern data center, and for DartPoints that means creating an interconnection model robust enough to support a mix of enterprise cloud, multi-site disaster recovery, and emerging AI inference workloads. The company is already hosting latency-sensitive deployments in select facilities—particularly inference AI and specialized healthcare applications—and Willis expects such deployments to expand significantly as regional AI architectures become more widely

Read More »

Key takeaways from Cisco Partner Summit

Brian Ortbals, senior vice president from World Wide Technology, which is one of Cisco’s biggest and most important partners stated: “Cisco engaged partners early in the process and took our feedback along the way. We believe now is the right time for these changes as it will enable us to capitalize on the changes in the market.” The reality is, the more successful its more-than-half-a-million partners are, the more successful Cisco will be. Platform approach is coming together When Jeetu Patel took the reigns as chief product officer, one of his goals was to make the Cisco portfolio a “force multiple.” Patel has stated repeatedly that, historically, Cisco acted more as a technology holding company with good products in networking, security, collaboration, data center and other areas. In this case, product breadth was not an advantage, as everything must be sold as “best of breed,” which is a tough ask of the salesforce and partner community. Since then, there have been many examples of the coming together of the portfolio to create products that leverage the breadth of the platform. The latest is the Unified Edge appliance, an all-in-one solution that brings together compute, networking, storage and security. Cisco has been aggressive with AI products in the data center, and Cisco Unified Edge compliments that work with a device designed to bring AI to edge locations. This is ideally suited for retail, manufacturing, healthcare, factories and other industries where it’s more cost effecting and performative to run AI where the data lives.

Read More »

AI networking demand fueled Cisco’s upbeat Q1 financials

Customers are very focused on modernizing their network infrastructure in the enterprise in preparation for inferencing and AI workloads, Robbins said. “These things are always multi-year efforts,” and this is only the beginning, Robbins said. The AI opportunity “As we look at the AI opportunity, we see customer use cases growing across training, inferencing, and connectivity, with secure networking increasingly critical as workloads move from the data center to end users, devices, and agents at the edge,” Robbins said. “Agents are transforming network traffic from predictable bursts to persistent high-intensity loads, with agentic AI queries generating up to 25 times more network traffic than chatbots.” “Instead of pulling data to and from the data center, AI workloads require models and infrastructure to be closer to where data is created and decisions are made, particularly in industries such as retail, healthcare, and manufacturing.” Robbins pointed to last week’s introduction of Cisco Unified Edge, a converged platform that integrates networking, compute and storage to help enterprise customers more efficiently handle data from AI and other workloads at the edge. “Unified Edge enables real-time inferencing for agentic and physical AI workloads, so enterprises can confidently deploy and manage AI at scale,” Robbins said. On the hyperscaler front, “we see a lot of solid pipeline throughout the rest of the year. The use cases, we see it expanding,” Robbins said. “Obviously, we’ve been selling networking infrastructure under the training models. We’ve been selling scale-out. We launched the P200-based router that will begin to address some of the scale-across opportunities.” Cisco has also seen great success with its pluggable optics, Robbins said. “All of the hyperscalers now are officially customers of our pluggable optics, so we feel like that’s a great opportunity. They not only plug into our products, but they can be used with other companies’

Read More »

When the Cloud Leaves Earth: Google and NVIDIA Test Space Data Centers for the Orbital AI Era

On November 4, 2025, Google unveiled Project Suncatcher, a moonshot research initiative exploring the feasibility of AI data centers in space. The concept envisions constellations of solar-powered satellites in Low Earth Orbit (LEO), each equipped with Tensor Processing Units (TPUs) and interconnected via free-space optical laser links. Google’s stated objective is to launch prototype satellites by early 2027 to test the idea and evaluate scaling paths if the technology proves viable. Rather than a commitment to move production AI workloads off-planet, Suncatcher represents a time-bound research program designed to validate whether solar-powered, laser-linked LEO constellations can augment terrestrial AI factories, particularly for power-intensive, latency-tolerant tasks. The 2025–2027 window effectively serves as a go/no-go phase to assess key technical hurdles including thermal management, radiation resilience, launch economics, and optical-link reliability. If these milestones are met, Suncatcher could signal the emergence of a new cloud tier: one that scales AI with solar energy rather than substations. Inside Google’s Suncatcher Vision Google has released a detailed technical paper titled “Towards a Future Space-Based, Highly Scalable AI Infrastructure Design.” The accompanying Google Research blog describes Project Suncatcher as “a moonshot exploring a new frontier” – an early-stage effort to test whether AI compute clusters in orbit can become a viable complement to terrestrial data centers. The paper outlines several foundational design concepts: Orbit and Power Project Suncatcher targets Low Earth Orbit (LEO), where solar irradiance is significantly higher and can remain continuous in specific orbital paths. Google emphasizes that space-based solar generation will serve as the primary power source for the TPU-equipped satellites. Compute and Interconnect Each satellite would host Tensor Processing Unit (TPU) accelerators, forming a constellation connected through free-space optical inter-satellite links (ISLs). Together, these would function as a disaggregated orbital AI cluster, capable of executing large-scale batch and training workloads. Downlink

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »