Stay Ahead, Stay ONMINE

Learning How to Play Atari Games Through Deep Neural Networks

In July 1959, Arthur Samuel developed one of the first agents to play the game of checkers. What constitutes an agent that plays checkers can be best described in Samuel’s own words, “…a computer [that] can be programmed so that it will learn to play a better game of checkers than can be played by […]

In July 1959, Arthur Samuel developed one of the first agents to play the game of checkers. What constitutes an agent that plays checkers can be best described in Samuel’s own words, “…a computer [that] can be programmed so that it will learn to play a better game of checkers than can be played by the person who wrote the program” [1]. The checkers’ agent tries to follow the idea of simulating every possible move given the current situation and selecting the most advantageous one i.e. one that brings the player closer to winning. The move’s “advantageousnessis determined by an evaluation function, which the agent improves through experience. Naturally, the concept of an agent is not restricted to the game of checkers, and many practitioners have sought to match or surpass human performance in popular games. Notable examples include IBM’s Deep Blue (which managed to defeat Garry Kasparov, a chess world champion at the time), and Tesauro’s TD-Gammon, a temporal-difference approach, where the evaluation function was modelled using a neural network. In fact, TD-Gammon’s playing style was so uncommon that some experts even adopted some strategies it conjured up [2].

Unsurprisingly, research into creating such ‘agents’ only skyrocketed, with novel approaches able to reach peak human performance in complex games. In this post, we explore one such approach: the DQN approach introduced in 2013 by Mnih et al, in which playing Atari games is approached through a synthesis of Deep Neural Networks and TD-Learning (NB: the original paper came out in 2013, but we will focus on the 2015 version which comes with some technical improvements) [3, 4]. Before we continue, you should note that in the ever-expanding space of new approaches, DQN has been superseded by faster and more refined state-of-the-art methods. Yet, it remains an ideal stepping stone in the field of Deep Reinforcement Learning, widely recognized for combining deep learning with reinforcement learning. Hence, readers aiming to dive into Deep-RL are encouraged to begin with DQN.

This post is sectioned as follows: first, I define the problem with playing Atari games and explain why some traditional methods can be intractable. Finally, I present the specifics of the DQN approach and dive into the technical implementation.

The Problem At Hand

For the remainder of the post, I’ll assume that you know the basics of supervised learning, neural networks (basic FFNs and CNNs) and also basic reinforcement learning concepts (Bellman equations, TD-learning, Q-learning etc) If some of these RL concepts are foreign to you, then this playlist is a good introduction.  

Figure 2: Pong as shown in the ALE environment. [All media hereafter is created by the author unless otherwise noted]

Atari is a nostalgia-laden term, featuring iconic games such as Pong, Breakout, Asteroids and many more. In this post, we restrict ourselves to Pong. Pong is a 2-player game, where each player controls a paddle and can use said paddle to hit the incoming ball. Points are scored when the opponent is unable to return the ball, in other words, the ball goes past them. A player wins when they reach 21 points. 

Considering the sequential nature of the game, it might be appropriate to frame the problem as an RL problem, and then apply one of the solution methods. We can frame the game as an MDP:

The states would represent the current game state (where the ball or player paddle is etc, analogous to the idea of a search state). The rewards encapsulate our idea of winning and the actions correspond to the buttons on the Atari 2600 console. Our goal now becomes finding a policy

also known as the optimal policy. Let’s see what might happen if we try to train an agent using some classical RL algorithms. 

A straightforward solution might entail solving the problem using a tabular approach. We could enumerate all states (and actions) and associate each state with a corresponding state or state-action value. We could then apply one of the classical RL methods (Monte-Carlo, TD-Learning, Value Iteration etc), taking a dynamic Programming approach. However, employing this approach faces large pitfalls rather quickly. What do we consider as states? How many states do we have to enumerate?

It quickly becomes quite difficult to answer these questions. Defining a state becomes difficult as many elements are in play when considering the idea of a state (i.e. the states need to be Markovian, encapsulate a search state etc). What about visual output (frames) to represent a state? After all this is how we as humans interact with Atari games. We see frames, deduce information regarding the game state and then choose the appropriate action. However, there are impossibly many states when using this representation, which would make our tabular approach quite intractable, memory-wise.

Now for the sake of argument imagine that we have enough memory to hold a table of this size. Even then we would need to explore all the states a good number of times to get good approximations of the value function. We would need to explore all possible states (or state-action) enough times to arrive at a useful value. Herein lies the runtime hurdle; it would be quite infeasible for the values to converge for all the states in the table in a reasonable amount of time as we have infinite states.

Perhaps instead of framing it as a reinforcement learning problem, can we instead rephrase it into a supervised learning problem? Perhaps a formulation in which the states are samples and the labels are the actions performed. Even this perspective brings forth new problems. Atari games are inherently sequential, each state is sampled based on the previous. This breaks the i.i.d assumptions applied in supervised learning, negatively affecting supervised learning-based solutions. Similarly, we would need to create a hand-labelled dataset, perhaps employing a human expert to hand label actions for each frame. This would be expensive and laborious, and still might yield insufficient results.

Solely relying on either supervised learning or RL may lead to inefficient learning, whether due to computational constraints or suboptimal policies. This calls for a more efficient approach to solving Atari games.

DQN: Intuition & Implementation

I assume you have some basic knowledge of PyTorch, Numpy and Python, though I’ll try to be as articulate as possible. For those unfamiliar, I recommend consulting: pytorch & numpy

Deep-Q Networks aim to overcome the aforementioned barriers through a variety of techniques. Let’s go through each of the problems step-by-step and address how DQN mitigates or solves these challenges.

It’s quite hard to come up with a formal state definition for Atari games due to their diversity. DQN is designed to work for most Atari games, and as a result, we need a stated formalization that is compatible with said games. To this end, the visual representation (pixel values) of the games at any given moment are used to fashion a state. Naturally, this entails a continuous state space. This connects to our previous discussion on potential ways to represent states.

  Figure 3: The function approximation visualized. Image from [3].

The challenge of continuous states is solved through function approximation. Function approximation (FA) aims to approximate the state-action value function directly using a function approximation. Let’s go through the steps to understand what the FA does. 

Imagine that we have a network that given a state outputs the value of being in said state and performing a certain action. We then select actions based on the highest reward. However, this network would be short-sighted, only taking into account one timestep. Can we incorporate possible rewards from further down the line? Yes we can! This is the idea of the expected return. From this view, the FA becomes quite simple to understand; we aim to find a function:

In other words, a function which outputs the expected return of being in a given state after performing an action

This idea of approximation becomes crucial due to the continuous nature of the state space. By using a FA, we can exploit the idea of generalization. States close to each other (similar pixel values) will have similar Q-values, meaning that we don’t need to cover the entire (infinite) state space, greatly lowering our computational overhead. 

DQN employs FA in tandem with Q-learning. As a small refresher, Q-learning aims to find the expected return for being in a state and performing a certain action using bootstrapping. Bootstrapping models the expected return that we mentioned using the current Q-function. This ensures that we don’t need to wait till the end of an episode to update our Q-function. Q-learning is also 0ff-policy, which means that the data we use to learn the Q-function is different from the actual policy being learned. The resulting Q-function then corresponds to the optimal Q-function and can be used to find the optimal policy (just find the action that maximizes the Q-value in a given state). Moreover, Q-learning is a model-free solution, meaning that we don’t need to know the dynamics of the environment (transition functions etc) to learn an optimal policy, unlike in value iteration. Thus, DQN is also off-policy and model-free.

By using a neural network as our approximator, we need not construct a full table containing all the states and their respective Q-values. Our neural network will output the Q-value for being a given state and performing a certain action. From this point on, we refer to the approximator as the Q-network.

Figure 4: DQN architecture. Note that the last layer must equal the number of possible actions for the given game, in the case of Pong this is 6.

Since our states are defined by images, using a basic feed-forward network (FFN) would incur a large computational overhead. For this specific reason, we employ the use of a convolutional network, which is much better able to learn the distinct features of each state. The CNNs are able to distill the images down to a representation (this is the idea of representation learning), which is then fed to a FFN. The neural network architecture can be seen above. Instead of returning one value for:

we return an array with each value corresponding to a possible action in the given state (for Pong we can perform 6 actions, so we return 6 values).

Figure 5: MSE loss function, often used for regression tasks.

Recall that to train a neural network we need to define a loss function that captures our goals. DQN uses the MSE loss function. For the predicted values we the output of our Q-network. For the true values, we use the bootstrapped values. Hence, our loss function becomes the following:

If we differentiate the loss function with respect to the weights we arrive at the following equation.

Plugging this into the stochastic gradient descent (SGD) equation, we arrive at Q-learning [4]. 

By performing SGD updates using the MSE loss function, we perform Q-learning. However, this is an approximation of Q-learning, as we don’t update on a single move but instead on a batch of moves. The expectation is simplified for expedience, though the message remains the same.

From another perspective, you can also think of the MSE loss function as nudging the predicted Q-values as close to the bootstrapped Q-values (after all this is what the MSE loss intends). This inadvertently mimics Q-learning, and slowly converges to the optimal Q-function.

By employing a function approximator, we become subject to the conditions of supervised learning, namely that the data is i.i.d. But in the case of Atari games (or MDPs) this condition is often not upheld. Samples from the environment are sequential in nature, making them dependent on each other. Similarly, as the agent improves the value function and updates its policy, the distribution from which we sample also changes, violating the condition of sampling from an identical distribution.

To solve this the authors of DQN capitalize on the idea of an experience replay. This concept is core to keep the training of DQN stable and convergent. An experience replay is a buffer which stores the tuple (s, a, r, s’, d) where s, a, r, s’ are returned after performing an action in an MDP, and d is a boolean representing whether the episode has finished or not. The replay has a maximum capacity which is defined beforehand. It might be simpler to think of the replay as a queue or a FIFO data structure; old samples are removed to make room for new samples. The experience replay is used to sample a random batch of tuples which are then used for training.

The experience replay helps with the alleviation of two major challenges when using neural network function approximators with RL problems. The first deals with the independence of the samples. By randomly sampling a batch of moves and then using those for training we decouple the training process from the sequential nature of Atari games. Each batch may have actions from different timesteps (or even different episodes), giving a stronger semblance of independence. 

Secondly, the experience replay addresses the issue of non-stationarity. As the agent learns, changes in its behaviour are reflected in the data. This is the idea of non-stationarity; the distribution of data changes over time. By reusing samples in the replay and using a FIFO structure, we limit the adverse effects of non-stationarity on training. The distribution of the data still changes, but slowly and its effects are less impactful. Since Q-learning is an off-policy algorithm, we still end up learning the optimal policy, making this a viable solution. These changes allow for a more stable training procedure.

As a serendipitous side effect, the experience replay also allows for better data efficiency. Before training examples were discarded after being used for a single update step. However, through the use of an experience replay, we can reuse moves that we have made in the past for updates.

A change made in the 2015 Nature version of DQN was the introduction of a target network. Neural networks are fickle; slight changes in the weights can introduce drastic changes in the output. This is unfavourable for us, as we use the outputs of the Q-network to bootstrap our targets. If the targets are prone to large changes, it will destabilize training, which naturally we want to avoid. To alleviate this issue, the authors introduce a target network, which copies the weights of the Q-network every set amount of timesteps. By using the target network for bootstrapping, our bootstrapped targets are less unstable, making training more efficient.

Lastly, the DQN authors stack four consecutive frames after executing an action. This remark is made to ensure the Markovian property holds [9]. A singular frame omits many details of the game state such as the velocity and direction of the ball. A stacked representation is able to overcome these obstacles, providing a holistic view of the game at any given timestep.

With this, we have covered most of the major techniques used for training a DQN agent. Let’s go over the training procedure. The procedure will be more of an overview, and we’ll iron out the details in the implementation section.

Figure 6: Training procedure to train a DQN agent.

One important clarification arises from step 2. In this step, we perform a process called ε-greedy action selection. In ε-greedy, we randomly choose an action with probability ε, and otherwise choose the best possible action (according to our learned Q-network). Choosing an appropriate ε allows for the sufficient exploration of actions which is crucial to converge to a reliable Q-function. We often start with a high ε and slowly decay this value over time.

Implementation

If you want to follow along with my implementation of DQN then you will need the following libraries (apart from Numpy and PyTorch). I provide a concise explanation of their use.

  • Arcade Learning Environment → ALE is a framework that allows us to interact with Atari 2600 environments. Technically we interface ALE through gymnasium, an API for RL environments and benchmarking.
  • StableBaselines3 → SB3 is a deep reinforcement learning framework with a backend designed in Pytorch. We will only need this for some preprocessing wrappers.

Let’s import all of the necessary libraries.

import numpy as np
import time
import torch
import torch.nn as nn
import gymnasium as gym
import ale_py

from collections import deque # FIFO queue data structurefrom tqdm import tqdm  # progress barsfrom gymnasium.wrappers import FrameStack
from gymnasium.wrappers.frame_stack import LazyFrames
from stable_baselines3.common.atari_wrappers import (
  AtariWrapper,
  FireResetEnv,
)

gym.register_envs(ale_py) # we need to register ALE with gym

# use cuda if you have it otherwise cpu
device = 'cuda' if torch.cuda.is_available() else 'cpu'
device

First, we construct an environment, using the ALE framework. Since we are working with pong we create an environment with the name PongNoFrameskip-v4. With this, we can create an environment using the following code:

env = gym.make('PongNoFrameskip-v4', render_mode='rgb_array')

The rgb_array parameter tells ALE to return pixel values instead of RAM codes (which is the default). The code to interact with the Atari becomes extremely simple with gym. The following excerpt encapsulates most of the utilities that we will need from gym.

# this code restarts/starts a environment to the beginning of an episode
observation, _ = env.reset()
for _ in range(100):  # number of timesteps
  # randomly get an action from possible actions
  action = env.action_space.sample()
  # take a step using the given action
  # observation_prime refers to s', terminated and truncated refer to
  # whether an episode has finished or been cut short
  observation_prime, reward, terminated, truncated, _ = env.step(action)
  observation = observation_prime

With this, we are given states (we name them observations) with the shape (210, 160, 3). Hence the states are RGB images with the shape 210×160. An example can be seen in Figure 2. When training our DQN agent, an image of this size adds unnecessary computational overhead. A similar observation can be made about the fact that the frames are RGB (3 channels).

To solve this, we downsample the frame down to 84×84 and transform it into grayscale. We can do this by employing a wrapper from SB3, which does this for us. Now every time we perform an action our output will be in grayscale (with 1 channel) and of size 84×84.

env = AtariWrapper(env, terminal_on_life_loss=False, frame_skip=4)

The wrapper above does more than downsample and turn our frame into grayscale. Let’s go over some other changes the wrapper introduces.

  • Noop Reset → The start state of each Atari game is deterministic, i.e. you start at the same state each time the game ends. With this the agent may learn to memorize a sequence of actions from the starting state, resulting in a sub-optimal policy. To prevent this, we perform no actions for a set amount of timesteps in the beginning.
  • Frame Skipping → In the ALE environment each frame needs an action. Instead of choosing an action at each frame, we select an action and repeat it for a set number of timesteps. This is the idea of frame skipping and allows for smoother transitions.
  • Max-pooling → Due to the manner in which ALE/Atari renders its frames and the downsampling, it is possible that we encounter flickering. To solve this we take the max over two consecutive frames.
  • Terminal Life on Loss → Many Atari games do not end when the player dies. Consider Pong, no player wins until the score hits 21. However, by default agents might consider the loss of life as the end of an episode, which is undesirable. This wrapper counteracts this and ends the episode when the game is truly over.
  • Clip Reward → The gradients are highly sensitive to the magnitude of the rewards. To avoid unstable updates, we clip the rewards to be between {-1, 0, 1}.

Apart from these we also introduce an additional frame stack wrapper (FrameStack). This performs what was discussed above, stacking 4 frames on top of each to keep the states Markovian. The ALE environment returns LazyFrames, which are designed to be more memory efficient, as the same frame might occur multiple times. However, they are not compatible with many of the operations that we perform throughout the training procedure. To convert LazyFrames into usable objects, we apply a custom wrapper which converts an observation to Numpy before returning it to us. The code is shown below.

class LazyFramesToNumpyWrapper(gym.ObservationWrapper): # subclass obswrapper
  def __init__(self, env):
      super().__init__(env)
      self.env = env # the environment that we want to convert

  def observation(self, observation):
      # if its a LazyFrames object then turn it into a numpy array
      if isinstance(observation, LazyFrames):
          return np.array(observation)
      return observation

Let’s combine all of the wrappers into one function that returns an environment that does all of the above.

def make_env(game, render='rgb_array'):
  env = gym.make(game, render_mode=render)
  env = AtariWrapper(env, terminal_on_life_loss=False, frame_skip=4)
  env = FrameStack(env, num_stack=4)
  env = LazyFramesToNumpyWrapper(env)
  # sometimes a environment needs that the fire button be
  # pressed to start the game, this makes sure that game is started when needed
  if "FIRE" in env.unwrapped.get_action_meanings():
      env = FireResetEnv(env)
  return env

These changes are derived from the 2015 Nature paper and help to stabilize training [3]. The interfacing with gym remains the same as shown above. An example of the preprocessed states can be seen in Figure 7.

Figure 7: Preprocessed successive Atari frames; each frame is preprocessed by turning the image from RGB to grayscale, and downsampling the size of the image from 210×160 pixels to 84×84 pixels.

Now that we have an appropriate environment let’s move on to create the replay buffer.

class ReplayBuffer:

  def __init__(self, capacity, device):
      self.capacity = capacity
      self._buffer =  np.zeros((capacity,), dtype=object) # stores the tuples
      self._position = 0 # keep track of where we are
      self._size = 0
      self.device = device

  def store(self, experience):
      """Adds a new experience to the buffer,
        overwriting old entries when full."""
      idx = self._position % self.capacity # get the index to replace
      self._buffer[idx] = experience
      self._position += 1
      self._size = min(self._size + 1, self.capacity) # max size is the capacity

  def sample(self, batch_size):
      """ Sample a batch of tuples and load it onto the device
      """
      # if the buffer is not full capacity then return everything we have
      buffer = self._buffer[0:min(self._position-1, self.capacity-1)]
      # minibatch of tuples
      batch = np.random.choice(buffer, size=[batch_size], replace=True)

      # we need to return the objects as torch tensors, hence we delegate
      # this task to the transform function
      return (
          self.transform(batch, 0, shape=(batch_size, 4, 84, 84), dtype=torch.float32),
          self.transform(batch, 1, shape=(batch_size, 1), dtype=torch.int64),
          self.transform(batch, 2, shape=(batch_size, 1), dtype=torch.float32),
          self.transform(batch, 3, shape=(batch_size, 4, 84, 84), dtype=torch.float32),
          self.transform(batch, 4, shape=(batch_size, 1), dtype=torch.bool)
      )
     
  def transform(self, batch, index, shape, dtype):
      """ Transform a passed batch into a torch tensor for a given axis.
      E.g. if index 0 of a tuple means the state then we return all states
      as a torch tensor. We also return a specified shape.
      """
      # reshape the tensors as needed
      batched_values = np.array([val[index] for val in batch]).reshape(shape)
      # convert to torch tensors
      batched_values = torch.as_tensor(batched_values, dtype=dtype, device=self.device)
      return batched_values

  # below are some magic methods I used for debugging, not very important
  # they just turn the object into an arraylike object
  def __len__(self):
      return self._size

  def __getitem__(self, index):
      return self._buffer[index]

  def __setitem__(self, index, value: tuple):
      self._buffer[index] = value

The replay buffer works by allocating space in the memory for the given capacity. We maintain a pointer that keeps track of the number of objects added. Every time a new tuple is added we replace the oldest tuples with the new ones. To sample a minibatch, we first randomly sample a minibatch in numpy and then convert it into torch tensors, also loading it to the appropriate device.

Some of the aspects of the replay buffer are inspired by [8]. The replay buffer proved to be the biggest bottleneck in training the agent, and thus small speed-ups in the code proved to be monumentally important. An alternative strategy which uses an deque object to hold the tuples can also be used. If you are creating your own buffer, I would emphasize that you spend a little more time to ensure its efficiency. 

We can now use this to create a function that creates a buffer and preloads a given number of tuples with a random policy.

def load_buffer(preload, capacity, game, *, device):
  # make the environment
  env = make_env(game)
  # create the buffer
  buffer = ReplayBuffer(capacity,device=device)
 
  # start the environment
  observation, _ = env.reset()
  # run for as long as the specified preload
  for _ in tqdm(range(preload)):
      # sample random action -> random policy 
      action = env.action_space.sample()
   
      observation_prime, reward, terminated, truncated, _ = env.step(action)
     
      # store the results from the action as a python tuple object
      buffer.store((
          observation.squeeze(), # squeeze will remove the unnecessary grayscale channel
          action,
          reward,
          observation_prime.squeeze(),
          terminated or truncated))
      # set old observation to be new observation_prime
      observation = observation_prime
     
      # if the episode is done, then restart the environment
      done = terminated or truncated
      if done:
          observation, _ = env.reset()
 
  # return the env AND the loaded buffer
  return buffer, env

The function is quite straightforward, we create a buffer and environment object and then preload the buffer using a random policy. Note that we squeeze the observations to remove the redundant color channel. Let’s move on to the next step and define the function approximator.

class DQN(nn.Module):

  def __init__(
      self,
      env,
      in_channels = 4, # number of stacked frames
      hidden_filters = [16, 32],
      start_epsilon = 0.99, # starting epsilon for epsilon-decay
      max_decay = 0.1, # end epsilon-decay
      decay_steps = 1000, # how long to reach max_decay
      *args,
      **kwargs
  ) -> None:
      super().__init__(*args, **kwargs)
     
      # instantiate instance vars
      self.start_epsilon = start_epsilon
      self.epsilon = start_epsilon
      self.max_decay = max_decay
      self.decay_steps = decay_steps
      self.env = env
      self.num_actions = env.action_space.n
   
      # Sequential is an arraylike object that allows us to
      # perform the forward pass in one line
      self.layers = nn.Sequential(
          nn.Conv2d(in_channels, hidden_filters[0], kernel_size=8, stride=4),
          nn.ReLU(),
          nn.Conv2d(hidden_filters[0], hidden_filters[1], kernel_size=4, stride=2),
          nn.ReLU(),
          nn.Flatten(start_dim=1),
          nn.Linear(hidden_filters[1] * 9 * 9, 512), # the final value is calculated by using the equation for CNNs
          nn.ReLU(),
          nn.Linear(512, self.num_actions)
      )
       
      # initialize weights using he initialization
      # (pytorch already does this for conv layers but not linear layers)
      # this is not necessary and nothing you need to worry about
      self.apply(self._init)

  def forward(self, x):
      """ Forward pass. """
      # the /255.0 performs normalization of pixel values to be in [0.0, 1.0]
      return self.layers(x / 255.0)

  def epsilon_greedy(self, state, dim=1):
      """Epsilon greedy. Randomly select value with prob e,
        else choose greedy action"""

      rng = np.random.random() # get random value between [0, 1]
     
      if rng < self.epsilon: # for prob under e
          # random sample and return as torch tensor
          action = self.env.action_space.sample()
          action = torch.tensor(action)
      else:
          # use torch no grad to make sure no gradients are accumulated for this
          # forward pass
          with torch.no_grad():
              q_values = self(state)
          # choose best action
          action = torch.argmax(q_values, dim=dim)

      return action
 
  def epsilon_decay(self, step):
      # linearly decrease epsilon
      self.epsilon = self.max_decay + (self.start_epsilon - self.max_decay) * max(0, (self.decay_steps - step) / self.decay_steps)
 
  def _init(self, m):
    # initialize layers using he init
    if isinstance(m, (nn.Linear, nn.Conv2d)):
      nn.init.kaiming_normal_(m.weight, nonlinearity='relu')
      if m.bias is not None:
        nn.init.zeros_(m.bias)

That covers the model architecture. I used a linear ε-decay scheme, but feel free to try another. We can also create an auxiliary class that keeps track of important metrics. The class keeps track of rewards received for the last few episodes along with the respective lengths of said episodes.

class MetricTracker:
  def __init__(self, window_size=100):
      # the size of the history we use to track stats
      self.window_size = window_size
      self.rewards = deque(maxlen=window_size)
      self.current_episode_reward = 0
     
  def add_step_reward(self, reward):
      # add received reward to the current reward
      self.current_episode_reward += reward
     
  def end_episode(self):
      # add reward for episode to history
      self.rewards.append(self.current_episode_reward)
      # reset metrics
      self.current_episode_reward = 0
 
  # property just makes it so that we can return this value without
  # having to call it as a function
  @property
  def avg_reward(self):
      return np.mean(self.rewards) if self.rewards else 0

Great! Now we have everything we need to start training our agent. Let’s define the training function and go over how it works. Before that, we need to create the necessary objects to pass into our training function along with some hyperparameters. A small note: in the paper the authors use RMSProp, but instead we’ll use Adam. Adam proved to work for me with the given parameters, but you are welcome to try RMSProp or other variations.

TIMESTEPS = 6000000 # total number of timesteps for training
LR = 2.5e-4 # learning rate
BATCH_SIZE = 64 # batch size, change based on your hardware
C = 10000 # the interval at which we update the target network
GAMMA = 0.99 # the discount value
TRAIN_FREQ = 4 # in the paper the SGD updates are made every 4 actions
DECAY_START = 0 # when to start e-decay
FINAL_ANNEAL = 1000000 # when to stop e-decay

# load the buffer
buffer_pong, env_pong = load_buffer(50000, 150000, game='PongNoFrameskip-v4')

# create the networks, push the weights of the q_network onto the target network
q_network_pong = DQN(env_pong, decay_steps=FINAL_ANNEAL).to(device)
target_network_pong = DQN(env_pong, decay_steps=FINAL_ANNEAL).to(device)
target_network_pong.load_state_dict(q_network_pong.state_dict())

# create the optimizer
optimizer_pong = torch.optim.Adam(q_network_pong.parameters(), lr=LR)

# metrics class instantiation
metrics = MetricTracker()
def train(
  env,
  name, # name of the agent, used to save the agent
  q_network,
  target_network,
  optimizer,
  timesteps,
  replay, # passed buffer
  metrics, # metrics class
  train_freq, # this parameter works complementary to frame skipping
  batch_size,
  gamma, # discount parameter
  decay_start,
  C,
  save_step=850000, # I recommend setting this one high or else a lot of models will be saved
):
  loss_func = nn.MSELoss() # create the loss object
  start_time = time.time() # to check speed of the training procedure
  episode_count = 0
  best_avg_reward = -float('inf')
 
  # reset the env
  obs, _ = env.reset()
 
 
  for step in range(1, timesteps+1): # start from 1 just for printing progress

      # we need to pass tensors of size (batch_size, ...) to torch
      # but the observation is just one so it doesn't have that dim
      # so we add it artificially (step 2 in procedure)
      batched_obs = np.expand_dims(obs.squeeze(), axis=0)
      # perform e-greedy on the observation and convert the tensor into numpy and send it to the cpu
      action = q_network.epsilon_greedy(torch.as_tensor(batched_obs, dtype=torch.float32, device=device)).cpu().item()
     
      # take an action
      obs_prime, reward, terminated, truncated, _ = env.step(action)

      # store the tuple (step 3 in the procedure)
      replay.store((obs.squeeze(), action, reward, obs_prime.squeeze(), terminated or truncated))
      metrics.add_step_reward(reward)
      obs = obs_prime
     
      # train every 4 steps as per the paper
      if step % train_freq == 0:
          # sample tuples from the replay (step 4 in the procedure)
          observations, actions, rewards, observation_primes, dones = replay.sample(batch_size)
         
          # we don't want to accumulate gradients for this operation so use no_grad
          with torch.no_grad():
              q_values_minus = target_network(observation_primes)
              # get the max over the target network
              boostrapped_values = torch.amax(q_values_minus, dim=1, keepdim=True)

          # this line basically makes so that for every sample in the minibatch which indicates
          # that the episode is done, we return the reward, else we return the
          # the bootstrapped reward (step 5 in the procedure)
          y_trues = torch.where(dones, rewards, rewards + gamma * boostrapped_values)
          y_preds = q_network(observations)
         
          # compute the loss
          # the gather gets the values of the q_network corresponding to the
          # action taken
          loss = loss_func(y_preds.gather(1, actions), y_trues)
           
          # set the grads to 0, and perform the backward pass (step 6 in the procedure)
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()
     
      # start the e-decay
      if step > decay_start:
          q_network.epsilon_decay(step)
          target_network.epsilon_decay(step)
     
      # if the episode is finished then we print some metrics
      if terminated or truncated:
          # compute steps per sec
          elapsed_time = time.time() - start_time
          steps_per_sec = step / elapsed_time
          metrics.end_episode()
          episode_count += 1
         
          # reset the environment
          obs, _ = env.reset()
         
          # save a model if above save_step and if the average reward has improved
          # this is kind of like early-stopping, but we don't stop we just save a model
          if metrics.avg_reward > best_avg_reward and step > save_step:
              best_avg_reward = metrics.avg_reward
              torch.save({
                  'step': step,
                  'model_state_dict': q_network.state_dict(),
                  'optimizer_state_dict': optimizer.state_dict(),
                  'avg_reward': metrics.avg_reward,
              }, f"models/{name}_dqn_best_{step}.pth")

          # print some metrics
          print(f"rStep: {step:,}/{timesteps:,} | "
                  f"Episodes: {episode_count} | "
                  f"Avg Reward: {metrics.avg_reward:.1f} | "
                  f"Epsilon: {q_network.epsilon:.3f} | "
                  f"Steps/sec: {steps_per_sec:.1f}", end="r")

      # update the target network
      if step % C == 0:
          target_network.load_state_dict(q_network.state_dict())

The training procedure closely follows Figure 6 and the algorithm described in the paper [4]. We first create the necessary objects such as the loss function etc and reset the environment. Then we can start the training loop, by using the Q-network to give us an action based on the ε-greedy policy. We simulate the environment one step forward using the action and push the resultant tuple onto the replay. If the update frequency condition is met, we can proceed with a training step. The motivation behind the update frequency element is something I am not 100% confident in. Currently, the explanation I can provide revolves around computational efficiency: training every 4 steps instead of every step majorly speeds up the algorithm and seems to work relatively well. In the update step itself, we sample a minibatch of tuples and run the model forward to produce predicted Q-values. We then create the target values (the bootstrapped true labels) using the piecewise function in step 5 in Figure 6. Performing an SGD step becomes quite straightforward from this point, since we can rely on autograd to compute the gradients and the optimizer to update the parameters.

If you followed along until now, you can use the following test function to test your saved model.

def test(game, model, num_eps=2):
  # render human opens an instance of the game so you can see it
  env_test = make_env(game, render='human')
 
  # load the model
  q_network_trained = DQN(env_test)
  q_network_trained.load_state_dict(torch.load(model, weights_only=False)['model_state_dict'])
  q_network_trained.eval() # set the model to inference mode (no gradients etc)
  q_network_trained.epsilon = 0.05 # a small amount of stochasticity
 
 
  rewards_list = []
 
  # run for set amount of episodes
  for episode in range(num_eps):
      print(f'Episode {episode}', end='r', flush=True)
     
      # reset the env
      obs, _ = env_test.reset()
      done = False
      total_reward = 0
     
      # until the episode is not done, perform the action from the q-network
      while not done:
          batched_obs = np.expand_dims(obs.squeeze(), axis=0)
          action = q_network_trained.epsilon_greedy(torch.as_tensor(batched_obs, dtype=torch.float32)).cpu().item()
             
          next_observation, reward, terminated, truncated, _ = env_test.step(action)
          total_reward += reward
          obs = next_observation

          done = terminated or truncated
         
      rewards_list.append(total_reward)
 
  # close the environment, since we use render human
  env_test.close()
  print(f'Average episode reward achieved: {np.mean(rewards_list)}')

Here’s how you can use it:

# make sure you use your latest model! I also renamed my model path so
# take that into account
test('PongNoFrameskip-v4', 'models/pong_dqn_best_6M.pth')

That’s everything for the code! You can see a trained agent below in Figure 8. It behaves quite similar to a human might play Pong, and is able to (consistently) beat the AI on the easiest difficulty. This naturally invites the question, how well does it perform on higher difficulties? Try it out using your own agent or my trained one! 

Figure 8: DQN agent playing Pong.

An additional agent was trained on the game Breakout as well, the agent can be seen in Figure 9. Once again, I used the default mode and difficulty. It might be interesting to see how well it performs in different modes or difficulties.

Figure 9: DQN agent playing Breakout.

Summary

DQN solves the issue of training agents to play Atari games. By using a FA, experience replay etc, we are able to train an agent that mimics or even surpasses human performance in Atari games [3]. Deep-RL agents can be finicky and you might have noticed that we use a lot of techniques to ensure that training is stable. If things are going wrong with your implementation it might not hurt to look at the details again. 

If you want to check out the code for my implementation you can use this link. The repo also contains code to train your own model on the game of your choice (as long as it’s in ALE), as well as the trained weights for both Pong and Breakout.

I hope this was a helpful introduction to training DQN agents. To take things to the next level maybe you can try to tweak details to beat the higher difficulties. If you want to look further, there are many extensions to DQN you can explore, such as Dueling DQNs, Prioritized Replay etc. 

References

[1] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–229, 1959. doi:10.1147/rd.33.0210.

[2] Sammut, Claude; Webb, Geoffrey I., eds. (2010), “TD-Gammon”, Encyclopedia of Machine Learning, Boston, MA: Springer US, pp. 955–956, doi:10.1007/978–0–387–30164–8_813, ISBN 978–0–387–30164–8, retrieved 2023–12–25

[3] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, … and Demis Hassabis. “Human-Level Control through Deep Reinforcement Learning.” Nature 518, no. 7540 (2015): 529–533. https://doi.org/10.1038/nature14236

[4] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, … and Demis Hassabis. “Playing Atari with Deep Reinforcement Learning.” arXiv preprint arXiv:1312.5602 (2013). https://arxiv.org/abs/1312.5602

[5] Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: An Introduction. 2nd ed., MIT Press, 2018.

[6] Russell, Stuart J., and Peter Norvig. Artificial Intelligence: A Modern Approach. 4th ed., Pearson, 2020.

[7] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

[8] Bailey, Jay. Deep Q-Networks Explained. 13 Sept. 2022, www.lesswrong.com/posts/kyvCNgx9oAwJCuevo/deep-q-networks-explained.

[9] Hausknecht, M., & Stone, P. (2015). Deep recurrent Q-learning for partially observable MDPs. arXiv preprint arXiv:1507.06527. https://arxiv.org/abs/1507.06527

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Fortinet speeds threat detection with improved FortiAnalyzer

The package also now integrates with FortiAI, the vendor’s genAI assistant, to better support analytics and telemetry to help security teams speed threat investigation and response, the vendor stated. “FortiAI identifies the threats that need analysis from the data collected by FortiAnalyzer, primarily collected from FortiGates. By automating the collection,

Read More »

Aryaka adds AI-powered observability to SASE platform

Nadkarni explained that Aryaka runs unsupervised machine learning models on the data to identify anomalies and outliers in the data. For example, the models may detect a sudden spike in traffic to a domain that has not been seen before. This unsupervised analysis helps surface potential issues or areas of

Read More »

GB Energy puts interim CEO in place

The state-owned Great British Energy has put an interim chief executive in place as it continues its search for a permanent leader. Dan McGrail, currently the chief executive of trade body RenewableUK, will be seconded to the role for six months. The appointment comes after industry sources warned that the government faces a struggle to find someone who has the credentials to take charge of GB Energy’s £8.3-billion budget but who will also work for a civil servant’s salary and be based at its headquarters in Aberdeen. In a statement, the Department for Energy Security and Net Zero (DESNZ) said McGrail “will be based in Scotland, working from the Aberdeen headquarters”. Currently his workplace at RenewableUK is in London. DESNZ added he will take up his post in March and recruitment for the permanent CEO “will also begin shortly”. The entity has yet to select physical premises in the Granite City. McGrail, who currently sits on the board for WindEurope, was previously CEO of Siemens Engines and managing director of Siemens Power Generation. Juergen Maier, who is designated as GB Energy’s “start up chair”, was his boss in his role as CEO of Siemens UK. Maier said: “Dan brings invaluable experience from a long career in clean energy and joins Great British Energy at a critical time to help spearhead our work to help make Britain energy independent. “I look forward to working with him to back innovation, create sustainable jobs, and grow our supply chains.” In January, the organisation appointed five new non-executive directors. Energy Secretary Ed Miliband said:  “With the appointment of Dan McGrail as interim CEO we now have a fantastic team in place to lead Great British Energy and start delivering on our plan for change.” McGrail said:  “Together with the talented leadership team, I’m excited to

Read More »

Elliott Seeks Phillips 66 Board Seats as It Urges Asset Sale

Elliott Investment Management is seeking seats on the board of oil refiner Phillips 66, the latest effort in a multi-year campaign pushing the company to sell assets, improve operational performance and bolster board oversight.  Phillips 66 received a notice from Elliott that the activist investor plans to nominate board candidates at the company’s annual meeting, the refiner said Wednesday in a filing. Elliott will also request that the board hold annual elections for directors. Phillips 66 said the board will review the notice. Elliott, which began pressing for changes at Phillips 66 in 2023, said earlier this month that it’s now one of Phillips 66’s top five investors and believes the company hasn’t followed through on promises to improve operations. The fund, controlled by billionaire Paul Singer, wants the company to streamline its business and set more ambitious refining targets. The third-largest US refiner by capacity is already undergoing a multi-year cost-cutting initiative targeting $3 billion in asset sales. But Elliott wants the company to divest its pipeline business, do the same for its 50% ownership of petrochemicals joint venture Chevron Phillips Chemical and finalize a plan to sell European retail assets that operate under the JET brand. Elliott has said that by selling its pipeline unit, Phillips 66 could “command a premium valuation in excess of $40 billion.”  The activist investor has in recent years pushed multiple refiners to separate their retail, refining and midstream assets to focus on their core business of turning oil into fuel. Marathon Petroleum sold its 3,900-store Speedway gas stations in 2019 for $21 billion following activist engagement by Elliott.  In a February presentation, the hedge fund called for Phillips 66 to follow what it calls the “Marathon Path”. Canadian oil company Suncor Energy Inc., which operates refineries in Canada and the US, did not sell its

Read More »

Oil, Gas Sector Sees Dip in Contract Volume, GlobalData Reveals

The global oil and gas industry experienced a 15 percent quarter on quarter decrease in total contracts, GlobalData noted in a release sent to Rigzone recently. The company outlined in the release that this figure dropped from 1,596 in the third quarter of last year to 1,353 in the fourth quarter of 2024. Despite the dip in volume, the overall contract value remained stable, driven by the announcement of some major contracts in Africa, GlobalData stated in the release, which highlighted a recent company report on oil and gas industry contracts. This report revealed that overall contract value came in at $39.2 billion in the fourth quarter and $38.8 billion in the third quarter, the release highlighted. A chart showing oil and gas industry contracts by scope in the fourth quarter of 2024, which was included in the release, revealed that 670 contracts had an operations and maintenance scope, 403 contracts had a procurement scope, 139 contracts had multiple scopes, 78 contracts had a design and engineering scope, 62 had a construction and installation scope, and one had an asset retirement scope. “The major contracts announced in the African region include Tecnicas Reunidas and Sinopec Engineering’s $4 billion new deep conversion oil refinery project in Algeria’s Hassi Messaoud region, and $1.4 billion Wuhuan Engineering and WeDo’s ammonia and urea plant project in Angola,” GlobalData said in the release. The company stated that some other notable contracts during the quarter were Bram Offshore and Starnav Servicos Maritimos’ $2.74 billion construction and charter contract from Petrobras for 12 Platform Supply Vessels (PSVs) and Saipem’s $1.9 billion contract from TotalEnergies EP Suriname for the EPC, supply, pre-commissioning, and commissioning assistance for the Subsea Umbilicals, Risers, and Flowlines (SURF) package for the GranMorgu project in Suriname. “These contracts demonstrate continued investment and expansion in

Read More »

Uncertainty surrounds nuclear tax credit guidance, NRC changes: Morgan Lewis

Dive Brief: Nuclear reactor restarts and capacity uprates could get a financial lift in 2025 and onward from the Inflation Reduction Act’s technology-neutral Section 45Y production and Section 48E investment tax credits and Section 45V clean hydrogen production tax credits, though recent Treasury Department guidance leaves some questions unanswered and executive-branch reforms could affect Nuclear Regulatory Commission activities, Morgan, Lewis & Bockius attorneys said Wednesday on the law firm’s Q1 2025 nuclear regulatory webinar. To qualify for the credits, restarted nuclear reactors must have ceased operations for at least one calendar year, be authorized to restart by federal nuclear and energy regulators, and meet an “anti-abuse” test meant to prevent reactors from shuttering to later qualify for federal tax credits, Morgan Lewis attorney Jared Sanders said on the webinar. Absent incremental capacity uprates, existing nuclear generation facilities are not eligible to claim the technology-neutral production or investment tax credits and can only claim the 45V tax credit up to a maximum of 200 MW under certain conditions, Sanders said. Dive Insight: Since 2023, the owners of three prematurely retired nuclear power plants have announced plans to restart operations by the end of the decade: Holtec International’s Palisades plant in Michigan, Constellation Energy’s Three Mile Island Unit 1 in Pennsylvania, and NextEra Energy’s Duane Arnold facility in Iowa. TMI Unit 1 — now known as the Crane Clean Energy Center — ceased operations in 2019. Duane Arnold shuttered in 2020, followed by Palisades in 2022. All are likely to qualify for federal tax credits, though Constellation spokesperson Paul Adams told Politico last year that it was the company’s 20-year power purchase agreement with Microsoft, not federal tax credit eligibility, that made the restart possible. Holtec also plans to bring two 300-MW SMRs into operation at the Palisades site in the early

Read More »

The AI energy challenge is coming to a head

Krishna Rangasayee is CEO of SiMa.ai, a software-centric, embedded edge machine learning system-on-chip company. As the last year falls further into the rearview and we are full steam ahead into 2025, the discussion surrounding AI’s massive energy consumption has reached an inflection point. The rapid advancement of AI has resulted in unprecedented demands on global energy infrastructure, threatening to outpace our ability to deliver power — and AI benefits — where they’re needed most.  With AI already accounting for up to 4% of U.S. electricity use (a figure projected to nearly triple to 11% by 2030), reducing the strain on our energy systems is a priority, requiring a thorough reexamination of how AI’s energy needs could affect our long-term climate goals, infrastructure, resource availability and the scale at which this technology operates. And the hype doesn’t look to be slowing down anytime soon. A new executive order was issued last month to prioritize and speed up the development of AI infrastructure, including data centers and other power facilities, while proposing new restrictions on exports of AI chips to keep innovation local.  While political debates rage about energy sources and environmental regulation, the fundamental challenge lies in the stark mismatch between AI’s accelerating power requirements and our aging energy distribution infrastructure. This has now become a race against time, and though AI has inevitably become a “problem” — it also offers the path to a solution. The scale of AI’s energy challenge Most AI applications we use today — from chatbots to image generators — rely on the cloud to run models and process queries. These AI data centers serve as a hub, steadily accounting for around 4.4% of U.S. electrical demand, potentially increasing to more than a tenth of the total U.S. electrical demand by 2028. Recent data points to

Read More »

California Phaseout of Fossil Fuel Cars Faces Congress Test

The Environmental Protection Agency (EPA) under the Trump administration is trying to cancel waivers it issued under the Biden government for three regulations in California that aim to curb transport emissions. “[T]he EPA will be transmitting to Congress the Biden Administration’s rules granting waivers that allowed California to preempt federal car and truck standards promulgated by EPA and the U.S. Department of Transportation’s National Highway Traffic Safety Administration”, the EPA said in an online statement. EPA Administrator Lee Zeldin said, “The Biden Administration failed to send rules on California’s waivers to Congress, preventing Members of Congress from deciding on extremely consequential actions that have massive impacts and costs across the entire United States”. During previous president Joe Biden’s last days in office, the EPA granted waivers for California’s Advanced Clean Cars II (ACCII) and Heavy-Duty Omnibus. “Under the Clean Air Act, California is afforded the ability to adopt emissions requirements independent from EPA’s regulations to meet its significant air quality challenges”, the EPA said December 18, 2024. ACCII sets emission standards and raises sales of zero-emission vehicles for model years 2026-35 so that all new light-duty passenger cars, pick-up trucks and SUVs sold in California are zero-emission by 2035. ACCII builds on ACCI, adopted 2012 for model years 2015-25. “By 2035, all those vehicles must be zero-emission, which includes the option to sell plug-in hybrid vehicles”, the California Air Resources Board (CARB) said separately at the time. “The regulation does not ban fossil-fueled cars and pickup trucks; residents can drive existing internal combustion vehicles as long as they want. “The regulation will save drivers of clean vehicles $7,500 in maintenance and fuel costs over the first 10 years of use. It also will cut harmful pollutants by over 25 percent, save lives and save Californians $13 billion in health costs

Read More »

Ireland says there will be no computation without generation

Stanish said that, in 2023, she wrote a paper that predicted “by 2028, more than 70% of multinational enterprises will alter their data center strategies due to limited energy supplies and data center moratoriums, up from only about 5% in 2023. It has been interesting watching this trend evolve as expected, with Ireland being a major force in this conversation since the boycotts against data center growth started a few years ago.” Fair, equitable, and stable electricity allocation, she said, “means that the availability of electricity for digital services is not guaranteed in the future, and I expect these policies, data center moratoriums, and regional rejections will only continue and expand moving forward.” Stanish pointed out that this trend is not just occurring in Ireland. “Many studies show that, globally, enterprises’ digital technologies are consuming energy at a faster rate than overall growth in energy supply (though, to be clear, these studies mostly assume a static position on energy efficiency of current technologies, and don’t take into account potential for nuclear or hydrogen to assuage some of these supply issues).” If taken at face value, she said, this means that a lack of resources could cause widespread electricity shortages in data centers over the next several years. To mitigate this, Stanish said, “so far, data center moratoriums and related constraints (including reduced tax incentives) have been enacted in the US (specifically Virginia and Georgia), Denmark, Singapore, and other countries, in response to concerns about the excessive energy consumption of IT, particularly regarding compute-intense AI workloads and concerns regarding an IT energy monopoly in certain regions. As a result, governments (federal, state, county, etc.) are working to ensure that consumption does not outpace capacity.” Changes needed In its report, the CRU stated, “a safe and secure supply of energy is essential

Read More »

Perspective: Can We Solve the AI Data Center Power Crisis with Microgrids?

President Trump announced a$500 billion private sector investment in the nation’s Artificial Intelligence (AI) infrastructure last month. The investment will come from The Stargate Project, a joint venture between OpenAI, SoftBank, Oracle and MGX, which intends to build 20 new AI data centers in the U.S in the next four to five years. The Stargate Project committed$100 billion for immediate deployment and construction has already begun on its first data center in Texas. At approximately a half a million square feet each, the partners say these new facilities will cement America’s leadership in AI, create jobs and stimulate economic growth. Stargate is not the only game in town, either. Microsoft is expected to invest$80 billion in AI data center development in 2025, with Google, AWS and Meta also spending big. While all this investment in AI infrastructure is certainly exciting, experts say there’s one lingering question that’s yet to be answered and it’s a big one: How are we going to power all these AI data centers? This will be one of the many questions tackled duringMicrogrid Knowledge’s annual conference, which will be held in Texas April 15-17 at the Sheraton Dallas. “Powering Data Centers: Collaborative Microgrid Solutions for a Growing Market” will be one of the key sessions on April 16. Industry experts will gather to discuss how private entities, developers and utilities can work together to deploy microgrids and distributed energy technologies that address the data center industry’s power needs. The panel will share solutions, technologies and strategies that will favorably position data centers in the energy queue. In advance of this session, we sat down with two microgrid experts to learn more about the challenges facing the data center industry and how microgrids can address the sector’s growing energy needs. We spoke with Michael Stadler, co-founder and

Read More »

Data Center Tours: Iron Mountain VA-1, Manassas, Virginia

Iron Mountain Northern Virginia Overview Iron Mountain’s Northern Virginia data centers VA-1 through VA-7 are situated on a 142-acre highly secure campus in Prince William County, Virginia. Located at 11680 Hayden Road in Manassas, Iron Mountain VA-1 spans 167,958 sq. ft. and harbors 12.4 MW of total capacity to meet colocation needs. The 36 MW VA-2 facility stands nearby. The total campus features a mixture of single and multi-tenant facilities which together provide more than 2,000,000 SF of highly efficient green colocation space for enterprises, federal agencies, service providers and hyperscale clouds.  The company notes that its Manassas campus offers tax savings compared to Ashburn and exceptional levels of energy-efficiency as well as a diverse and accessible ecosystem of cloud, network and other service providers.  Iron Mountain’s Virginia campus has 9 total planned data centers, with 5 operational facilities to date and two more data centers coming soon. VA-2 recently became the first data center in the United States to achieve DCOS Maturity Level 3.    As we continued the tour, Kinra led the way toward the break room, an area where customers can grab coffee or catch up on work. Unlike the high-end aesthetic of some other colocation providers, Iron Mountain’s approach is more practical and focused on functionality. At the secure shipping and receiving area, Kinra explained the process for handling customer equipment. “This is where our customers ship their equipment into,” he said. “They submit a ticket, send their shipments in, and we’ll take it, put it aside for them, and let them know when it’s here. Sometimes they ask us to take it to their environment, which we’ll do for them via a smart hands ticket.” Power Infrastructure and Security Measures The VA-1 campus is supported by a single substation, providing the necessary power for its growing

Read More »

Land and Expand: DPO, Microsoft, JLL and BlackChamber, Prologis, Core Scientific, Overwatch Capital

Land and Expand is a periodic feature at Data Center Frontier highlighting the latest data center development news, including new sites, land acquisitions and campus expansions. Here are some of the new and notable developments from hyperscale and colocation data center developers and operators about which we’ve been reading lately. DPO to Develop $200 Million AI Data Center in Wisconsin Rapids; Strategic Partnership with Billerud’s CWPCo Unlocks Hydroelectric Power for High-Density AI Compute Digital Power Optimization (DPO) is moving forward with plans to build a $200 million high-performance computing (HPC) data center in Wisconsin Rapids, Wisconsin. The project, designed to support up to 20 megawatts (MW) of artificial intelligence (AI) computing, leverages an innovative partnership with Consolidated Water Power Company (CWPCo), a subsidiary of global packaging leader Billerud. DPO specializes in developing and operating data centers optimized for power-dense computing. By partnering with utilities and independent power producers, DPO colocates its facilities at energy generation sites, ensuring direct access to sustainable power for AI, HPC, and blockchain computing. The company is privately held. Leveraging Power Infrastructure for Speed-to-Energization CWPCo, a regulated utility subsidiary, has operated hydroelectric generation assets since 1894, reliably serving industrial and commercial customers in Wisconsin Rapids, Biron, and Stevens Point. Parent company Billerud is a global leader in high-performance packaging materials, committed to sustainability and innovation. The company operates nine production facilities across Sweden, the USA, and Finland, employing 5,800 people in over 19 countries.  The data center will be powered by CWPCo’s renewable hydroelectric assets, tapping into the utility’s existing 32 megawatts of generation capacity. The partnership grants DPO a long-term land lease—extending up to 50 years—alongside interconnection rights to an already-energized substation and a firm, reliable power supply. “AI infrastructure is evolving at an unprecedented pace, and access to power-dense sites is critical,” said Andrew

Read More »

Data center spending to top $1 trillion by 2029 as AI transforms infrastructure

His projections account for recent advances in AI and data center efficiency, he says. For example, the open-source AI model from Chinese company DeepSeek seems to have shown that an LLM can produce very high-quality results at a very low cost with some clever architectural changes to how the models work. These improvements are likely to be quickly replicated by other AI companies. “A lot of these companies are trying to push out more efficient models,” says Fung. “There’s a lot of effort to reduce costs and to make it more efficient.” In addition, hyperscalers are designing and building their own chips, optimized for their AI workloads. Just the accelerator market alone is projected to reach $392 billion by 2029, Dell’Oro predicts. By that time, custom accelerators will outpace commercially available accelerators such as GPUs. The deployment of dedicated AI servers also has an impact on networking, power and cooling. As a result, spending on data center physical infrastructure (DCPI) will also increase, though at a more moderate pace, growing by 14% annually to $61 billion in 2029.  “DCPI deployments are a prerequisite to support AI workloads,” says Tam Dell’Oro, founder of Dell’Oro Group, in the report. The research firm raised its outlook in this area due to the fact that actual 2024 results exceeded its expectations, and demand is spreading from tier one to tier two cloud service providers. In addition, governments and tier one telecom operators are getting involved in data center expansion, making it a long-term trend.

Read More »

The Future of Property Values and Power in Virginia’s Loudoun County and ‘Data Center Alley’

Loudoun County’s FY 2026 Proposed Budget Is Released This week, Virginia’s Loudoun County released its FY 2026 Proposed Budget. The document notes how data centers are a major driver of revenue growth in Loudoun County, contributing significantly to both personal and real property tax revenues. As noted above, data centers generate almost 50% of Loudoun County property tax revenues. Importantly, Loudoun County has now implemented measures such as a Revenue Stabilization Fund (RSF) to manage the risks associated with this revenue dependency. The FY 2026 budget reflects the strong growth in data center-related revenue, allowing for tax rate reductions while still funding critical services and infrastructure projects. But the county is mindful of the potential volatility in data center revenue and is planning for long-term fiscal sustainability. The FY 2026 Proposed Budget notes how Loudoun County’s revenue from personal property taxes, particularly from data centers, has grown significantly. From FY 2013 to FY 2026, revenue from this source has increased from $60 million to over $800 million. Additionally, the county said its FY 2026 Proposed Budget benefits from $150 million in new revenue from the personal property tax portfolio, with $133 million generated specifically from computer equipment (primarily data centers). The county said data centers have also significantly impacted the real property tax portfolio. In Tax Year (TY) 2025, 73% of the county’s commercial portfolio is composed of data centers. The county said its overall commercial portfolio experienced a 50% increase in value between TY 2024 and TY 2025, largely driven by the appreciation of data center properties. RSF Meets Positive Economic Outlook The Loudoun County Board of Supervisors created the aformentioned Revenue Stabilization Fund (RSF) to manage the risks associated with the county’s reliance on data center-related revenue. The RSF targets 10% of data center-related real and personal property tax

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »