Stay Ahead, Stay ONMINE

Introduction to Minimum Cost Flow Optimization in Python

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations. Applications Applications of […]

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations.

Applications

Applications of minimum cost flow optimization are vast and varied, spanning multiple industries and sectors. This approach is crucial in logistics and supply chain management, where it is used to minimize transportation costs while ensuring timely delivery of goods. In telecommunications, it helps in optimizing the routing of data through networks to reduce latency and improve bandwidth utilization. The energy sector leverages minimum cost flow optimization to efficiently distribute electricity through power grids, reducing losses and operational costs. Urban planning and infrastructure development also benefit from this optimization technique, as it assists in designing efficient public transportation systems and water distribution networks.

Example

Below is a simple flow optimization example:

The image above illustrates a minimum cost flow optimization problem with six nodes and eight edges. Nodes A and B serve as sources, each with a supply of 50 units, while nodes E and F act as sinks, each with a demand of 40 units. Every edge has a maximum capacity of 25 units, with variable costs indicated in the image. The objective of the optimization is to allocate flow on each edge to move the required units from nodes A and B to nodes E and F, respecting the edge capacities at the lowest possible cost.

Node F can only receive supply from node B. There are two paths: directly or through node D. The direct path has a cost of 2, while the indirect path via D has a combined cost of 3. Thus, 25 units (the maximum edge capacity) are moved directly from B to F. The remaining 15 units are routed via B -D-F to meet the demand.

Currently, 40 out of 50 units have been transferred from node B, leaving a remaining supply of 10 units that can be moved to node E. The available pathways for supplying node E include: A-E and B-E with a cost of 3, A-C-E with a cost of 4, and B-C-E with a cost of 5. Consequently, 25 units are transported from A-E (limited by the edge capacity) and 10 units from B-E (limited by the remaining supply at node B). To meet the demand of 40 units at node E, an additional 5 units are moved via A-C-E, resulting in no flow being allocated to the B-C pathway.

Mathematical formulation

I introduce two mathematical formulations of minimum cost flow optimization:

1. LP (linear program) with continuous variables only

2. MILP (mixed integer linear program) with continuous and discrete variables

I am using following definitions:

Definitions

LP formulation

This formulation only contains decision variables that are continuous, meaning they can have any value as long as all constraints are fulfilled. Decision variables are in this case the flow variables x(u, v) of all edges.

The objective function describes how the costs that are supposed to be minimized are calculated. In this case it is defined as the flow multiplied with the variable cost summed up over all edges:

Constraints are conditions that must be satisfied for the solution to be valid, ensuring that the flow does not exceed capacity limitations.

First, all flows must be non-negative and not exceed to edge capacities:

Flow conservation constraints ensure that the same amount of flow that goes into a node has to come out of the node. These constraints are applied to all nodes that are neither sources nor sinks:

For source and sink nodes the difference of out flow and in flow is smaller or equal the supply of the node:

If v is a source the difference of outflow minus inflow must not exceed the supply s(v). In case v is a sink node we do not allow that more than -s(v) can flow into the node than out of the node (for sinks s(v) is negative).

MILP

Additionally, to the continuous variables of the LP formulation, the MILP formulation also contains discreate variables that can only have specific values. Discrete variables allow to restrict the number of used nodes or edges to certain values. It can also be used to introduce fixed costs for using nodes or edges. In this article I show how to add fixed costs. It is important to note that adding discrete decision variables makes it much more difficult to find an optimal solution, hence this formulation should only be used if a LP formulation is not possible.

The objective function is defined as:

With three terms: variable cost of all edges, fixed cost of all edges, and fixed cost of all nodes.

The maximum flow that can be allocated to an edge depends on the edge’s capacity, the edge selection variable, and the origin node selection variable:

This equation ensures that flow can only be assigned to edges if the edge selection variable and the origin node selection variable are 1.

The flow conservation constraints are equivalent to the LP problem.

Implementation

In this section I explain how to implement a MILP optimization in Python. You can find the code in this repo.

Libraries

To build the flow network, I used NetworkX which is an excellent library (https://networkx.org/) for working with graphs. There are many interesting articles that demonstrate how powerful and easy to use NetworkX is to work with graphs, i.a. customizing NetworkX GraphsNetworkX: Code Demo for Manipulating SubgraphsSocial Network Analysis with NetworkX: A Gentle Introduction.

One important aspect when building an optimization is to make sure that the input is correctly defined. Even one small error can make the problem infeasible or can lead to an unexpected solution. To avoid this, I used Pydantic to validate the user input and raise any issues at the earliest possible stage. This article gives an easy to understand introduction to Pydantic.

To transform the defined network into a mathematical optimization problem I used PuLP. Which allows to define all variables and constraint in an intuitive way. This library also has the advantage that it can use many different solvers in a simple pug-and-play fashion. This article provides good introduction to this library.

Defining nodes and edges

The code below shows how nodes are defined:

from pydantic import BaseModel, model_validator
from typing import Optional

# node and edge definitions
class Node(BaseModel, frozen=True):
    """
    class of network node with attributes:
    name: str - name of node
    demand: float - demand of node (if node is sink)
    supply: float - supply of node (if node is source)
    capacity: float - maximum flow out of node
    type: str - type of node
    x: float - x-coordinate of node
    y: float - y-coordinate of node
    fixed_cost: float - cost of selecting node
    """
    name: str
    demand: Optional[float] = 0.0
    supply: Optional[float] = 0.0
    capacity: Optional[float] = float('inf')
    type: Optional[str] = None
    x: Optional[float] = 0.0
    y: Optional[float] = 0.0
    fixed_cost: Optional[float] = 0.0

    @model_validator(mode='after')
    def validate(self):
        """
        validate if node definition are correct
        """
        # check that demand is non-negative
        if self.demand < 0 or self.demand == float('inf'): raise ValueError('demand must be non-negative and finite')
        # check that supply is non-negative
        if self.supply < 0: raise ValueError('supply must be non-negative')
        # check that capacity is non-negative
        if self.capacity < 0: raise ValueError('capacity must be non-negative')
        # check that fixed_cost is non-negative
        if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
        return self

Nodes are defined through the Node class which is inherited from Pydantic’s BaseModel. This enables an automatic validation that ensures that all properties are defined with the correct datatype whenever a new object is created. In this case only the name is a required input, all other properties are optional, if they are not provided the specified default value is assigned to them. By setting the “frozen” parameter to True I made all properties immutable, meaning they cannot be changed after the object has been initialized.

The validate method is executed after the object has been initialized and applies more checks to ensure the provided values are as expected. Specifically it checks that demand, supply, capacity, variable cost and fixed cost are not negative. Furthermore, it also does not allow infinite demand as this would lead to an infeasible optimization problem.

These checks look trivial, however their main benefit is that they will trigger an error at the earliest possible stage when an input is incorrect. Thus, they prevent creating a optimization model that is incorrect. Exploring why a model cannot be solved would be much more time consuming as there are many factors that would need to be analyzed, while such “trivial” input error may not be the first aspect to investigate.

Edges are implemented as follows:

class Edge(BaseModel, frozen=True):
"""
class of edge between two nodes with attributes:
origin: 'Node' - origin node of edge
destination: 'Node' - destination node of edge
capacity: float - maximum flow through edge
variable_cost: float - cost per unit flow through edge
fixed_cost: float - cost of selecting edge
"""
origin: Node
destination: Node
capacity: Optional[float] = float('inf')
variable_cost: Optional[float] = 0.0
fixed_cost: Optional[float] = 0.0

@model_validator(mode='after')
def validate(self):
"""
validate of edge definition is correct
"""
# check that node names are different
if self.origin.name == self.destination.name: raise ValueError('origin and destination names must be different')
# check that capacity is non-negative
if self.capacity < 0: raise ValueError('capacity must be non-negative')
# check that variable_cost is non-negative
if self.variable_cost < 0: raise ValueError('variable_cost must be non-negative')
# check that fixed_cost is non-negative
if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
return self

The required inputs are an origin node and a destination node object. Additionally, capacity, variable cost and fixed cost can be provided. The default value for capacity is infinity which means if no capacity value is provided it is assumed the edge does not have a capacity limitation. The validation ensures that the provided values are non-negative and that origin node name and the destination node name are different.

Initialization of flowgraph object

To define the flowgraph and optimize the flow I created a new class called FlowGraph that is inherited from NetworkX’s DiGraph class. By doing this I can add my own methods that are specific to the flow optimization and at the same time use all methods DiGraph provides:

from networkx import DiGraph
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus

class FlowGraph(DiGraph):
    """
    class to define and solve minimum cost flow problems
    """
    def __init__(self, nodes=[], edges=[]):
        """
        initialize FlowGraph object
        :param nodes: list of nodes
        :param edges: list of edges
        """
        # initialialize digraph
        super().__init__(None)

        # add nodes and edges
        for node in nodes: self.add_node(node)
        for edge in edges: self.add_edge(edge)


    def add_node(self, node):
        """
        add node to graph
        :param node: Node object
        """
        # check if node is a Node object
        if not isinstance(node, Node): raise ValueError('node must be a Node object')
        # add node to graph
        super().add_node(node.name, demand=node.demand, supply=node.supply, capacity=node.capacity, type=node.type, 
                         fixed_cost=node.fixed_cost, x=node.x, y=node.y)
        
    
    def add_edge(self, edge):    
        """
        add edge to graph
        @param edge: Edge object
        """   
        # check if edge is an Edge object
        if not isinstance(edge, Edge): raise ValueError('edge must be an Edge object')
        # check if nodes exist
        if not edge.origin.name in super().nodes: self.add_node(edge.origin)
        if not edge.destination.name in super().nodes: self.add_node(edge.destination)

        # add edge to graph
        super().add_edge(edge.origin.name, edge.destination.name, capacity=edge.capacity, 
                         variable_cost=edge.variable_cost, fixed_cost=edge.fixed_cost)

FlowGraph is initialized by providing a list of nodes and edges. The first step is to initialize the parent class as an empty graph. Next, nodes and edges are added via the methods add_node and add_edge. These methods first check if the provided element is a Node or Edge object. If this is not the case an error will be raised. This ensures that all elements added to the graph have passed the validation of the previous section. Next, the values of these objects are added to the Digraph object. Note that the Digraph class also uses add_node and add_edge methods to do so. By using the same method name I am overwriting these methods to ensure that whenever a new element is added to the graph it must be added through the FlowGraph methods which validate the object type. Thus, it is not possible to build a graph with any element that has not passed the validation tests.

Initializing the optimization problem

The method below converts the network into an optimization model, solves it, and retrieves the optimized values.

  def min_cost_flow(self, verbose=True):
        """
        run minimum cost flow optimization
        @param verbose: bool - print optimization status (default: True)
        @return: status of optimization
        """
        self.verbose = verbose

        # get maximum flow
        self.max_flow = sum(node['demand'] for _, node in super().nodes.data() if node['demand'] > 0)

        start_time = time.time()
        # create LP problem
        self.prob = LpProblem("FlowGraph.min_cost_flow", LpMinimize)
        # assign decision variables
        self._assign_decision_variables()
        # assign objective function
        self._assign_objective_function()
        # assign constraints
        self._assign_constraints()
        if self.verbose: print(f"Model creation time: {time.time() - start_time:.2f} s")

        start_time = time.time()
        # solve LP problem
        self.prob.solve()
        solve_time = time.time() - start_time

        # get status
        status = LpStatus[self.prob.status]

        if verbose:
            # print optimization status
            if status == 'Optimal':
                # get objective value
                objective = self.prob.objective.value()
                print(f"Optimal solution found: {objective:.2f} in {solve_time:.2f} s")
            else:
                print(f"Optimization status: {status} in {solve_time:.2f} s")
        
        # assign variable values
        self._assign_variable_values(status=='Optimal')

        return status

Pulp’s LpProblem is initialized, the constant LpMinimize defines it as a minimization problem — meaning it is supposed to minimize the value of the objective function. In the following lines all decision variables are initialized, the objective function as well as all constraints are defined. These methods will be explained in the following sections.

Next, the problem is solved, in this step the optimal value of all decision variables is determined. Following the status of the optimization is retrieved. When the status is “Optimal” an optimal solution could be found other statuses are “Infeasible” (it is not possible to fulfill all constraints), “Unbounded” (the objective function can have an arbitrary low values), and “Undefined” meaning the problem definition is not complete. In case no optimal solution was found the problem definition needs to be reviewed.

Finally, the optimized values of all variables are retrieved and assigned to the respective nodes and edges.

Defining decision variables

All decision variables are initialized in the method below:

   def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue

First it iterates through all edges and assigns continuous decision variables if the edge capacity is greater than 0. Furthermore, if fixed costs of the edge are greater than 0 a binary decision variable is defined as well. Next, it iterates through all nodes and assigns binary decision variables to nodes with fixed costs. The total number of continuous and binary decision variables is counted and printed at the end of the method.

Defining objective

After all decision variables have been initialized the objective function can be defined:

    def _assign_objective_function(self):
        """
        define objective function
        """
        objective = 0
 
        # add edge costs
        for _, _, edge in super().edges.data():
            if edge['selection_var'] is not None: objective += edge['selection_var'] * edge['fixed_cost']
            if edge['flow_var'] is not None: objective += edge['flow_var'] * edge['variable_cost']
        
        # add node costs
        for _, node in super().nodes.data():
            # add node selection costs
            if node['selection_var'] is not None: objective += node['selection_var'] * node['fixed_cost']

        self.prob += objective, 'Objective',

The objective is initialized as 0. Then for each edge fixed costs are added if the edge has a selection variable, and variable costs are added if the edge has a flow variable. For all nodes with selection variables fixed costs are added to the objective as well. At the end of the method the objective is added to the LP object.

Defining constraints

All constraints are defined in the method below:

  def _assign_constraints(self):
        """
        define constraints
        """
        # count of contraints
        constr_count = 0
        # add capacity constraints for edges with fixed costs
        for origin_name, destination_name, edge in super().edges.data():
            # get capacity
            capacity = edge['capacity'] if edge['capacity'] < float('inf') else self.max_flow
            rhs = capacity
            if edge['selection_var'] is not None: rhs *= edge['selection_var']
            self.prob += edge['flow_var'] <= rhs, f"capacity_{origin_name}-{destination_name}",
            constr_count += 1
            
            # get origin node
            origin_node = super().nodes[origin_name]
            # check if origin node has a selection variable
            if origin_node['selection_var'] is not None:
                rhs = capacity * origin_node['selection_var'] 
                self.prob += (edge['flow_var'] <= rhs, f"node_selection_{origin_name}-{destination_name}",)
                constr_count += 1

        total_demand = total_supply = 0
        # add flow conservation constraints
        for node_name, node in super().nodes.data():
            # aggregate in and out flows
            in_flow = 0
            for _, _, edge in super().in_edges(node_name, data=True):
                if edge['flow_var'] is not None: in_flow += edge['flow_var']
            
            out_flow = 0
            for _, _, edge in super().out_edges(node_name, data=True):
                if edge['flow_var'] is not None: out_flow += edge['flow_var']

            # add node capacity contraint
            if node['capacity'] < float('inf'):
                self.prob += out_flow = demand - supply
                rhs = node['demand'] - node['supply']
                self.prob += in_flow - out_flow >= rhs, f"flow_balance_{node_name}",
            constr_count += 1

            # update total demand and supply
            total_demand += node['demand']
            total_supply += node['supply']

        if self.verbose:
            print(f"Constraints: {constr_count}")
            print(f"Total supply: {total_supply}, Total demand: {total_demand}")

First, capacity constraints are defined for each edge. If the edge has a selection variable the capacity is multiplied with this variable. In case there is no capacity limitation (capacity is set to infinity) but there is a selection variable, the selection variable is multiplied with the maximum flow that has been calculated by aggregating the demand of all nodes. An additional constraint is added in case the edge’s origin node has a selection variable. This constraint means that flow can only come out of this node if the selection variable is set to 1.

Following, the flow conservation constraints for all nodes are defined. To do so the total in and outflow of the node is calculated. Getting all in and outgoing edges can easily be done by using the in_edges and out_edges methods of the DiGraph class. If the node has a capacity limitation the maximum outflow will be constraint by that value. For the flow conservation it is necessary to check if the node is either a source or sink node or a transshipment node (demand equals supply). In the first case the difference between inflow and outflow must be greater or equal the difference between demand and supply while in the latter case in and outflow must be equal.

The total number of constraints is counted and printed at the end of the method.

Retrieving optimized values

After running the optimization, the optimized variable values can be retrieved with the following method:

    def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue 

This method iterates through all edges and nodes, checks if decision variables have been assigned and adds the decision variable value via varValue to the respective edge or node.

Demo

To demonstrate how to apply the flow optimization I created a supply chain network consisting of 2 factories, 4 distribution centers (DC), and 15 markets. All goods produced by the factories have to flow through one distribution center until they can be delivered to the markets.

Supply chain problem

Node properties were defined:

Node definitions

Ranges mean that uniformly distributed random numbers were generated to assign these properties. Since Factories and DCs have fixed costs the optimization also needs to decide which of these entities should be selected.

Edges are generated between all Factories and DCs, as well as all DCs and Markets. The variable cost of edges is calculated as the Euclidian distance between origin and destination node. Capacities of edges from Factories to DCs are set to 350 while from DCs to Markets are set to 100.

The code below shows how the network is defined and how the optimization is run:

# Define nodes
factories = [Node(name=f'Factory {i}', supply=700, type='Factory', fixed_cost=100, x=random.uniform(0, 2),
                  y=random.uniform(0, 1)) for i in range(2)]
dcs = [Node(name=f'DC {i}', fixed_cost=25, capacity=500, type='DC', x=random.uniform(0, 2), 
            y=random.uniform(0, 1)) for i in range(4)]
markets = [Node(name=f'Market {i}', demand=random.randint(1, 100), type='Market', x=random.uniform(0, 2), 
                y=random.uniform(0, 1)) for i in range(15)]

# Define edges
edges = []
# Factories to DCs
for factory in factories:
    for dc in dcs:
        distance = ((factory.x - dc.x)**2 + (factory.y - dc.y)**2)**0.5
        edges.append(Edge(origin=factory, destination=dc, capacity=350, variable_cost=distance))

# DCs to Markets
for dc in dcs:
    for market in markets:
        distance = ((dc.x - market.x)**2 + (dc.y - market.y)**2)**0.5
        edges.append(Edge(origin=dc, destination=market, capacity=100, variable_cost=distance))

# Create FlowGraph
G = FlowGraph(edges=edges)

G.min_cost_flow()

The output of flow optimization is as follows:

Variable types: 68 continuous, 6 binary
Constraints: 161
Total supply: 1400.0, Total demand: 909.0
Model creation time: 0.00 s
Optimal solution found: 1334.88 in 0.23 s

The problem consists of 68 continuous variables which are the edges’ flow variables and 6 binary decision variables which are the selection variables of the Factories and DCs. There are 161 constraints in total which consist of edge and node capacity constraints, node selection constraints (edges can only have flow if the origin node is selected), and flow conservation constraints. The next line shows that the total supply is 1400 which is higher than the total demand of 909 (if the demand was higher than the supply the problem would be infeasible). Since this is a small optimization problem, the time to define the optimization model was less than 0.01 seconds. The last line shows that an optimal solution with an objective value of 1335 could be found in 0.23 seconds.

Additionally, to the code I described in this post I also added two methods that visualize the optimized solution. The code of these methods can also be found in the repo.

Flow graph

All nodes are located by their respective x and y coordinates. The node and edge size is relative to the total volume that is flowing through. The edge color refers to its utilization (flow over capacity). Dashed lines show edges without flow allocation.

In the optimal solution both Factories were selected which is inevitable as the maximum supply of one Factory is 700 and the total demand is 909. However, only 3 of the 4 DCs are used (DC 0 has not been selected).

In general the plot shows the Factories are supplying the nearest DCs and DCs the nearest Markets. However, there are a few exceptions to this observation: Factory 0 also supplies DC 3 although Factory 1 is nearer. This is due to the capacity constraints of the edges which only allow to move at most 350 units per edge. However, the closest Markets to DC 3 have a slightly higher demand, hence Factory 0 is moving additional units to DC 3 to meet that demand. Although Market 9 is closest to DC 3 it is supplied by DC 2. This is because DC 3 would require an additional supply from Factory 0 to supply this market and since the total distance from Factory 0 over DC 3 is longer than the distance from Factory 0 through DC 2, Market 9 is supplied via the latter route.

Another way to visualize the results is via a Sankey diagram which focuses on visualizing the flows of the edges:

Sankey flow diagram

The colors represent the edges’ utilizations with lowest utilizations in green changing to yellow and red for the highest utilizations. This diagram shows very well how much flow goes through each node and edge. It highlights the flow from Factory 0 to DC 3 and also that Market 13 is supplied by DC 2 and DC 1.

Summary

Minimum cost flow optimizations can be a very helpful tool in many domains like logistics, transportation, telecommunication, energy sector and many more. To apply this optimization it is important to translate a physical system into a mathematical graph consisting of nodes and edges. This should be done in a way to have as few discrete (e.g. binary) decision variables as necessary as those make it significantly more difficult to find an optimal solution. By combining Python’s NetworkX, Pulp and Pydantic libraries I built an flow optimization class that is intuitive to initialize and at the same time follows a generalized formulation which allows to apply it in many different use cases. Graph and flow diagrams are very helpful to understand the solution found by the optimizer.

If not otherwise stated all images were created by the author.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

AI agent traffic drives first profitable year for Fastly

Fetcher bots, which retrieve content in real time when users make queries to AI assistants, show different concentration patterns. OpenAI’s ChatGPT and related bots generated 68% of fetcher bot requests. In some cases, fetcher bot request volumes exceeded 39,000 requests per minute to individual sites. AI agents check multiple websites

Read More »

VEN Plans to Grant More Oil Blocks to Chevron and Repsol

Venezuela plans to grant more oil-production land to Chevron Corp. and Spain’s Repsol SA as the Trump administration pushes for private companies to rebuild the nation’s energy sector, according to people with knowledge of the matter. Officials in Caracas are poised to award the exploration and production blocks as soon as this week, the people said. Giving US and European companies more access to Venezuela’s oil-rich territory is a key piece of US President Donald Trump’s push to revive the nation’s dilapidated energy sector while eroding China and Russia’s local influence.  On Thursday, US Energy Secretary Chris Wright toured a project operated by Chevron in Venezuela’s Orinoco oil belt and told reporters that the opportunity for cooperation between the US and the South American nation is immense following the capture of former Venezuela President Nicolás Maduro.  In an interview with Bloomberg TV, Wright said the US would release additional licenses “soon,” with companies like Chevron seeing benefits from an increase of as much as a 30% in production in the next 18 to 24 months.  “Chevron is being enabled to massively grow their business here. They’re the largest producer in Venezuela today, and they’re going to be able to both expand the reserves they have and expand their operations,” Wright said. “They’re just one of many, but they’re going to be a big one,” he added. Repsol declined to comment. Chevron didn’t immediately respond to a request for comment. The Trump administration is expected to issue general license to allow international oil companies to explore and produce in Venezuela without violating US sanctions, Bloomberg reported earlier this month. It would be the latest is part of a string of authorizations from the Treasury Department to open up the nation’s oil sector since US forces captured Venezuela’s former President Nicolás Maduro on Jan.

Read More »

Oil Posts Second Straight Weekly Drop

Oil notched its first back-to-back weekly drop this year as traders weighed the prospect of expanded OPEC+ supplies against US-Iran nuclear talks and recent weakness in wider markets. West Texas Intermediate fell 1% for the week and ended the day little changed on Friday. President Donald Trump said the US deployed an additional aircraft carrier to the Middle East in case a nuclear deal is not reached with Iran. “If we don’t have a deal, we’ll need it,” Trump said at the White House. He added he thinks negotiations will ultimately be successful. Traders have been watching for any uptick in tensions between Washington and Tehran that could pose a threat to supply from the Middle East. The commodity was down earlier as OPEC+ members see scope for output increases to resume in April, believing concerns about a glut are overblown, delegates said. The group has not yet committed to any course of action or begun formal discussions for a March 1 meeting, they added. A second weekly decline in the futures market stands to snap a long run of gains for early 2026, when recurrent bouts of geopolitical tension including the US stand-off with Iran supported oil prices. At an energy conference in London this week, attendees flagged that they expect worldwide supplies to top demand this year, potentially feeding into higher inventories in the Atlantic basin, the region where global prices are set. Still, a pile-up of sanctioned oil coupled with supply disruptions in various nations has limited the impact thus far. Trading may be thinner ahead of the Presidents’ Day holiday in the US, contributing to exaggerated price swings. Oil Prices WTI for March delivery settled up 0.1% at $62.89 a barrel in New York. Brent for April settlement edged 0.3% higher to $67.75 a barrel. What

Read More »

Reliance Gets USA License to Directly Buy VEN Crude

Indian refiner Reliance Industries Ltd. has received a general license from the US government that will allow it to purchase Venezuelan oil directly, according to a person familiar with the matter.  Reliance, owned by billionaire Mukesh Ambani, applied for the permit last month and received it from the Treasury Department a few days ago, the person said, asking not to be named as the matter is not public. The move comes immediately on the heels of a trade deal with the US that slashes punitive tariffs for Indian exports but demands that the country stop importing discounted Russian oil. The Indian government has asked state-owned refiners to consider buying more Venezuelan crude, as well as oil from the US.  Venezuela is unlikely to produce large volumes of crude anytime soon, but even limited supplies provide a fallback option for India’s largest refiner. The US — which has stepped up involvement in Venezuela’s oil sector after capturing the country’s president last month — has been considering general licenses to permit purchases, trading and investment in a sprawling but threadbare industry. Reliance is the first Indian refiner to receive clearance in the current push.  Reliance has historically been an important consumer of the country’s heavy crude, having struck a term deal to secure as much as 400,000 barrels a day from Petroleos de Venezuela SA in 2012. It is among only a handful of refiners in India that have the capacity to process the high-viscosity, sour oil, which is difficult to extract and refine without diluent.  The Indian refining giant took about 25% of Venezuela’s exports in 2019, before its term deal got suspended in 2019 due to US sanctions. It last received a general license in 2024 and took crude until that expired last year, and was not renewed. Reuters first reported the issuance of

Read More »

Baker Hughes Explores $1.5B Sale of Waygate Unit

Baker Hughes Co. is exploring a potential sale of its Waygate Technologies unit, which provides industrial testing and inspection equipment, people with knowledge of the matter said.  The world’s second-biggest oilfield contractor is working with advisers to study a possible divestment of the Waygate business, which could fetch around $1.5 billion, according to the people. A sale process could kick off in the next few months and attract interest from private equity firms, the people said, asking not to be identified because the information is private.  Deliberations are ongoing and there’s no certainty they will lead to a transaction, the people said. A representative for Baker Hughes declined to comment.  Waygate, based in Hürth, Germany, makes radiographic testing systems, industrial CT scanners, remote visual inspection machines and ultrasonic testing devices. It operates in more than 80 countries and is known for brands including Krautkrämer, phoenix|x-ray, Seifert, Everest and Agfa NDT.  The company was started in 2004 as GE Inspection Technologies. It’s been under the current ownership since 2017, when General Electric Co. combined its oil and gas division with Baker Hughes in a $32 billion deal.  Baker Hughes is selling the non-core asset after agreeing last year to buy industrial equipment maker Chart Industries Inc. for about $9.6 billion in one of its biggest-ever acquisitions. Chief Executive Officer Lorenzo Simonelli said in October last year that Baker Hughes is undertaking a “comprehensive evaluation” of its capital allocation focus following the Chart deal in order to boost shareholder value.  The pending sale would join other sizeable corporate divestments in Europe. Volkswagen AG has launched the sale of a majority stake in its heavy diesel engine maker Everllence, while Continental AG is selling its Contitech business. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions

Read More »

EIA Raises 2026 WTI Forecast, Lowers 2027 Projection

The U.S. Energy Information Administration (EIA) increased its 2026 West Texas Intermediate (WTI) crude oil average spot price forecast, and lowered its 2027 projection, in its latest short term energy outlook (STEO). According to the EIA’s February STEO, which was released on February 10, the EIA now sees the WTI spot price averaging $53.42 per barrel this year and $49.34 per barrel next year. In its previous STEO, which was released in January, the EIA projected that the WTI spot price would average $52.21 per barrel in 2026 and $50.36 per barrel in 2027. A quarterly breakdown included in the EIA’s latest STEO projected that the WTI average spot price will come in at $58.62 per barrel in the first quarter of this year, $53.65 per barrel in the second quarter, $51.69 per barrel in the third quarter, $50.00 per barrel in the fourth quarter, $49.00 per barrel in the first quarter of next year, $49.66 per barrel in the second quarter, $49.68 per barrel in the third quarter, and $49.00 per barrel in the fourth quarter of 2027. In its previous STEO, the EIA forecast that the WTI spot price would average $54.93 per barrel in the first quarter of this year, $52.67 per barrel in the second quarter, $52.03 per barrel in the third quarter, $49.34 per barrel in the fourth quarter, $49.00 per barrel in the first quarter of next year, $50.66 per barrel in the second quarter, $50.68 per barrel in the third quarter, and $51.00 per barrel in the fourth quarter of 2027. In a BMI report sent to Rigzone by the Fitch Group on Friday, BMI projected that the front month WTI crude price will average $64.00 per barrel in 2026 and $68.00 per barrel in 2027. Standard Chartered sees the NYMEX WTI nearby

Read More »

Some OPEC+ Members See Scope to Resume Hikes in April

Some OPEC+ members see scope for the alliance to resume supply increases in April, believing concerns of a glut in global oil markets to be overblown. The group led by Saudi Arabia and Russia hasn’t committed to any course of action or begun formal discussions ahead of its meeting on March 1, according to several delegates, who asked not to be identified as the process is private. Their ultimate decision may depend on whether US President Donald Trump launches military action against — or reaches a nuclear deal with — OPEC member Iran, one added.  Nonetheless, some nations in the Organization of the Petroleum Exporting Countries and its allies said they see room to resume the output increases the coalition paused during the seasonal demand slowdown of the first quarter.  Trump’s assertive stance toward OPEC members Venezuela and Iran, along with disruptions spanning from North America to Kazakhstan, drove oil prices to a strong start of the year despite warnings of a supply glut. Several top traders have said that prices are supported by tightness in key markets, as many of the surplus barrels are from producers subject to sanctions like Russia and Iran, and thus remain unavailable to a wider pool of buyers. That has made the market surprisingly resilient. Brent futures are up 11% this year, after spiking to a six-month high near $72 a barrel at the end of January over concerns a conflict might erupt in the Middle East. Oil inventories piled up last year at the fastest pace since the 2020 pandemic amid swelling output from both OPEC+ and its competitors in the Americas, according to the International Energy Agency, though the impact on prices was tempered as China scooped up barrels for its strategic reserves. Last April, the Saudis stunned crude traders by steering OPEC+ to

Read More »

From NIMBY to YIMBY: A Playbook for Data Center Community Acceptance

Across many conversations at the start of this year, at PTC and other conferences alike, the word on everyone’s lips seems to be “community.” For the data center industry, that single word now captures a turning point from just a few short years ago: we are no longer a niche, back‑of‑house utility, but a front‑page presence in local politics, school board budgets, and town hall debates. That visibility is forcing a choice in how we tell our story—either accept a permanent NIMBY-reactive framework, or actively build a YIMBY narrative that portrays the real value digital infrastructure brings to the markets and surrounding communities that host it. Speaking regularly with Ilissa Miller, CEO of iMiller Public Relations about this topic, there is work to be done across the ecosystem to build communications. Miller recently reflected: “What we’re seeing in communities isn’t a rejection of digital infrastructure, it’s a rejection of uncertainty driven by anxiety and fear. Most local leaders have never been given a framework to evaluate digital infrastructure developments the way they evaluate roads, water systems, or industrial parks. When there’s no shared planning language, ‘no’ becomes the safest answer.” A Brief History of “No” Community pushback against data centers is no longer episodic; it has become organized, media‑savvy, and politically influential in key markets. In Northern Virginia, resident groups and environmental organizations have mobilized against large‑scale campuses, pressing counties like Loudoun and Prince William to tighten zoning, question incentives, and delay or reshape projects.1 Loudoun County’s move in 2025 to end by‑right approvals for new facilities, requiring public hearings and board votes, marked a watershed moment as the world’s densest data center market signaled that communities now expect more say over where and how these campuses are built. Prince William County’s decision to sharply increase its tax rate on

Read More »

Nomads at the Frontier: PTC 2026 Signals the Digital Infrastructure Industry’s Moment of Execution

Each January, the Pacific Telecommunications Council conference serves as a barometer for where digital infrastructure is headed next. And according to Nomad Futurist founders Nabeel Mahmood and Phillip Koblence, the message from PTC 2026 was unmistakable: The industry has moved beyond hype. The hard work has begun. In the latest episode of The DCF Show Podcast, part of our ongoing ‘Nomads at the Frontier’ series, Mahmood and Koblence joined Data Center Frontier to unpack the tone shift emerging across the AI and data center ecosystem. Attendance continues to grow year over year. Conversations remain energetic. But the character of those conversations has changed. As Mahmood put it: “The hype that the market started to see is actually resulting a bit more into actions now, and those conversations are resulting into some good progress.” The difference from prior years? Less speculation. More execution. From Data Center Cowboys to Real Deployments Koblence offered perhaps the sharpest contrast between PTC conversations in 2024 and those in 2026. Two years ago, many projects felt speculative. Today, developers are arriving with secured power, customers, and construction underway. “If 2024’s PTC was data center cowboys — sites that in someone’s mind could be a data center — this year was: show me the money, show me the power, give me accurate timelines.” In other words, the market is no longer rewarding hypothetical capacity. It is demanding delivered capacity. Operators now speak in terms of deployments already underway, not aspirational campuses still waiting on permits and power commitments. And behind nearly every conversation sits the same gating factor. Power. Power Has Become the Industry’s Defining Constraint Whether discussions centered on AI factories, investment capital, or campus expansion, Mahmood and Koblence noted that every conversation eventually returned to energy availability. “All of those questions are power,” Koblence said.

Read More »

Cooling Consolidation Hits AI Scale: LiquidStack, Submer, and the Future of Data Center Thermal Strategy

As AI infrastructure scales toward ever-higher rack densities and gigawatt-class campuses, cooling has moved from a technical subsystem to a defining strategic issue for the data center industry. A trio of announcements in early February highlights how rapidly the cooling and AI infrastructure stack is consolidating and evolving: Trane Technologies’ acquisition of LiquidStack; Submer’s acquisition of Radian Arc, extending its reach from core data centers into telco edge environments; and Submer’s partnership with Anant Raj to accelerate sovereign AI infrastructure deployment across India. Layered atop these developments is fresh guidance from Oracle Cloud Infrastructure explaining why closed-loop, direct-to-chip cooling is becoming central to next-generation facility design, particularly in regions where water use has become a flashpoint in community discussions around data center growth. Taken together, these developments show how the industry is moving beyond point solutions toward integrated, scalable AI infrastructure ecosystems, where cooling, compute, and deployment models must work together across hyperscale campuses and distributed edge environments alike. Trane Moves to Own the Cooling Stack The most consequential development comes from Trane Technologies, which on February 10 announced it has entered into a definitive agreement to acquire LiquidStack, one of the pioneers and leading innovators in data center liquid cooling. The acquisition significantly strengthens Trane’s ambition to become a full-service thermal partner for data center operators, extending its reach from plant-level systems all the way down to the chip itself. LiquidStack, headquartered in Carrollton, Texas, built its reputation on immersion cooling and advanced direct-to-chip liquid solutions supporting high-density deployments across hyperscale, enterprise, colocation, edge, and blockchain environments. Under Trane, those technologies will now be scaled globally and integrated into a broader thermal portfolio. In practical terms, Trane is positioning itself to deliver cooling across the full thermal chain, including: • Central plant equipment and chillers.• Heat rejection and controls

Read More »

Infrastructure Maturity Defines the Next Phase of AI Deployment

The State of Data Infrastructure Global Report 2025 from Hitachi Vantara arrives at a moment when the data center industry is undergoing one of the most profound structural shifts in its history. The transition from enterprise IT to AI-first infrastructure has moved from aspiration to inevitability, forcing operators, developers, and investors to confront uncomfortable truths about readiness, resilience, and risk. Although framed around “AI readiness,” the report ultimately tells an infrastructure story: one that maps directly onto how data centers are designed, operated, secured, and justified economically. Drawing on a global survey of more than 1,200 IT leaders, the report introduces a proprietary maturity model that evaluates organizations across six dimensions: scalability, reliability, security, governance, sovereignty, and sustainability. Respondents are then grouped into three categories—Emerging, Defined, and Optimized—revealing a stark conclusion: most organizations are not constrained by access to AI models or capital, but by the fragility of the infrastructure supporting their data pipelines. For the data center industry, the implications are immediate, shaping everything from availability design and automation strategies to sustainability planning and evolving customer expectations. In short, extracting value from AI now depends less on experimentation and more on the strength and resilience of the underlying infrastructure. The Focus of the Survey: Infrastructure, Not Algorithms Although the report is positioned as a study of AI readiness, its primary focus is not models, training approaches, or application development, but rather the infrastructure foundations required to operate AI reliably at scale. Drawing on responses from more than 1,200 organizations, Hitachi Vantara evaluates how enterprises are positioned to support production AI workloads across six dimensions as stated above: scalability, reliability, security, governance, sovereignty, and sustainability. These factors closely reflect the operational realities shaping modern data center design and management. The survey’s central argument is that AI success is no longer

Read More »

AI’s New Land Grab: Meta’s Indiana Megaproject and the Rise of Europe’s Neocloud Challengers

While Meta’s Indiana campus anchors hyperscale expansion in the United States, Europe recorded its own major infrastructure milestone this week as Amsterdam-based AI infrastructure provider Nebius unveiled plans for a 240-megawatt data center campus in Béthune, France, near Lille in the country’s northern industrial corridor. When completed, the campus will rank among Europe’s largest AI-focused data center facilities and positions northern France as a growing node in the continent’s expanding AI infrastructure map. The development repurposes a former Bridgestone tire manufacturing site, reflecting a broader trend across Europe in which legacy industrial properties, already equipped with heavy power access, transport links, and industrial zoning, are being converted into large-scale digital infrastructure hubs. Located within reach of connectivity and enterprise corridors linking Paris, Brussels, London, and Amsterdam, the site allows Nebius to serve major European markets while avoiding the congestion and power constraints increasingly shaping Tier 1 data center hubs. Industrial Infrastructure Becomes Digital Infrastructure Developers increasingly view former industrial sites as ideal for AI campuses because they often provide: • Existing grid interconnection capacity built for heavy industry• Transport and logistics infrastructure already in place• Industrial zoning that reduces permitting friction• Large contiguous parcels suited to phased campus expansion For regions like Hauts-de-France, redevelopment projects also offer economic transition opportunities, replacing legacy manufacturing capacity with next-generation digital infrastructure investment. Local officials have positioned the project as part of broader efforts to reposition northern France as a logistics and technology hub within Europe. The Neocloud Model Gains Ground Beyond the site itself, Nebius’ expansion illustrates the rapid emergence of neocloud infrastructure providers, companies building GPU-intensive AI capacity without operating full hyperscale cloud ecosystems. These firms increasingly occupy a strategic middle ground: supplying AI compute capacity to enterprises, startups, and even hyperscalers facing short-term infrastructure constraints. Nebius’ rise over the past year

Read More »

FTC digs deeper into Microsoft’s bundling and licensing practices

Relationship with OpenAI While much of the initial query, and subsequent ones, have focused on licensing and bundling, the FTC is also looking into the company’s relationship with OpenAI, and raising questions about Microsoft’s data centers, capacity constraints, and AI spending and research. Notably, the tech giant’s initial $1 billion investment in OpenAI has grown into a multi-billion-dollar partnership, with Microsoft rolling out ChatGPT-powered features across its product line in 2023. The FTC is examining whether the relationship is an undisclosed merger that should have been subject to antitrust review. Further, the federal agency is scrutinizing Microsoft’s alleged decision to scale back its own AI research following the OpenAI investment, potentially reducing competition. Ultimately, all of this recalls the industry-shaping 1990s US federal investigation into Microsoft’s monopoly of desktop software and web browsers. A federal judge ruled at the time that the company deliberately built the Internet Explorer (IE) browser into Windows to edge out rivals like the now-defunct Netscape. And, analysts note, it’s an indication that Microsoft hasn’t learned from those past lessons. “While technology and trends may have evolved since Microsoft’s first anti-trust case in 1998, where they were forced to unbundle IE from Windows OS, their tactics have stayed remarkably the same,” Bickley noted.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »