Stay Ahead, Stay ONMINE

Introduction to Minimum Cost Flow Optimization in Python

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations. Applications Applications of […]

Minimum cost flow optimization minimizes the cost of moving flow through a network of nodes and edges. Nodes include sources (supply) and sinks (demand), with different costs and capacity limits. The aim is to find the least costly way to move volume from sources to sinks while adhering to all capacity limitations.

Applications

Applications of minimum cost flow optimization are vast and varied, spanning multiple industries and sectors. This approach is crucial in logistics and supply chain management, where it is used to minimize transportation costs while ensuring timely delivery of goods. In telecommunications, it helps in optimizing the routing of data through networks to reduce latency and improve bandwidth utilization. The energy sector leverages minimum cost flow optimization to efficiently distribute electricity through power grids, reducing losses and operational costs. Urban planning and infrastructure development also benefit from this optimization technique, as it assists in designing efficient public transportation systems and water distribution networks.

Example

Below is a simple flow optimization example:

The image above illustrates a minimum cost flow optimization problem with six nodes and eight edges. Nodes A and B serve as sources, each with a supply of 50 units, while nodes E and F act as sinks, each with a demand of 40 units. Every edge has a maximum capacity of 25 units, with variable costs indicated in the image. The objective of the optimization is to allocate flow on each edge to move the required units from nodes A and B to nodes E and F, respecting the edge capacities at the lowest possible cost.

Node F can only receive supply from node B. There are two paths: directly or through node D. The direct path has a cost of 2, while the indirect path via D has a combined cost of 3. Thus, 25 units (the maximum edge capacity) are moved directly from B to F. The remaining 15 units are routed via B -D-F to meet the demand.

Currently, 40 out of 50 units have been transferred from node B, leaving a remaining supply of 10 units that can be moved to node E. The available pathways for supplying node E include: A-E and B-E with a cost of 3, A-C-E with a cost of 4, and B-C-E with a cost of 5. Consequently, 25 units are transported from A-E (limited by the edge capacity) and 10 units from B-E (limited by the remaining supply at node B). To meet the demand of 40 units at node E, an additional 5 units are moved via A-C-E, resulting in no flow being allocated to the B-C pathway.

Mathematical formulation

I introduce two mathematical formulations of minimum cost flow optimization:

1. LP (linear program) with continuous variables only

2. MILP (mixed integer linear program) with continuous and discrete variables

I am using following definitions:

Definitions

LP formulation

This formulation only contains decision variables that are continuous, meaning they can have any value as long as all constraints are fulfilled. Decision variables are in this case the flow variables x(u, v) of all edges.

The objective function describes how the costs that are supposed to be minimized are calculated. In this case it is defined as the flow multiplied with the variable cost summed up over all edges:

Constraints are conditions that must be satisfied for the solution to be valid, ensuring that the flow does not exceed capacity limitations.

First, all flows must be non-negative and not exceed to edge capacities:

Flow conservation constraints ensure that the same amount of flow that goes into a node has to come out of the node. These constraints are applied to all nodes that are neither sources nor sinks:

For source and sink nodes the difference of out flow and in flow is smaller or equal the supply of the node:

If v is a source the difference of outflow minus inflow must not exceed the supply s(v). In case v is a sink node we do not allow that more than -s(v) can flow into the node than out of the node (for sinks s(v) is negative).

MILP

Additionally, to the continuous variables of the LP formulation, the MILP formulation also contains discreate variables that can only have specific values. Discrete variables allow to restrict the number of used nodes or edges to certain values. It can also be used to introduce fixed costs for using nodes or edges. In this article I show how to add fixed costs. It is important to note that adding discrete decision variables makes it much more difficult to find an optimal solution, hence this formulation should only be used if a LP formulation is not possible.

The objective function is defined as:

With three terms: variable cost of all edges, fixed cost of all edges, and fixed cost of all nodes.

The maximum flow that can be allocated to an edge depends on the edge’s capacity, the edge selection variable, and the origin node selection variable:

This equation ensures that flow can only be assigned to edges if the edge selection variable and the origin node selection variable are 1.

The flow conservation constraints are equivalent to the LP problem.

Implementation

In this section I explain how to implement a MILP optimization in Python. You can find the code in this repo.

Libraries

To build the flow network, I used NetworkX which is an excellent library (https://networkx.org/) for working with graphs. There are many interesting articles that demonstrate how powerful and easy to use NetworkX is to work with graphs, i.a. customizing NetworkX GraphsNetworkX: Code Demo for Manipulating SubgraphsSocial Network Analysis with NetworkX: A Gentle Introduction.

One important aspect when building an optimization is to make sure that the input is correctly defined. Even one small error can make the problem infeasible or can lead to an unexpected solution. To avoid this, I used Pydantic to validate the user input and raise any issues at the earliest possible stage. This article gives an easy to understand introduction to Pydantic.

To transform the defined network into a mathematical optimization problem I used PuLP. Which allows to define all variables and constraint in an intuitive way. This library also has the advantage that it can use many different solvers in a simple pug-and-play fashion. This article provides good introduction to this library.

Defining nodes and edges

The code below shows how nodes are defined:

from pydantic import BaseModel, model_validator
from typing import Optional

# node and edge definitions
class Node(BaseModel, frozen=True):
    """
    class of network node with attributes:
    name: str - name of node
    demand: float - demand of node (if node is sink)
    supply: float - supply of node (if node is source)
    capacity: float - maximum flow out of node
    type: str - type of node
    x: float - x-coordinate of node
    y: float - y-coordinate of node
    fixed_cost: float - cost of selecting node
    """
    name: str
    demand: Optional[float] = 0.0
    supply: Optional[float] = 0.0
    capacity: Optional[float] = float('inf')
    type: Optional[str] = None
    x: Optional[float] = 0.0
    y: Optional[float] = 0.0
    fixed_cost: Optional[float] = 0.0

    @model_validator(mode='after')
    def validate(self):
        """
        validate if node definition are correct
        """
        # check that demand is non-negative
        if self.demand < 0 or self.demand == float('inf'): raise ValueError('demand must be non-negative and finite')
        # check that supply is non-negative
        if self.supply < 0: raise ValueError('supply must be non-negative')
        # check that capacity is non-negative
        if self.capacity < 0: raise ValueError('capacity must be non-negative')
        # check that fixed_cost is non-negative
        if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
        return self

Nodes are defined through the Node class which is inherited from Pydantic’s BaseModel. This enables an automatic validation that ensures that all properties are defined with the correct datatype whenever a new object is created. In this case only the name is a required input, all other properties are optional, if they are not provided the specified default value is assigned to them. By setting the “frozen” parameter to True I made all properties immutable, meaning they cannot be changed after the object has been initialized.

The validate method is executed after the object has been initialized and applies more checks to ensure the provided values are as expected. Specifically it checks that demand, supply, capacity, variable cost and fixed cost are not negative. Furthermore, it also does not allow infinite demand as this would lead to an infeasible optimization problem.

These checks look trivial, however their main benefit is that they will trigger an error at the earliest possible stage when an input is incorrect. Thus, they prevent creating a optimization model that is incorrect. Exploring why a model cannot be solved would be much more time consuming as there are many factors that would need to be analyzed, while such “trivial” input error may not be the first aspect to investigate.

Edges are implemented as follows:

class Edge(BaseModel, frozen=True):
"""
class of edge between two nodes with attributes:
origin: 'Node' - origin node of edge
destination: 'Node' - destination node of edge
capacity: float - maximum flow through edge
variable_cost: float - cost per unit flow through edge
fixed_cost: float - cost of selecting edge
"""
origin: Node
destination: Node
capacity: Optional[float] = float('inf')
variable_cost: Optional[float] = 0.0
fixed_cost: Optional[float] = 0.0

@model_validator(mode='after')
def validate(self):
"""
validate of edge definition is correct
"""
# check that node names are different
if self.origin.name == self.destination.name: raise ValueError('origin and destination names must be different')
# check that capacity is non-negative
if self.capacity < 0: raise ValueError('capacity must be non-negative')
# check that variable_cost is non-negative
if self.variable_cost < 0: raise ValueError('variable_cost must be non-negative')
# check that fixed_cost is non-negative
if self.fixed_cost < 0: raise ValueError('fixed_cost must be non-negative')
return self

The required inputs are an origin node and a destination node object. Additionally, capacity, variable cost and fixed cost can be provided. The default value for capacity is infinity which means if no capacity value is provided it is assumed the edge does not have a capacity limitation. The validation ensures that the provided values are non-negative and that origin node name and the destination node name are different.

Initialization of flowgraph object

To define the flowgraph and optimize the flow I created a new class called FlowGraph that is inherited from NetworkX’s DiGraph class. By doing this I can add my own methods that are specific to the flow optimization and at the same time use all methods DiGraph provides:

from networkx import DiGraph
from pulp import LpProblem, LpVariable, LpMinimize, LpStatus

class FlowGraph(DiGraph):
    """
    class to define and solve minimum cost flow problems
    """
    def __init__(self, nodes=[], edges=[]):
        """
        initialize FlowGraph object
        :param nodes: list of nodes
        :param edges: list of edges
        """
        # initialialize digraph
        super().__init__(None)

        # add nodes and edges
        for node in nodes: self.add_node(node)
        for edge in edges: self.add_edge(edge)


    def add_node(self, node):
        """
        add node to graph
        :param node: Node object
        """
        # check if node is a Node object
        if not isinstance(node, Node): raise ValueError('node must be a Node object')
        # add node to graph
        super().add_node(node.name, demand=node.demand, supply=node.supply, capacity=node.capacity, type=node.type, 
                         fixed_cost=node.fixed_cost, x=node.x, y=node.y)
        
    
    def add_edge(self, edge):    
        """
        add edge to graph
        @param edge: Edge object
        """   
        # check if edge is an Edge object
        if not isinstance(edge, Edge): raise ValueError('edge must be an Edge object')
        # check if nodes exist
        if not edge.origin.name in super().nodes: self.add_node(edge.origin)
        if not edge.destination.name in super().nodes: self.add_node(edge.destination)

        # add edge to graph
        super().add_edge(edge.origin.name, edge.destination.name, capacity=edge.capacity, 
                         variable_cost=edge.variable_cost, fixed_cost=edge.fixed_cost)

FlowGraph is initialized by providing a list of nodes and edges. The first step is to initialize the parent class as an empty graph. Next, nodes and edges are added via the methods add_node and add_edge. These methods first check if the provided element is a Node or Edge object. If this is not the case an error will be raised. This ensures that all elements added to the graph have passed the validation of the previous section. Next, the values of these objects are added to the Digraph object. Note that the Digraph class also uses add_node and add_edge methods to do so. By using the same method name I am overwriting these methods to ensure that whenever a new element is added to the graph it must be added through the FlowGraph methods which validate the object type. Thus, it is not possible to build a graph with any element that has not passed the validation tests.

Initializing the optimization problem

The method below converts the network into an optimization model, solves it, and retrieves the optimized values.

  def min_cost_flow(self, verbose=True):
        """
        run minimum cost flow optimization
        @param verbose: bool - print optimization status (default: True)
        @return: status of optimization
        """
        self.verbose = verbose

        # get maximum flow
        self.max_flow = sum(node['demand'] for _, node in super().nodes.data() if node['demand'] > 0)

        start_time = time.time()
        # create LP problem
        self.prob = LpProblem("FlowGraph.min_cost_flow", LpMinimize)
        # assign decision variables
        self._assign_decision_variables()
        # assign objective function
        self._assign_objective_function()
        # assign constraints
        self._assign_constraints()
        if self.verbose: print(f"Model creation time: {time.time() - start_time:.2f} s")

        start_time = time.time()
        # solve LP problem
        self.prob.solve()
        solve_time = time.time() - start_time

        # get status
        status = LpStatus[self.prob.status]

        if verbose:
            # print optimization status
            if status == 'Optimal':
                # get objective value
                objective = self.prob.objective.value()
                print(f"Optimal solution found: {objective:.2f} in {solve_time:.2f} s")
            else:
                print(f"Optimization status: {status} in {solve_time:.2f} s")
        
        # assign variable values
        self._assign_variable_values(status=='Optimal')

        return status

Pulp’s LpProblem is initialized, the constant LpMinimize defines it as a minimization problem — meaning it is supposed to minimize the value of the objective function. In the following lines all decision variables are initialized, the objective function as well as all constraints are defined. These methods will be explained in the following sections.

Next, the problem is solved, in this step the optimal value of all decision variables is determined. Following the status of the optimization is retrieved. When the status is “Optimal” an optimal solution could be found other statuses are “Infeasible” (it is not possible to fulfill all constraints), “Unbounded” (the objective function can have an arbitrary low values), and “Undefined” meaning the problem definition is not complete. In case no optimal solution was found the problem definition needs to be reviewed.

Finally, the optimized values of all variables are retrieved and assigned to the respective nodes and edges.

Defining decision variables

All decision variables are initialized in the method below:

   def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue

First it iterates through all edges and assigns continuous decision variables if the edge capacity is greater than 0. Furthermore, if fixed costs of the edge are greater than 0 a binary decision variable is defined as well. Next, it iterates through all nodes and assigns binary decision variables to nodes with fixed costs. The total number of continuous and binary decision variables is counted and printed at the end of the method.

Defining objective

After all decision variables have been initialized the objective function can be defined:

    def _assign_objective_function(self):
        """
        define objective function
        """
        objective = 0
 
        # add edge costs
        for _, _, edge in super().edges.data():
            if edge['selection_var'] is not None: objective += edge['selection_var'] * edge['fixed_cost']
            if edge['flow_var'] is not None: objective += edge['flow_var'] * edge['variable_cost']
        
        # add node costs
        for _, node in super().nodes.data():
            # add node selection costs
            if node['selection_var'] is not None: objective += node['selection_var'] * node['fixed_cost']

        self.prob += objective, 'Objective',

The objective is initialized as 0. Then for each edge fixed costs are added if the edge has a selection variable, and variable costs are added if the edge has a flow variable. For all nodes with selection variables fixed costs are added to the objective as well. At the end of the method the objective is added to the LP object.

Defining constraints

All constraints are defined in the method below:

  def _assign_constraints(self):
        """
        define constraints
        """
        # count of contraints
        constr_count = 0
        # add capacity constraints for edges with fixed costs
        for origin_name, destination_name, edge in super().edges.data():
            # get capacity
            capacity = edge['capacity'] if edge['capacity'] < float('inf') else self.max_flow
            rhs = capacity
            if edge['selection_var'] is not None: rhs *= edge['selection_var']
            self.prob += edge['flow_var'] <= rhs, f"capacity_{origin_name}-{destination_name}",
            constr_count += 1
            
            # get origin node
            origin_node = super().nodes[origin_name]
            # check if origin node has a selection variable
            if origin_node['selection_var'] is not None:
                rhs = capacity * origin_node['selection_var'] 
                self.prob += (edge['flow_var'] <= rhs, f"node_selection_{origin_name}-{destination_name}",)
                constr_count += 1

        total_demand = total_supply = 0
        # add flow conservation constraints
        for node_name, node in super().nodes.data():
            # aggregate in and out flows
            in_flow = 0
            for _, _, edge in super().in_edges(node_name, data=True):
                if edge['flow_var'] is not None: in_flow += edge['flow_var']
            
            out_flow = 0
            for _, _, edge in super().out_edges(node_name, data=True):
                if edge['flow_var'] is not None: out_flow += edge['flow_var']

            # add node capacity contraint
            if node['capacity'] < float('inf'):
                self.prob += out_flow = demand - supply
                rhs = node['demand'] - node['supply']
                self.prob += in_flow - out_flow >= rhs, f"flow_balance_{node_name}",
            constr_count += 1

            # update total demand and supply
            total_demand += node['demand']
            total_supply += node['supply']

        if self.verbose:
            print(f"Constraints: {constr_count}")
            print(f"Total supply: {total_supply}, Total demand: {total_demand}")

First, capacity constraints are defined for each edge. If the edge has a selection variable the capacity is multiplied with this variable. In case there is no capacity limitation (capacity is set to infinity) but there is a selection variable, the selection variable is multiplied with the maximum flow that has been calculated by aggregating the demand of all nodes. An additional constraint is added in case the edge’s origin node has a selection variable. This constraint means that flow can only come out of this node if the selection variable is set to 1.

Following, the flow conservation constraints for all nodes are defined. To do so the total in and outflow of the node is calculated. Getting all in and outgoing edges can easily be done by using the in_edges and out_edges methods of the DiGraph class. If the node has a capacity limitation the maximum outflow will be constraint by that value. For the flow conservation it is necessary to check if the node is either a source or sink node or a transshipment node (demand equals supply). In the first case the difference between inflow and outflow must be greater or equal the difference between demand and supply while in the latter case in and outflow must be equal.

The total number of constraints is counted and printed at the end of the method.

Retrieving optimized values

After running the optimization, the optimized variable values can be retrieved with the following method:

    def _assign_variable_values(self, opt_found):
        """
        assign decision variable values if optimal solution found, otherwise set to None
        @param opt_found: bool - if optimal solution was found
        """
        # assign edge values        
        for _, _, edge in super().edges.data():
            # initialize values
            edge['flow'] = None
            edge['selected'] = None
            # check if optimal solution found
            if opt_found and edge['flow_var'] is not None:                    
                edge['flow'] = edge['flow_var'].varValue                    

                if edge['selection_var'] is not None: 
                    edge['selected'] = edge['selection_var'].varValue

        # assign node values
        for _, node in super().nodes.data():
            # initialize values
            node['selected'] = None
            if opt_found:                
                # check if node has selection variable
                if node['selection_var'] is not None: 
                    node['selected'] = node['selection_var'].varValue 

This method iterates through all edges and nodes, checks if decision variables have been assigned and adds the decision variable value via varValue to the respective edge or node.

Demo

To demonstrate how to apply the flow optimization I created a supply chain network consisting of 2 factories, 4 distribution centers (DC), and 15 markets. All goods produced by the factories have to flow through one distribution center until they can be delivered to the markets.

Supply chain problem

Node properties were defined:

Node definitions

Ranges mean that uniformly distributed random numbers were generated to assign these properties. Since Factories and DCs have fixed costs the optimization also needs to decide which of these entities should be selected.

Edges are generated between all Factories and DCs, as well as all DCs and Markets. The variable cost of edges is calculated as the Euclidian distance between origin and destination node. Capacities of edges from Factories to DCs are set to 350 while from DCs to Markets are set to 100.

The code below shows how the network is defined and how the optimization is run:

# Define nodes
factories = [Node(name=f'Factory {i}', supply=700, type='Factory', fixed_cost=100, x=random.uniform(0, 2),
                  y=random.uniform(0, 1)) for i in range(2)]
dcs = [Node(name=f'DC {i}', fixed_cost=25, capacity=500, type='DC', x=random.uniform(0, 2), 
            y=random.uniform(0, 1)) for i in range(4)]
markets = [Node(name=f'Market {i}', demand=random.randint(1, 100), type='Market', x=random.uniform(0, 2), 
                y=random.uniform(0, 1)) for i in range(15)]

# Define edges
edges = []
# Factories to DCs
for factory in factories:
    for dc in dcs:
        distance = ((factory.x - dc.x)**2 + (factory.y - dc.y)**2)**0.5
        edges.append(Edge(origin=factory, destination=dc, capacity=350, variable_cost=distance))

# DCs to Markets
for dc in dcs:
    for market in markets:
        distance = ((dc.x - market.x)**2 + (dc.y - market.y)**2)**0.5
        edges.append(Edge(origin=dc, destination=market, capacity=100, variable_cost=distance))

# Create FlowGraph
G = FlowGraph(edges=edges)

G.min_cost_flow()

The output of flow optimization is as follows:

Variable types: 68 continuous, 6 binary
Constraints: 161
Total supply: 1400.0, Total demand: 909.0
Model creation time: 0.00 s
Optimal solution found: 1334.88 in 0.23 s

The problem consists of 68 continuous variables which are the edges’ flow variables and 6 binary decision variables which are the selection variables of the Factories and DCs. There are 161 constraints in total which consist of edge and node capacity constraints, node selection constraints (edges can only have flow if the origin node is selected), and flow conservation constraints. The next line shows that the total supply is 1400 which is higher than the total demand of 909 (if the demand was higher than the supply the problem would be infeasible). Since this is a small optimization problem, the time to define the optimization model was less than 0.01 seconds. The last line shows that an optimal solution with an objective value of 1335 could be found in 0.23 seconds.

Additionally, to the code I described in this post I also added two methods that visualize the optimized solution. The code of these methods can also be found in the repo.

Flow graph

All nodes are located by their respective x and y coordinates. The node and edge size is relative to the total volume that is flowing through. The edge color refers to its utilization (flow over capacity). Dashed lines show edges without flow allocation.

In the optimal solution both Factories were selected which is inevitable as the maximum supply of one Factory is 700 and the total demand is 909. However, only 3 of the 4 DCs are used (DC 0 has not been selected).

In general the plot shows the Factories are supplying the nearest DCs and DCs the nearest Markets. However, there are a few exceptions to this observation: Factory 0 also supplies DC 3 although Factory 1 is nearer. This is due to the capacity constraints of the edges which only allow to move at most 350 units per edge. However, the closest Markets to DC 3 have a slightly higher demand, hence Factory 0 is moving additional units to DC 3 to meet that demand. Although Market 9 is closest to DC 3 it is supplied by DC 2. This is because DC 3 would require an additional supply from Factory 0 to supply this market and since the total distance from Factory 0 over DC 3 is longer than the distance from Factory 0 through DC 2, Market 9 is supplied via the latter route.

Another way to visualize the results is via a Sankey diagram which focuses on visualizing the flows of the edges:

Sankey flow diagram

The colors represent the edges’ utilizations with lowest utilizations in green changing to yellow and red for the highest utilizations. This diagram shows very well how much flow goes through each node and edge. It highlights the flow from Factory 0 to DC 3 and also that Market 13 is supplied by DC 2 and DC 1.

Summary

Minimum cost flow optimizations can be a very helpful tool in many domains like logistics, transportation, telecommunication, energy sector and many more. To apply this optimization it is important to translate a physical system into a mathematical graph consisting of nodes and edges. This should be done in a way to have as few discrete (e.g. binary) decision variables as necessary as those make it significantly more difficult to find an optimal solution. By combining Python’s NetworkX, Pulp and Pydantic libraries I built an flow optimization class that is intuitive to initialize and at the same time follows a generalized formulation which allows to apply it in many different use cases. Graph and flow diagrams are very helpful to understand the solution found by the optimizer.

If not otherwise stated all images were created by the author.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Versa bolsters data protection, AI-powered operations in SASE upgrade

Docker-containerized ML models execute data discovery and classification locally, maintaining data sovereignty while scanning file repositories, SaaS applications, and inline traffic flows, the authors stated.  “Versa DLP uses advanced transformer models and fine-tuned Large Language Models (LLMs) to detect sensitive information across diverse document types and formats. Unlike traditional pattern

Read More »

DKnife targets network gateways in long running AitM campaign

Beyond update hijacking, the framework supports DNS manipulation, binary replacement, and selective traffic forwarding, giving attackers control over how specific requests are handled. Indicators point to China-Nexus development and targeting Several aspects of DKnife’s design and operation suggested ties to China-aligned threat actors. Talos identified configuration data and code comments written in

Read More »

Four new vulnerabilities found in Ingress NGINX

NGINX is a reverse proxy/load balancer that generally acts as the front-end web traffic receiver and directs it to the application service for data transformation. Ingress NGINX is a version used in Kubernetes as the controller for traffic coming into the infrastructure. It takes care of mapping traffic to pods

Read More »

USA Allows Oilfield Contractors to Go to Work in VEN Fields

The US government issued a general license to allow oilfield-service companies to work in Venezuela as the Trump administration eases sanctions and pushes to rebuild the nation’s crude infrastructure. The license issued by the Treasury Department allows US firms to explore, develop and produce oil and natural gas in Venezuela under certain limited conditions, according to a statement Tuesday. The move is the latest in a series of steps Washington has taken to entice US companies to revive output from Venezuela’s vast crude reserves after last month’s capture of strongman Nicolás Maduro. In January, the US issued a general license that allowed for a wide range of crude operations, including exporting, transporting, refining and buying and selling crude. The general license announced Tuesday involves tasks such as geological mapping, reservoir analysis and related tasks that augment the commencement of oil production.  However, the license does not allow new joint ventures in Venezuela. US people and firms will need to provide detailed plans to the State Department and Department of Energy for any work in the country, according to the statement. The Treasury Department is also preparing to issue a general license allowing companies to pump oil in Venezuela, Bloomberg reported earlier this month.  Oilfield service companies are hired by producers to asses discoveries, drill wells, and enhance output from older assets. SLB Ltd., Halliburton Co. and Baker Hughes Co. dominate the sector. SLB has been working in Venezuela for Chevron Corp., operating under a US license held by the supermajor. The other large contractors scaled back or shut down their primary operations in the country as the previous regime tightened control over the energy industry.  WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate

Read More »

EIA Fuel Update Shows Increasing Price Trend for USA Gasoline

The U.S. Energy Information Administration’s (EIA) latest gasoline fuel update, which was released on February 10, showed an increasing trend for the U.S. regular gasoline price. According to the update, the U.S. regular gasoline price averaged $2.853 per gallon on January 26, $2.867 per gallon on February 2, and $2.902 per gallon on February 9. Although the February 9 price was up $0.035 from the week ago price, it was down $0.226 from the year ago price, the update outlined. Of the five Petroleum Administration for Defense District (PADD) regions highlighted in the EIA’s latest fuel update, the West Coast was shown to have the highest U.S. regular gasoline price as of February 9, at $3.938 per gallon. The Gulf Coast was shown in the update to have the lowest U.S. regular gasoline price as of February 9, at $2.476 per gallon. A glossary section of the EIA site notes that the 50 U.S. states and the District of Columbia are divided into five districts, with PADD 1 further split into three subdistricts. PADDs 6 and 7 encompass U.S. territories, the site adds. In a blog posted on its website on February 9, GasBuddy noted that, according to its data, the U.S. average price of gasoline “has risen 1.2 cents over the last week and stands at $2.84 per gallon”. “The national average is up 5.4 cents from a month ago and is 24.9 cents per gallon lower than a year ago,” it added. In that blog, Patrick De Haan, head of petroleum analysis at GasBuddy, said, “the national average price of gasoline only edged slightly higher last week, but nine of the ten largest weekly price movements were increases, led by West Coast states as California begins the transition to summer gasoline”. “Most states saw relatively minor fluctuations, but we’re

Read More »

Strategists See USA Crude Stocks Rising Over 6MM Barrels WoW

In an oil and gas report sent to Rigzone late Tuesday by the Macquarie team, Macquarie strategists, including Walt Chancellor, revealed that they are forecasting that U.S. crude inventories will be up by 6.5 million barrels for the week ending February 6. “This follows a 3.5 million barrel draw in the prior week, with the crude balance again realizing tighter relative to our expectations, albeit amidst significant winter freeze noise,” the strategists said in the report. “For this week’s stats, we again see significant room for volatility as freeze impacts work their way through the data,” they added. “In any event, for the week ending 2/6, from refineries, we look for a minimal increase in crude runs, with turnaround timing adding noise to the picture. Among net imports, we model a meaningful increase, with exports lower (-0.5 million barrels per day) and imports higher (+0.2 million barrels per day) on a nominal basis,” they continued. The strategists noted in the report that timing of cargoes remains a source of potential volatility in the weekly crude balance. “From implied domestic supply (prod.+adj.+transfers), we look for a large nominal bounce-back (+0.7 million barrels per day) following last week’s freeze impacts,” the Macquarie strategists went on to state. “Here too, the extent of lingering disruptions adds uncertainty. Rounding out the picture, we anticipate SPR [U.S. Strategic Petroleum Reserve] stocks unchanged for the week ending 2/6,” they added. The strategists also noted that, “among products”, they “look for a modest gasoline build (+1.4 million barrels) offset by a distillate draw (-1.4 million barrels), with jet stocks nearly flat (+0.1 million barrels)”. “We model implied demand for these three products at ~13.8 million barrels per day for the week ending February 6,” they went on to state. U.S. commercial crude oil inventories, excluding those in

Read More »

Energy Secretary Continues to Strengthen Puerto Rico’s Energy Grid with Renewed Orders

WASHINGTON—The U.S. Department of Energy (DOE) today renewed two emergency orders to further strengthen Puerto Rico’s electric grid as the island prepares for rising energy demand and the 2026 hurricane season. Building on actions taken in May, August, and November 2025, the renewed orders authorize the Puerto Rico Electric Power Authority (PREPA) to dispatch generation units essential for maintaining critical generation capacity, while accelerating vegetation management to reduce outages, strengthen long-term grid reliability, and minimize the cost of blackouts. “The Department of Energy will continue modernizing Puerto Rico’s electric grid to ensure the island achieves long-term resilience and reliability,” said U.S. Secretary of Energy Chris Wright. “Renewing these orders ensures critical work moves forward, urgent reliability challenges are addressed, and Puerto Rico’s grid is ready to withstand rising energy demand. Thanks to President Trump, these efforts are delivering real, lasting progress for Puerto Rico.” DOE’s emergency actions have assisted the Puerto Rican government in restoring up to 820 MW of baseload generation capacity in Puerto Rico, resulting in an increase to the island’s systemwide generation capacity to 6,460 MW. Several plants were able to run without water injection during a water crisis, ensuring electricity kept flowing to Puerto Ricans despite unforeseen circumstances.  The orders also address vegetation management issues near high-voltage lines. Falling tree limbs or brush during Puerto Rico’s frequent storms and high winds can damage transmission lines, cause widespread outages and potentially cause wildfires.   “The Department of Energy’s 202(c) emergency orders have been instrumental in preventing the widespread power outages Puerto Rico was expected to face, allowing us to increase our baseload generation capacity and advance grid stability measures. Extending the orders is necessary to continue making progress and I thank President Trump and Secretary Wright for their unwavering commitment to ensure the island has an affordable, reliable supply of energy,”

Read More »

Oil Edges Down

Oil slid in a choppy session as traders parsed mixed signals on the risks of supply disruptions in the Middle East.  West Texas Intermediate edged down to settle near $64 a barrel, snapping a two-day winning streak, amid competing headlines on the status of diplomatic negotiations between the US and Iran. Prices dropped after Oman’s Foreign Minister Badr Albusaidi said that discussions during last week’s Iran-US talks were productive. Minutes later, futures pared some losses on an Axios report that US President Donald Trump might send a second aircraft carrier to the Middle East if negotiations on Iran’s nuclear program and other issues fail.  The episode underscores the whiplash investors face. Many are looking ahead to a Wednesday meeting between Trump and Benjamin Netanyahu for clarity, amid widespread expectations that Israel’s prime minister will urge a tougher US stance on Tehran’s ballistic missile program.  “I will present to the president our views regarding the principles of the negotiation,” Netanyahu said of the upcoming discussion.  In the absence of clear signals on the direction of the Middle East conflict, oil prices took cues from weaker equities.  Crude has risen more than 10% this year as recurrent geopolitical flare-ups eclipsed concerns that a global surplus would lift inventories and hurt prices.  The US said on Monday that American-flagged vessels should stay as far as possible from Iranian waters when passing through the Strait of Hormuz. Washington has amassed a powerful military force in the Middle East, even as it also pursues talks with Tehran over its nuclear ambitions. The Strait of Hormuz is a critical trade artery for Middle East energy shipments that links a slew of producers to global markets, especially in Asia. Tehran has threatened to close the maritime chokepoint during periods of geopolitical tension, though it hasn’t actually followed through. “Both

Read More »

Energy Department Awardee to Build First American Aluminum Smelter Since 1980

Project demonstrates the economic viability of domestic smelting and reduces U.S. reliance on imports. WASHINGTON—U.S. Secretary of Energy Chris Wright today joined executives of Century Aluminum to celebrate progress toward constructing a primary aluminum smelter in Inola, Oklahoma—a project supported through a grant from the U.S. Department of Energy (DOE). “Today, I was honored to meet with the team that will be delivering America’s first new aluminum smelter of the 21st century,” said Secretary Wright. “This project could not have been realized without President Trump’s commitment to revitalizing this country’s manufacturing base and reducing our reliance on foreign suppliers. Century Aluminum’s joint venture shows how President Trump’s economic policies are encouraging global companies to partner with U.S. firms, build here in America, and create good-paying American jobs.” Once complete, the plant will be the largest-ever primary aluminum production plant in the U.S., with the potential to produce over 500,000 tons of high-quality, primary aluminum per year—including approximately 20,000 tons of high-purity aluminum suitable for national defense applications. On January 26, 2026, Century announced plans to jointly develop the plant with Emirates Global Aluminum (EGA). EGA’s investment to help develop this multi-billion-dollar smelter project in Oklahoma was secured by President Trump as part of the strategic partnership announced between the United Arab Emirates and the United States in Abu Dhabi on May 15, 2025. In 2025, DOE’s Office of Clean Energy Demonstrations (OCED) awarded $500 million to advance construction of the first new primary aluminum smelter in the United States since 1980. This project demonstrates the economic viability of domestic smelting and reduces dependence on foreign imports. In 2024, the United States imported 5.46 million metric tons and exported 3 million metric tons of downstream aluminum products and scrap, resulting in net imports of 2.46 million metric tons. There are currently

Read More »

Cisco amps up Silicon One line, delivers new systems and optics for AI networking

Those building blocks include the new G300 as well as the G200 51.2 Tbps chip, which is aimed at spine and aggregation applications, and the G100 25.6 Tbps chip, which is aimed at leaf operations. Expanded portfolio of Silicon One P200-powered systems Cisco in October rolled out the P200 Silicon One chip and the high-end, 51.2 Tbps 8223 router aimed at distributed AI workloads. That system supports Octal Small Form-Factor Pluggable (OSFP) and Quad Small Form-Factor Pluggable Double Density (QSFP-DD) optical form factors that help the box support geographically dispersed AI clusters. Cisco grew the G200 family this week with the addition of the 8122X-64EF-O, a 64x800G switch that will run the SONiC OS and includes support for Cisco 800G Linear Pluggable Optics (LPO) connectivity. LPO components typically set up direct links between fiber optic modules, eliminating the need for traditional components such as a digital signal processor. Cisco said its P200 systems running IOS XR software now better support core routing services to allow data-center-to-data-center links and data center interconnect applications. In addition, Cisco introduced a P200-powered 88-LC2-36EF-M line card, which delivers 28.8T of capacity. “Available for both our 8-slot and 18-slot modular systems, this line card enables up to an unprecedented 518.4T of total system bandwidth, the highest in the industry,” wrote Guru Shenoy, senior vice president of the Cisco provider connectivity group, in a blog post about the news. “When paired with Cisco 800G ZR/ZR+ coherent pluggable optics, these systems can easily connect sites over 1,000 kilometers apart, providing the high-density performance needed for modern data center interconnects and core routing.”

Read More »

NetBox Labs ships AI copilot designed for network engineers, not developers

Natural language for network engineers Beevers explained that network operations teams face two fundamental barriers to automation. First, they lack accurate data about their infrastructure. Second, they aren’t software developers and shouldn’t have to become them. “These are not software developers. They are network engineers or IT infrastructure engineers,” Beevers said. “The big realization for us through the copilot journey is they will never be software developers. Let’s stop trying to make them be. Let’s let these computers that are really good at being software developers do that, and let’s let the network engineers or the data center engineers be really good at what they’re really good at.”  That vision drove the development of NetBox Copilot’s natural language interface and its capabilities. Grounding AI in infrastructure reality The challenge with deploying AI  in network operations is trust. Generic large language models hallucinate, produce inconsistent results, and lack the operational context to make reliable decisions. NetBox Copilot addresses this by grounding the AI agent in NetBox’s comprehensive infrastructure data model. NetBox serves as the system of record for network and infrastructure teams, maintaining a semantic map of devices, connections, IP addressing, rack layouts, power distribution and the relationships between these elements. Copilot has native awareness of this data structure and the context it provides. This enables queries that would be difficult or impossible with traditional interfaces. Network engineers can ask “Which devices are missing IP addresses?” to validate data completeness, “Who changed this prefix last week?” for change tracking and compliance, or “What depends on this switch?” for impact analysis before maintenance windows.

Read More »

US pushes voluntary pact to curb AI data center energy impact

Others note that cost pressure isn’t limited to the server rack. Danish Faruqui, CEO of Fab Economics, said the AI ecosystem is layered from silicon to software services, creating multiple points where infrastructure expenses eventually resurface. “Cloud service providers are likely to gradually introduce more granular pricing models across cloud, AI, and SaaS offerings, tailored by customer type, as they work to absorb the costs associated with the White House energy and grid compact,” Faruqui said.   This may not show up as explicit energy surcharges, but instead surface through reduced discounts, higher spending commitments, and premiums for guaranteed capacity or performance. “Smaller enterprises will feel the impact first, while large strategic customers remain insulated longer,” Rawat said. “Ultimately, the compact would delay and redistribute cost pressure; it does not eliminate it.” Implications for data center design The proposal is also likely to accelerate changes in how AI facilities are designed. “Data centers will evolve into localized microgrids that combine utility power with on-site generation and higher-level implementation of battery energy storage systems,” Faruqui said. “Designing for grid interaction will become imperative for AI data centers, requiring intelligent, high-speed switching gear, increased battery energy storage capacity for frequency regulation, and advanced control systems that can manage on-site resources.”

Read More »

Intel teams with SoftBank to develop new memory type

However, don’t expect anything anytime soon. Intel’s Director of Global Strategic Partnerships Sanam Masroor outlined the plans in a blog post. Operations are expected to begin in Q1 2026, with prototypes due in 2027 and commercial products by 2030. While Intel has not come out and said it, that memory design is almost identical to HBM used in GPU accelerators and AI data centers. HBM sits right on the GPU die for immediate access to the GPU, unlike standard DRAM which resides on memory sticks plugged into the motherboard. HBM is much faster than DDR memory but is also much more expensive to produce. It’s also much more profitable than standard DRAM which is why the big three memory makers – Micron, Samsung, and SK Hynix – are favoring production of it.

Read More »

Nvidia’s $100 Billion OpenAI Bet Shrinks and Signals a New Phase in the AI Infrastructure Cycle

One of the most eye-popping figures of the AI boom – a proposed $100 billion Nvidia commitment to OpenAI and as much as 10 gigawatts of compute for the company’s Stargate AI infrastructure buildout – is no longer on the table. And that partial retreat tells the data center industry something important. According to multiple reports surfacing at the end of January, Nvidia has paused and re-scoped its previously discussed, non-binding investment framework with OpenAI, shifting from an unprecedented capital-plus-infrastructure commitment to a much smaller (though still massive) equity investment. What was once framed as a potential $100 billion alignment is now being discussed in the $20-30 billion range, as part of OpenAI’s broader effort to raise as much as $100 billion at a valuation approaching $830 billion. For data center operators, infrastructure developers, and power providers, the recalibration matters less for the headline number and more for what it reveals about risk discipline, competitive dynamics, and the limits of vertical circularity in AI infrastructure finance. From Moonshot to Measured Capital The original September 2025 memorandum reportedly contemplated not just capital, but direct alignment on compute delivery: a structure that would have tightly coupled Nvidia’s balance sheet with OpenAI’s AI-factory roadmap. By late January, however, sources indicated Nvidia executives had grown uneasy with both the scale and the structure of the deal. Speaking in Taipei on January 31, Nvidia CEO Jensen Huang pushed back on reports of friction, calling them “nonsense” and confirming Nvidia would “absolutely” participate in OpenAI’s current fundraising round. But Huang was also explicit on what had changed: the investment would be “nothing like” $100 billion, even if it ultimately becomes the largest single investment Nvidia has ever made. That nuance matters. Nvidia is not walking away from OpenAI. But it is drawing a clearer boundary around

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Onsite Engineer – Critical FacilitiesCharleston, SC This is NOT a traveling position. Having degreed engineers seems to be all the rage these days. I can also use this type of candidate in following cities: Ashburn, VA; Moncks Corner, SC; Binghamton, NY; Dallas, TX or Indianapolis, IN. Our client is an engineering design and commissioning company that is a subject matter expert in the data center space. This role will be onsite at a customer’s data center. They will provide onsite design coordination and construction administration, consulting and management support for the data center / mission critical facilities space with the mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Ashburn, VA This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Montvale, NJ; Charlotte, NC; Atlanta, GA; Hampton, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX; Kansas City, MO; Omaha, NE; Chesterton, IN or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »