Stay Ahead, Stay ONMINE

Inside the Wild West of AI companionship

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here. Last week, I made a troubling discovery about an AI companion site called Botify AI: It was hosting sexually charged conversations with underage celebrity bots. These bots took on characters meant to resemble, among others, Jenna Ortega as high schooler Wednesday Addams, Emma Watson as Hermione Granger, and Millie Bobby Brown. I discovered these bots also offer to send “hot photos” and in some instances describe age-of-consent laws as “arbitrary” and “meant to be broken.” Botify AI removed these bots after I asked questions about them, but others remain. The company said it does have filters in place meant to prevent such underage character bots from being created, but that they don’t always work. Artem Rodichev, the founder and CEO of Ex-Human, which operates Botify AI, told me such issues are “an industry-wide challenge affecting all conversational AI systems.” For the details, which hadn’t been previously reported, you should read the whole story.  Putting aside the fact that the bots I tested were promoted by Botify AI as “featured” characters and received millions of likes before being removed, Rodichev’s response highlights something important. Despite their soaring popularity, AI companionship sites mostly operate in a Wild West, with few laws or even basic rules governing them.  What exactly are these “companions” offering, and why have they grown so popular? People have been pouring out their feelings to AI since the days of Eliza, a mock psychotherapist chatbot built in the 1960s. But it’s fair to say that the current craze for AI companions is different.  Broadly, these sites offer an interface for chatting with AI characters that offer backstories, photos, videos, desires, and personality quirks. The companies—including Replika,  Character.AI, and many others—offer characters that can play lots of different roles for users, acting as friends, romantic partners, dating mentors, or confidants. Other companies enable you to build “digital twins” of real people. Thousands of adult-content creators have created AI versions of themselves to chat with followers and send AI-generated sexual images 24 hours a day. Whether or not sexual desire comes into the equation, AI companions differ from your garden-variety chatbot in their promise, implicit or explicit, that genuine relationships can be had with AI.  While many of these companions are offered directly by the companies that make them, there’s also a burgeoning industry of “licensed” AI companions. You may start interacting with these bots sooner than you think. Ex-Human, for example, licenses its models to Grindr, which is working on an “AI wingman” that will help users keep track of conversations and eventually may even date the AI agents of other users. Other companions are arising in video-game platforms and will likely start popping up in many of the varied places we spend time online.  A number of criticisms, and even lawsuits, have been lodged against AI companionship sites, and we’re just starting to see how they’ll play out. One of the most important issues is whether companies can be held liable for harmful outputs of the AI characters they’ve made. Technology companies have been protected under Section 230 of the US Communications Act, which broadly holds that businesses aren’t liable for consequences of user-generated content. But this hinges on the idea that companies merely offer platforms for user interactions rather than creating content themselves, a notion that AI companionship bots complicate by generating dynamic, personalized responses. The question of liability will be tested in a high-stakes lawsuit against Character.AI, which was sued in October by a mother who alleges that one of its chatbots played a role in the suicide of her 14-year-old son. A trial is set to begin in November 2026. (A Character.AI spokesperson, though not commenting on pending litigation, said the platform is for entertainment, not companionship. The spokesperson added that the company has rolled out new safety features for teens, including a separate model and new detection and intervention systems, as well as “disclaimers to make it clear that the Character is not a real person and should not be relied on as fact or advice.”) My colleague Eileen has also recently written about another chatbot on a platform called Nomi, which gave clear instructions to a user on how to kill himself. Another criticism has to do with dependency. Companion sites often report that young users spend one to two hours per day, on average, chatting with their characters. In January, concerns that people could become addicted to talking with these chatbots sparked a number of tech ethics groups to file a complaint against Replika with the Federal Trade Commission, alleging that the site’s design choices “deceive users into developing unhealthy attachments” to software “masquerading as a mechanism for human-to-human relationship.” It should be said that lots of people gain real value from chatting with AI, which can appear to offer some of the best facets of human relationships—connection, support, attraction, humor, love. But it’s not yet clear how these companionship sites will handle the risks of those relationships, or what rules they should be obliged to follow. More lawsuits–-and, sadly, more real-world harm—will be likely before we get an answer.  Deeper Learning OpenAI released GPT-4.5 On Thursday OpenAI released its newest model, called GPT-4.5. It was built using the same recipe as its last models, but it’s essentially bigger (OpenAI says the model is its largest yet). The company also claims it’s tweaked the new model’s responses to reduce the number of mistakes, or hallucinations. Why it matters: For a while, like other AI companies, OpenAI has chugged along releasing bigger and better large language models. But GPT-4.5 might be the last to fit this paradigm. That’s because of the rise of so-called reasoning models, which can handle more complex, logic-driven tasks step by step. OpenAI says all its future models will include reasoning components. Though that will make for better responses, such models also require significantly more energy, according to early reports. Read more from Will Douglas Heaven.  Bits and Bytes The small Danish city of Odense has become known for collaborative robots Robots designed to work alongside and collaborate with humans, sometimes called cobots, are not very popular in industrial settings yet. That’s partially due to safety concerns that are still being researched. A city in Denmark is leading that charge. (MIT Technology Review) DOGE is working on software that automates the firing of government workers Software called AutoRIF, which stands for “automated reduction in force,” was built by the Pentagon decades ago. Engineers for DOGE are now working to retool it for their efforts, according to screenshots reviewed by Wired. (Wired) Alibaba’s new video AI model has taken off in the AI porn community The Chinese tech giant has released a number of impressive AI models, particularly since the popularization of DeepSeek R1, a competitor from another Chinese company, earlier this year. Its latest open-source video generation model has found one particular audience: enthusiasts of AI porn. (404 Media) The AI Hype Index Wondering whether everything you’re hearing about AI is more hype than reality? To help, we just published our latest AI Hype Index, where we judge things like DeepSeek, stem-cell-building AI, and chatbot lovers on spectrums from Hype to Reality and Doom to Utopia. Check it out for a regular reality check. (MIT Technology Review) These smart cameras spot wildfires before they spread California is experimenting with AI-powered cameras to identify wildfires. It’s a popular application of video and image recognition technology that has advanced rapidly in recent years. The technology beats 911 callers about a third of the time and has spotted over 1,200 confirmed fires so far, the Wall Street Journal reports. (Wall Street Journal)

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.

Last week, I made a troubling discovery about an AI companion site called Botify AI: It was hosting sexually charged conversations with underage celebrity bots. These bots took on characters meant to resemble, among others, Jenna Ortega as high schooler Wednesday Addams, Emma Watson as Hermione Granger, and Millie Bobby Brown. I discovered these bots also offer to send “hot photos” and in some instances describe age-of-consent laws as “arbitrary” and “meant to be broken.”

Botify AI removed these bots after I asked questions about them, but others remain. The company said it does have filters in place meant to prevent such underage character bots from being created, but that they don’t always work. Artem Rodichev, the founder and CEO of Ex-Human, which operates Botify AI, told me such issues are “an industry-wide challenge affecting all conversational AI systems.” For the details, which hadn’t been previously reported, you should read the whole story

Putting aside the fact that the bots I tested were promoted by Botify AI as “featured” characters and received millions of likes before being removed, Rodichev’s response highlights something important. Despite their soaring popularity, AI companionship sites mostly operate in a Wild West, with few laws or even basic rules governing them. 

What exactly are these “companions” offering, and why have they grown so popular? People have been pouring out their feelings to AI since the days of Eliza, a mock psychotherapist chatbot built in the 1960s. But it’s fair to say that the current craze for AI companions is different. 

Broadly, these sites offer an interface for chatting with AI characters that offer backstories, photos, videos, desires, and personality quirks. The companies—including Replika,  Character.AI, and many others—offer characters that can play lots of different roles for users, acting as friends, romantic partners, dating mentors, or confidants. Other companies enable you to build “digital twins” of real people. Thousands of adult-content creators have created AI versions of themselves to chat with followers and send AI-generated sexual images 24 hours a day. Whether or not sexual desire comes into the equation, AI companions differ from your garden-variety chatbot in their promise, implicit or explicit, that genuine relationships can be had with AI. 

While many of these companions are offered directly by the companies that make them, there’s also a burgeoning industry of “licensed” AI companions. You may start interacting with these bots sooner than you think. Ex-Human, for example, licenses its models to Grindr, which is working on an “AI wingman” that will help users keep track of conversations and eventually may even date the AI agents of other users. Other companions are arising in video-game platforms and will likely start popping up in many of the varied places we spend time online. 

A number of criticisms, and even lawsuits, have been lodged against AI companionship sites, and we’re just starting to see how they’ll play out. One of the most important issues is whether companies can be held liable for harmful outputs of the AI characters they’ve made. Technology companies have been protected under Section 230 of the US Communications Act, which broadly holds that businesses aren’t liable for consequences of user-generated content. But this hinges on the idea that companies merely offer platforms for user interactions rather than creating content themselves, a notion that AI companionship bots complicate by generating dynamic, personalized responses.

The question of liability will be tested in a high-stakes lawsuit against Character.AI, which was sued in October by a mother who alleges that one of its chatbots played a role in the suicide of her 14-year-old son. A trial is set to begin in November 2026. (A Character.AI spokesperson, though not commenting on pending litigation, said the platform is for entertainment, not companionship. The spokesperson added that the company has rolled out new safety features for teens, including a separate model and new detection and intervention systems, as well as “disclaimers to make it clear that the Character is not a real person and should not be relied on as fact or advice.”) My colleague Eileen has also recently written about another chatbot on a platform called Nomi, which gave clear instructions to a user on how to kill himself.

Another criticism has to do with dependency. Companion sites often report that young users spend one to two hours per day, on average, chatting with their characters. In January, concerns that people could become addicted to talking with these chatbots sparked a number of tech ethics groups to file a complaint against Replika with the Federal Trade Commission, alleging that the site’s design choices “deceive users into developing unhealthy attachments” to software “masquerading as a mechanism for human-to-human relationship.”

It should be said that lots of people gain real value from chatting with AI, which can appear to offer some of the best facets of human relationships—connection, support, attraction, humor, love. But it’s not yet clear how these companionship sites will handle the risks of those relationships, or what rules they should be obliged to follow. More lawsuits–-and, sadly, more real-world harm—will be likely before we get an answer. 


Deeper Learning

OpenAI released GPT-4.5

On Thursday OpenAI released its newest model, called GPT-4.5. It was built using the same recipe as its last models, but it’s essentially bigger (OpenAI says the model is its largest yet). The company also claims it’s tweaked the new model’s responses to reduce the number of mistakes, or hallucinations.

Why it matters: For a while, like other AI companies, OpenAI has chugged along releasing bigger and better large language models. But GPT-4.5 might be the last to fit this paradigm. That’s because of the rise of so-called reasoning models, which can handle more complex, logic-driven tasks step by step. OpenAI says all its future models will include reasoning components. Though that will make for better responses, such models also require significantly more energy, according to early reports. Read more from Will Douglas Heaven

Bits and Bytes

The small Danish city of Odense has become known for collaborative robots

Robots designed to work alongside and collaborate with humans, sometimes called cobots, are not very popular in industrial settings yet. That’s partially due to safety concerns that are still being researched. A city in Denmark is leading that charge. (MIT Technology Review)

DOGE is working on software that automates the firing of government workers

Software called AutoRIF, which stands for “automated reduction in force,” was built by the Pentagon decades ago. Engineers for DOGE are now working to retool it for their efforts, according to screenshots reviewed by Wired. (Wired)

Alibaba’s new video AI model has taken off in the AI porn community

The Chinese tech giant has released a number of impressive AI models, particularly since the popularization of DeepSeek R1, a competitor from another Chinese company, earlier this year. Its latest open-source video generation model has found one particular audience: enthusiasts of AI porn. (404 Media)

The AI Hype Index

Wondering whether everything you’re hearing about AI is more hype than reality? To help, we just published our latest AI Hype Index, where we judge things like DeepSeek, stem-cell-building AI, and chatbot lovers on spectrums from Hype to Reality and Doom to Utopia. Check it out for a regular reality check. (MIT Technology Review)

These smart cameras spot wildfires before they spread

California is experimenting with AI-powered cameras to identify wildfires. It’s a popular application of video and image recognition technology that has advanced rapidly in recent years. The technology beats 911 callers about a third of the time and has spotted over 1,200 confirmed fires so far, the Wall Street Journal reports. (Wall Street Journal)

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Merz Expects US Exemption for Rosneft in Germany

German Chancellor Friedrich Merz said he’s optimistic that the US will exempt Rosneft PJSC’s German unit from Washington’s latest sanctions against Russia. “We will discuss this with the Americans,” Merz told reporters at a European Union summit in Brussels on Thursday. “I assume that a corresponding exemption for Rosneft will be granted.” The chancellor added that it was actually unclear whether the German business, Rosneft Deutschland, “even needs” an exemption, as the penalties say Rosneft must own at least 50 percent of the business. “It is 50 percent,” he said.  There are concerns that Rosneft’s German unit may be cut off from key customers without a US sanctions exemption, Bloomberg reported earlier. Oil traders, banks and oil companies have already threatened to end relationships with the company. Merz welcomed the latest US sanctions against Russia on Thursday as an indication of President Donald Trump’s determination to pressure Russia into ending its war against Ukraine. The new US sanctions give customers until Nov. 21 to withdraw from “any entity” that’s more than 50 percent-owned by the penalized Russian firms.  While Germany put Rosneft’s local assets under a temporary trusteeship after Russia invaded Ukraine in 2022, it stopped short of nationalizing the business. That means Berlin will likely have to negotiate a carve out from the latest restrictions. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy Network is a new social experience created for you and all energy professionals to Speak Up about our industry, share knowledge, connect with peers and industry insiders and engage in a professional community that will empower your career in energy.

Read More »

Saipem Posts Higher Profit for First 9 Months

Saipem SpA has reported EUR 221 million ($256.45 million) in net income and adjusted net income for the first three quarters, up 7.3 percent from the same nine-month period last year. Third-quarter (Q3) net result was EUR 81 million, up from EUR 63 million for Q2 but down from EUR 88 million for Q3 2024, the Italian energy engineering company said in a statement on its website. Saipem said it did not record any non-recurring item for January-September 2025. “The trend of improvement in operational, economic and financial performance that started in 2022 continues in the third quarter of 2025”, it said. January-September 2025 operating profit and adjusted operating profit totaled EUR 464 million, up 11.3 percent. “The positive change in adjusted operating profit of EUR 47 million, to which is added the effect of the improvement in the balance of tax operations of EUR 14 million, is partly offset by the worsening of the balance of financial operations of EUR 46 million”, Saipem, backed by state-controlled energy producer Eni SpA, said. Q3 2025 operating profit was EUR 159 million, up from Q2’s EUR 148 million but down from EUR 162 million for Q3 2024. January-September 2025 revenue totaled EUR 10.98 billion, up 8.4 percent against the first nine months of 2024. Q3 2025 revenue increased both quarter-on-quarter and year-on-year to EUR 3.77 billion. Backlog as of Q3 was EUR30.56 billion: EUR20.01 billion in Asset-Based Services, EUR 9.42 billion in Energy Carriers and EUR 1.13 billion in Offshore Drilling. “The Offshore Drilling backlog of EUR 1,129 million reflects the impact of the cancellation of the Perro Negro 12 jack-up rental contract, valued at EUR 35 million, following the notification of the termination for convenience by the client Saudi Aramco, in the second quarter of 2025”, Saipem said. Saipem expects to

Read More »

Secretary Wright Acts to Unleash American Industry and Innovation with Newly Proposed Rules

WASHINGTON—U.S. Secretary of Energy Chris Wright directed the Federal Energy Regulatory Commission (FERC) today to initiate rulemaking procedures with a proposed rule to rapidly accelerate the interconnection of large loads, including data centers, positioning the United States to lead in AI innovation and in the revitalization of domestic manufacturing. Secretary Wright’s proposed rule allows customers to file joint, co-located load and generation interconnection requests. It will also significantly reduce study times and grid upgrade costs, while reducing the time needed for additional generation and power to come online. The proposed rule advances President Trump’s agenda to ensure all Americans and domestic industries have access to affordable, reliable, and secure electricity. Click here to read Secretary Wright’s letter and proposed rule. Secretary Wright also directed FERC today to initiate rulemaking procedures with a proposed rule to remove unnecessary burdens for preliminary hydroelectric power permits. Secretary Wright’s proposed rule clarifies that third parties do not have veto rights over the issuance of preliminary hydroelectric power permits. Click here to read Secretary Wright’s letter and proposed rule. President Trump and Secretary Wright have been clear: The United States is experiencing an unprecedented surge in electricity demand and the United States’ ability to remain at the forefront of technological innovation depends on an affordable, reliable, and secure supply of energy. ###

Read More »

Brazil Oil Auction Shows Renewed Interest in Offshore Exploration

Brazil sold five of the seven blocks offered in an oil auction on Wednesday to majors including Petrobras and Equinor ASA in a sign of renewed interest to explore in deep waters off the country’s southern coast despite low oil prices.  The auction presented surprises with Melbourne-based Karoon Energy Ltd winning the Esmeralda block by itself. Chinese oil majors CNOOC Ltd. and China Petroleum & Chemical Corp., or Sinopec, won a block without any local partners.  “The bid round was successful,” said Marcelo De Assis, a Rio de Janeiro-based independent oil consultant. “A Chinese operated block in the pre-salt is a first.” The fields are located in the so-called pre-salt region that is so productive that the single biggest project produces more oil than all of Colombia. Discoveries made in the 2000s propelled Brazil to become Latin America’s biggest producer, but exploration was lackluster for more than a decade until BP Plc announced the Bumerangue discovery in the pre-salt this year.  State-controlled Petroleo Brasileiro SA, as it is formally known, has also announced a series of oil finds at the Aram block in the pre-salt.  “What’s most important is that the pre-salt has heated up again,” said Pedro Zalan a geologist and consultant who previously worked at Petrobras. “The pre-salt, where there was little interest recently, got a new lease on life.”  Still, European majors who operate in Brazil, Shell Plc, BP Plc and TotalEnergies SE didn’t present any bids. The National Agency for Petroleum, Natural Gas and Biofuels, or ANP, received investment commitments even amid low prices that are prompting the oil companies to slash spending and downsize staff. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or

Read More »

Oil Futures Take Flight on Russia Sanctions

Oil posted its biggest one-day gain in more than four months after the US announced sanctions on Russia’s biggest oil companies, threatening supplies from one of the world’s top producing countries.  West Texas Intermediate jumped 5.6% to settle near $62 a barrel, the most since the start of the Israel-Iran conflict on June 13. Heating oil led the oil complex higher, ending the day up 6.8%. The US blacklisted Russian oil giants Rosneft PJSC and Lukoil PJSC in an effort to cut off revenue Russia needs for its war in Ukraine. Senior refinery executives in India — a key buyer of Russian crude — said the restrictions would make it impossible for flows to continue. The latest US sanctions are a radical change of policy, where previous efforts to pressure Russia to end the war included a Group-of-Seven price cap on Russian oil that sought to limit revenue for the Kremlin without disrupting supply and causing a spike in global prices. The step comes at a time when global supply looks plentiful. Nations inside and outside the OPEC+ producer alliance have been ramping up output amid signs of cooling demand growth. If India does drastically cut purchases the question will become whether China, the other top buyer of Russian crude, is willing to step into the void. “The latest US sanctions on Russia’s largest oil producers represent a significant and unprecedented escalation in Washington’s pressure campaign against Moscow,” said Rystad Energy’s head of geopolitical analysis, Jorge Leon. “Combined with the recent wave of attacks on Russian oil infrastructure, these sanctions raise the prospect of major disruptions to Russian crude production and exports, heightening the risk of forced production shut-ins.” The European Union also piled additional pressure on the Kremlin with a new package of sanctions targeting Russia’s energy infrastructure, including

Read More »

China Keeps Importing Russian LNG After Dodging New USA Curbs

China is pushing ahead with imports of US-sanctioned Russian liquefied natural gas, after the White House stopped short of putting additional restrictions on the trade in its latest wave of sanctions. The Iris vessel, carrying a shipment from the blacklisted Arctic LNG 2 facility in Russia, docked at the Beihai import terminal in southern China on Thursday, according to ship-tracking data compiled by Bloomberg. This is China’s 11th shipment of restricted Russian LNG since late-August. The move comes after US President Donald Trump ramped up pressure on Russia by blacklisting state-run oil giants Rosneft PJSC and Lukoil PJSC, citing Moscow’s lack of commitment to Ukrainian peace. However, the White House hasn’t yet hit companies circumventing sanctions on LNG — a growing source of revenue for Moscow, which aims to triple exports of the superchilled fuel by 2030.  The lack of new restrictions on Russian LNG is notable, given that the UK slapped sanctions on Beihai last week. Meanwhile, European Union nations have adopted a new package of sanctions aimed at Russia that will target 45 entities, including 12 companies in China and Hong Kong.   China had designated Beihai as the sole entry point for shipments from Arctic LNG 2 — a Russian project already sanctioned by the US in 2023. Arctic LNG 2 started delivering the blacklisted fuel to the Asian nation in late August, a move that coincided with a visit to Beijing by Russian President Vladimir Putin. The Iris vessel loaded an LNG shipment from a floating storage unit in eastern Russia in early October, according to ship-tracking data. The fuel in storage was sourced from the Arctic LNG 2 project. The storage facility and Iris have both been previously sanctioned by the US. At least three more vessels carrying blacklisted Russian LNG are heading to the Beihai terminal, ship data

Read More »

How to set up an AI data center in 90 days

“Personally, I think that a brownfield is very creative way to deal with what I think is the biggest problem that we’ve got right now, which is time and speed to market,” he said. “On a brownfield, I can go into a building that’s already got power coming into the building. Sometimes they’ve already got chiller plants, like what we’ve got with the building I’m in right now.” Patmos certainly made the most of the liquid facilities in the old printing press building. The facility is built to handle anywhere from 50 to over 140 kilowatts per cabinet, a leap far beyond the 1–2 kW densities typical of legacy data centers. The chips used in the servers are Nvidia’s Grace Blackwell processors, which run extraordinarily hot. To manage this heat load, Patmos employs a multi-loop liquid cooling system. The design separates water sources into distinct, closed loops, each serving a specific function and ensuring that municipal water never directly contacts sensitive IT equipment. “We have five different, completely separated water loops in this building,” said Morgan. “The cooling tower uses city water for evaporation, but that water never mixes with the closed loops serving the data hall. Everything is designed to maximize efficiency and protect the hardware.” The building taps into Kansas City’s district chilled water supply, which is sourced from a nearby utility plant. This provides the primary cooling resource for the facility. Inside the data center, a dedicated loop circulates a specialized glycol-based fluid, filtered to extremely low micron levels and formulated to be electronically safe. Heat exchangers transfer heat from the data hall fluid to the district chilled water, keeping the two fluids separate and preventing corrosion or contamination. Liquid-to-chip and rear-door heat exchangers are used for immediate heat removal.

Read More »

INNIO and VoltaGrid: Landmark 2.3 GW Modular Power Deal Signals New Phase for AI Data Centers

Why This Project Marks a Landmark Shift The deployment of 2.3 GW of modular generation represents utility-scale capacity, but what makes it distinct is the delivery model. Instead of a centralized plant, the project uses modular gas-reciprocating “power packs” that can be phased in step with data-hall readiness. This approach allows staged energization and limits the bottlenecks that often stall AI campuses as they outgrow grid timelines or wait in interconnection queues. AI training loads fluctuate sharply, placing exceptional stress on grid stability and voltage quality. The INNIO/VoltaGrid platform was engineered specifically for these GPU-driven dynamics, emphasizing high transient performance (rapid load acceptance) and grid-grade power quality, all without dependence on batteries. Each power pack is also designed for maximum permitting efficiency and sustainability. Compared with diesel generation, modern gas-reciprocating systems materially reduce both criteria pollutants and CO₂ emissions. VoltaGrid markets the configuration as near-zero criteria air emissions and hydrogen-ready, extending allowable runtimes under air permits and making “prime-as-a-service” viable even in constrained or non-attainment markets. 2025: Momentum for Modular Prime Power INNIO has spent 2025 positioning its Jenbacher platform as a next-generation power solution for data centers: combining fast start, high transient performance, and lower emissions compared with diesel. While the 3 MW J620 fast-start lineage dates back to 2019, this year the company sharpened its data center narrative and booked grid stability and peaking projects in markets where rapid data center growth is stressing local grids. This momentum was exemplified by an 80 MW deployment in Indonesia announced earlier in October. The same year saw surging AI-driven demand and INNIO’s growing push into North American data-center markets. Specifications for the 2.3 GW VoltaGrid package highlight the platform’s heat tolerance, efficiency, and transient response, all key attributes for powering modern AI campuses. VoltaGrid’s 2025 Milestones VoltaGrid’s announcements across 2025 reflect

Read More »

Inside Google’s multi-architecture revolution: Axion Arm joins x86 in production clusters

Matt Kimball, VP and principal analyst with Moor Insights and Strategy, pointed out that AWS and Microsoft have already moved many workloads from x86 to internally designed Arm-based servers. He noted that, when Arm first hit the hyperscale datacenter market, the architecture was used to support more lightweight, cloud-native workloads with an interpretive layer where architectural affinity was “non-existent.” But now there’s much more focus on architecture, and compatibility issues “largely go away” as Arm servers support more and more workloads. “In parallel, we’ve seen CSPs expand their designs to support both scale out (cloud-native) and traditional scale up workloads effectively,” said Kimball. Simply put, CSPs are looking to monetize chip investments, and this migration signals that Google has found its performance-per-dollar (and likely performance-per-watt) better on Axion than x86. Google will likely continue to expand its Arm footprint as it evolves its Axion chip; as a reference point, Kimball pointed to AWS Graviton, which didn’t really support “scale up” performance until its v3 or v4 chip. Arm is coming to enterprise data centers too When looking at architectures, enterprise CIOs should ask themselves questions such as what instance do they use for cloud workloads, and what servers do they deploy in their data center, Kimball noted. “I think there is a lot less concern about putting my workloads on an Arm-based instance on Google Cloud, a little more hesitance to deploy those Arm servers in my datacenter,” he said. But ultimately, he said, “Arm is coming to the enterprise datacenter as a compute platform, and Nvidia will help usher this in.” Info-Tech’s Jain agreed that Nvidia is the “biggest cheerleader” for Arm-based architecture, and Arm is increasingly moving from niche and mobile use to general-purpose and AI workload execution.

Read More »

AMD Scales the AI Factory: 6 GW OpenAI Deal, Korean HBM Push, and Helios Debut

What 6 GW of GPUs Really Means The 6 GW of accelerator load envisioned under the OpenAI–AMD partnership will be distributed across multiple hyperscale AI factory campuses. If OpenAI begins with 1 GW of deployment in 2026, subsequent phases will likely be spread regionally to balance supply chains, latency zones, and power procurement risk. Importantly, this represents entirely new investment in both power infrastructure and GPU capacity. OpenAI and its partners have already outlined multi-GW ambitions under the broader Stargate program; this new initiative adds another major tranche to that roadmap. Designing for the AI Factory Era These upcoming facilities are being purpose-built for next-generation AI factories, where MI450-class clusters could drive rack densities exceeding 100 kW. That level of compute concentration makes advanced power and cooling architectures mandatory, not optional. Expected solutions include: Warm-water liquid cooling (manifold, rear-door, and CDU variants) as standard practice. Facility-scale water loops and heat-reuse systems—including potential district-heating partnerships where feasible. Medium-voltage distribution within buildings, emphasizing busway-first designs and expanded fault-current engineering. While AMD has not yet disclosed thermal design power (TDP) specifications for the MI450, a 1 GW campus target implies tens of thousands of accelerators. That scale assumes liquid cooling, ultra-dense racks, and minimal network latency footprints, pushing architectures decisively toward an “AI-first” orientation. Design considerations for these AI factories will likely include: Liquid-to-liquid cooling plants engineered for step-function capacity adders (200–400 MW blocks). Optics-friendly white space layouts with short-reach topologies, fiber raceways, and aisles optimized for module swaps. Substation adjacency and on-site generation envelopes negotiated during early land-banking phases. Networking, Memory, and Power Integration As compute density scales, networking and memory bottlenecks will define infrastructure design. Expect fat-tree and dragonfly network topologies, 800 G–1.6 T interconnects, and aggressive optical-module roadmaps to minimize collective-operation latency, aligning with recent disclosures from major networking vendors.

Read More »

Study Finds $4B in Data Center Grid Costs Shifted to Consumers Across PJM Region

In a new report spanning 2022 through 2024, the Union of Concerned Scientists (UCS) identifies a significant regulatory gap in the PJM Interconnection’s planning and rate-making process—one that allows most high-voltage (“transmission-level”) interconnection costs for large, especially AI-scale, data centers to be socialized across all utility customers. The result, UCS argues, is a multi-billion-dollar pass-through that is poised to grow as more data center projects move forward, because these assets are routinely classified as ordinary transmission infrastructure rather than customer-specific hookups. According to the report, between 2022 and 2024, utilities initiated more than 150 local transmission projects across seven PJM states specifically to serve data center connections. In 2024 alone, 130 projects were approved with total costs of approximately $4.36 billion. Virginia accounted for nearly half that total—just under $2 billion—followed by Ohio ($1.3 billion) and Pennsylvania ($492 million) in data-center-related interconnection spending. Yet only six of those 130 projects, about 5 percent, were reported as directly paid for by the requesting customer. The remaining 95 percent, representing more than $4 billion in 2024 connection costs, were rolled into general transmission charges and ultimately recovered from all retail ratepayers. How Does This Happen? When data center project costs are discussed, the focus is usually on the price of the power consumed, or megawatts multiplied by rate. What the UCS report isolates, however, is something different: the cost of physically delivering that power: the substations, transmission lines, and related infrastructure needed to connect hyperscale facilities to the grid. So why aren’t these substantial consumer-borne costs more visible? The report identifies several structural reasons for what effectively functions as a regulatory loophole in how development expenses are reported and allocated: Jurisdictional split. High-voltage facilities fall under the Federal Energy Regulatory Commission (FERC), while retail electricity rates are governed by state public utility

Read More »

OCP Global Summit 2025 Highlights: Advancing Data Center Densification and Security

With the conclusion of the 2025 OCP Global Summit, William G. Wong, Senior Content Director at DCF’s sister publications Electronic Design and Microwaves & RF, published a comprehensive roundup of standout technologies unveiled at the event. For Data Center Frontier readers, we’ve revisited those innovations through the lens of data center impact, focusing on how they reshape infrastructure design and operational strategy. This year’s OCP Summit marked a decisive shift toward denser GPU racks, standardized direct-to-chip liquid cooling, 800-V DC power distribution, high-speed in-rack fabrics, and “crypto-agile” platform security. Collectively, these advances aim to accelerate time-to-capacity, reduce power-distribution losses at megawatt rack scales, simplify retrofits in legacy halls, and fortify data center platforms against post-quantum threats. Rack Design and Cooling: From Ad-Hoc to Production-Grade Liquid Cooling NVIDIA’s Vera Rubin compute tray, newly offered to OCP for standardization, packages Rubin-generation GPUs with an integrated liquid-cooling manifold and PCB midplane. Compared with the GB300 tray, Vera Rubin represents a production-ready module delivering four times the memory and three times the memory bandwidth: a 7.5× performance factor at rack scale, with 150 TB of memory at 1.7 PB/s per rack. The system implements 45 °C liquid cooling, a 5,000-amp liquid-cooled busbar, and on-tray energy storage with power-resilience features such as flexible 100-amp whips and automatic-transfer power-supply units. NVIDIA also previewed a Kyber rack generation targeted for 2027, pivoting from 415/480 VAC to 800 V DC to support up to 576 Rubin Ultra GPUs, potentially eliminating the 200-kg copper busbars typical today. These refinements are aimed at both copper reduction and aisle-level manageability. Wiwynn’s announcements filled in the practicalities of deploying such densities. The company showcased rack- and system-level designs across NVIDIA GB300 NVL72 (72 Blackwell Ultra GPUs with 800 Gb/s ConnectX-8 SuperNICs) for large-scale inference and reasoning, and HGX B300 (eight GPUs /

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »