Stay Ahead, Stay ONMINE

Linear Regression in Time Series: Sources of Spurious Regression

1. Introduction It’s pretty clear that most of our work will be automated by AI in the future. This will be possible because many researchers and professionals are working hard to make their work available online. These contributions not only help us understand fundamental concepts but also refine AI models, ultimately freeing up time to focus on other activities. However, there is one concept that remains misunderstood, even among experts. It is spurious regression in time series analysis. This issue arises when regression models suggest strong relationships between variables, even when none exist. It is typically observed in time series regression equations that seem to have a high degree of fit — as indicated by a high R² (coefficient of multiple correlation) — but with an extremely low Durbin-Watson statistic (d), signaling strong autocorrelation in the error terms. What is particularly surprising is that almost all econometric textbooks warn about the danger of autocorrelated errors, yet this issue persists in many published papers. Granger and Newbold (1974) identified several examples. For instance, they found published equations with R² = 0.997 and the Durbin-Watson statistic (d) equal to 0.53. The most extreme found is an equation with R² = 0.999 and d = 0.093. It is especially problematic in economics and finance, where many key variables exhibit autocorrelation or serial correlation between adjacent values, particularly if the sampling interval is small, such as a week or a month, leading to misleading conclusions if not handled correctly. For example, today’s GDP is strongly correlated with the GDP of the previous quarter. Our post provides a detailed explanation of the results from Granger and Newbold (1974) and Python simulation (see section 7) replicating the key results presented in their article. Whether you’re an economist, data scientist, or analyst working with time series data, understanding this issue is crucial to ensuring your models produce meaningful results. To walk you through this paper, the next section will introduce the random walk and the ARIMA(0,1,1) process. In section 3, we will explain how Granger and Newbold (1974) describe the emergence of nonsense regressions, with examples illustrated in section 4. Finally, we’ll show how to avoid spurious regressions when working with time series data. 2. Simple presentation of a Random Walk and ARIMA(0,1,1) Process 2.1 Random Walk Let 𝐗ₜ be a time series. We say that 𝐗ₜ follows a random walk if its representation is given by: 𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ. (1) Where 𝜖ₜ is a white noise. It can be written as a sum of white noise, a useful form for simulation. It is a non-stationary time series because its variance depends on the time t. 2.2 ARIMA(0,1,1) Process The ARIMA(0,1,1) process is given by: 𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ − 𝜃 𝜖ₜ₋₁. (2) where 𝜖ₜ is a white noise. The ARIMA(0,1,1) process is non-stationary. It can be written as a sum of an independent random walk and white noise: 𝐗ₜ = 𝐗₀ + random walk + white noise. (3) This form is useful for simulation. Those non-stationary series are often employed as benchmarks against which the forecasting performance of other models is judged. 3. Random walk can lead to Nonsense Regression First, let’s recall the Linear Regression model. The linear regression model is given by: 𝐘 = 𝐗𝛽 + 𝜖. (4) Where 𝐘 is a T × 1 vector of the dependent variable, 𝛽 is a K × 1 vector of the coefficients, 𝐗 is a T × K matrix of the independent variables containing a column of ones and (K−1) columns with T observations on each of the (K−1) independent variables, which are stochastic but distributed independently of the T × 1 vector of the errors 𝜖. It is generally assumed that: 𝐄(𝜖) = 0, (5) and 𝐄(𝜖𝜖′) = 𝜎²𝐈. (6) where 𝐈 is the identity matrix. A test of the contribution of independent variables to the explanation of the dependent variable is the F-test. The null hypothesis of the test is given by: 𝐇₀: 𝛽₁ = 𝛽₂ = ⋯ = 𝛽ₖ₋₁ = 0, (7) And the statistic of the test is given by: 𝐅 = (𝐑² / (𝐊−1)) / ((1−𝐑²) / (𝐓−𝐊)). (8) where 𝐑² is the coefficient of determination. If we want to construct the statistic of the test, let’s assume that the null hypothesis is true, and one tries to fit a regression of the form (Equation 4) to the levels of an economic time series. Suppose next that these series are not stationary or are highly autocorrelated. In such a situation, the test procedure is invalid since 𝐅 in (Equation 8) is not distributed as an F-distribution under the null hypothesis (Equation 7). In fact, under the null hypothesis, the errors or residuals from (Equation 4) are given by: 𝜖ₜ = 𝐘ₜ − 𝐗𝛽₀ ; t = 1, 2, …, T. (9) And will have the same autocorrelation structure as the original series 𝐘. Some idea of the distribution problem can arise in the situation when: 𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ. (10) Where 𝐘ₜ and 𝐗ₜ follow independent first-order autoregressive processes: 𝐘ₜ = 𝜌 𝐘ₜ₋₁ + 𝜂ₜ, and 𝐗ₜ = 𝜌* 𝐗ₜ₋₁ + 𝜈ₜ. (11) Where 𝜂ₜ and 𝜈ₜ are white noise. We know that in this case, 𝐑² is the square of the correlation between 𝐘ₜ and 𝐗ₜ. They use Kendall’s result from the article Knowles (1954), which expresses the variance of 𝐑: 𝐕𝐚𝐫(𝐑) = (1/T)* (1 + 𝜌𝜌*) / (1 − 𝜌𝜌*). (12) Since 𝐑 is constrained to lie between -1 and 1, if its variance is greater than 1/3, the distribution of 𝐑 cannot have a mode at 0. This implies that 𝜌𝜌* > (T−1) / (T+1). Thus, for example, if T = 20 and 𝜌 = 𝜌*, a distribution that is not unimodal at 0 will be obtained if 𝜌 > 0.86, and if 𝜌 = 0.9, 𝐕𝐚𝐫(𝐑) = 0.47. So the 𝐄(𝐑²) will be close to 0.47. It has been shown that when 𝜌 is close to 1, 𝐑² can be very high, suggesting a strong relationship between 𝐘ₜ and 𝐗ₜ. However, in reality, the two series are completely independent. When 𝜌 is near 1, both series behave like random walks or near-random walks. On top of that, both series are highly autocorrelated, which causes the residuals from the regression to also be strongly autocorrelated. As a result, the Durbin-Watson statistic 𝐝 will be very low. This is why a high 𝐑² in this context should never be taken as evidence of a true relationship between the two series. To explore the possibility of obtaining a spurious regression when regressing two independent random walks, a series of simulations proposed by Granger and Newbold (1974) will be conducted in the next section. 4. Simulation results using Python. In this section, we will show using simulations that using the regression model with independent random walks bias the estimation of the coefficients and the hypothesis tests of the coefficients are invalid. The Python code that will produce the results of the simulation will be presented in section 6. A regression equation proposed by Granger and Newbold (1974) is given by: 𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ Where 𝐘ₜ and 𝐗ₜ were generated as independent random walks, each of length 50. The values 𝐒 = |𝛽̂₁| / √(𝐒𝐄̂(𝛽̂₁)), representing the statistic for testing the significance of 𝛽₁, for 100 simulations will be reported in the table below. Table 1: Regressing two independent random walks The null hypothesis of no relationship between 𝐘ₜ and 𝐗ₜ is rejected at the 5% level if 𝐒 > 2. This table shows that the null hypothesis (𝛽 = 0) is wrongly rejected in about a quarter (71 times) of all cases. This is awkward because the two variables are independent random walks, meaning there’s no actual relationship. Let’s break down why this happens. If 𝛽̂₁ / 𝐒𝐄̂ follows a 𝐍(0,1), the expected value of 𝐒, its absolute value, should be √2 / π ≈ 0.8 (√2/π is the mean of the absolute value of a standard normal distribution). However, the simulation results show an average of 4.59, meaning the estimated 𝐒 is underestimated by a factor of: 4.59 / 0.8 = 5.7 In classical statistics, we usually use a t-test threshold of around 2 to check the significance of a coefficient. However, these results show that, in this case, you would need to use a threshold of 11.4 to properly test for significance: 2 × (4.59 / 0.8) = 11.4 Interpretation: We’ve just shown that including variables that don’t belong in the model — especially random walks — can lead to completely invalid significance tests for the coefficients. To make their simulations even clearer, Granger and Newbold (1974) ran a series of regressions using variables that follow either a random walk or an ARIMA(0,1,1) process. Here is how they set up their simulations: They regressed a dependent series 𝐘ₜ on m series 𝐗ⱼ,ₜ (with j = 1, 2, …, m), varying m from 1 to 5. The dependent series 𝐘ₜ and the independent series 𝐗ⱼ,ₜ follow the same types of processes, and they tested four cases: Case 1 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow random walks. Case 2 (Differences): They use the first differences of the random walks, which are stationary. Case 3 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow ARIMA(0,1,1). Case 4 (Differences): They use the first differences of the previous ARIMA(0,1,1) processes, which are stationary. Each series has a length of 50 observations, and they ran 100 simulations for each case. All error terms are distributed as 𝐍(0,1), and the ARIMA(0,1,1) series are derived as the sum of the random walk and independent white noise. The simulation results, based on 100 replications with series of length 50, are summarized in the next table. Table 2: Regressions of a series on m independent ‘explanatory’ series. Interpretation of the results : It is seen that the probability of not rejecting the null hypothesis of no relationship between 𝐘ₜ and 𝐗ⱼ,ₜ becomes very small when m ≥ 3 when regressions are made with random walk series (rw-levels). The 𝐑² and the mean Durbin-Watson increase. Similar results are obtained when the regressions are made with ARIMA(0,1,1) series (arima-levels). When white noise series (rw-diffs) are used, classical regression analysis is valid since the error series will be white noise and least squares will be efficient. However, when the regressions are made with the differences of ARIMA(0,1,1) series (arima-diffs) or first-order moving average series MA(1) process, the null hypothesis is rejected, on average: (10 + 16 + 5 + 6 + 6) / 5 = 8.6 which is greater than 5% of the time. If your variables are random walks or close to them, and you include unnecessary variables in your regression, you will often get fallacious results. High 𝐑² and low Durbin-Watson values do not confirm a true relationship but instead indicate a likely spurious one. 5. How to avoid spurious regression in time series It’s really hard to come up with a complete list of ways to avoid spurious regressions. However, there are a few good practices you can follow to minimize the risk as much as possible. If one performs a regression analysis with time series data and finds that the residuals are strongly autocorrelated, there is a serious problem when it comes to interpreting the coefficients of the equation. To check for autocorrelation in the residuals, one can use the Durbin-Watson test or the Portmanteau test. Based on the study above, we can conclude that if a regression analysis performed with economical variables produces strongly autocorrelated residuals, meaning a low Durbin-Watson statistic, then the results of the analysis are likely to be spurious, whatever the value of the coefficient of determination R² observed. In such cases, it is important to understand where the mis-specification comes from. According to the literature, misspecification usually falls into three categories : (i) the omission of a relevant variable, (ii) the inclusion of an irrelevant variable, or (iii) autocorrelation of the errors. Most of the time, mis-specification comes from a mix of these three sources. To avoid spurious regression in a time series, several recommendations can be made: The first recommendation is to select the right macroeconomic variables that are likely to explain the dependent variable. This can be done by reviewing the literature or consulting experts in the field. The second recommendation is to stationarize the series by taking first differences. In most cases, the first differences of macroeconomic variables are stationary and still easy to interpret. For macroeconomic data, it’s strongly recommended to differentiate the series once to reduce the autocorrelation of the residuals, especially when the sample size is small. There is indeed sometimes strong serial correlation observed in these variables. A simple calculation shows that the first differences will almost always have much smaller serial correlations than the original series. The third recommendation is to use the Box-Jenkins methodology to model each macroeconomic variable individually and then search for relationships between the series by relating the residuals from each individual model. The idea here is that the Box-Jenkins process extracts the explained part of the series, leaving the residuals, which contain only what can’t be explained by the series’ own past behavior. This makes it easier to check whether these unexplained parts (residuals) are related across variables. 6. Conclusion Many econometrics textbooks warn about specification errors in regression models, but the problem still shows up in many published papers. Granger and Newbold (1974) highlighted the risk of spurious regressions, where you get a high paired with very low Durbin-Watson statistics. Using Python simulations, we showed some of the main causes of these spurious regressions, especially including variables that don’t belong in the model and are highly autocorrelated. We also demonstrated how these issues can completely distort hypothesis tests on the coefficients. Hopefully, this post will help reduce the risk of spurious regressions in future econometric analyses. 7. Appendice: Python code for simulation. #####################################################Simulation Code for table 1 ##################################################### import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt np.random.seed(123) M = 100 n = 50 S = np.zeros(M) for i in range(M): #————————————————————— # Generate the data #————————————————————— espilon_y = np.random.normal(0, 1, n) espilon_x = np.random.normal(0, 1, n) Y = np.cumsum(espilon_y) X = np.cumsum(espilon_x) #————————————————————— # Fit the model #————————————————————— X = sm.add_constant(X) model = sm.OLS(Y, X).fit() #————————————————————— # Compute the statistic #—————————————————— S[i] = np.abs(model.params[1])/model.bse[1] #—————————————————— # Maximum value of S #—————————————————— S_max = int(np.ceil(max(S))) #—————————————————— # Create bins #—————————————————— bins = np.arange(0, S_max + 2, 1) #—————————————————— # Compute the histogram #—————————————————— frequency, bin_edges = np.histogram(S, bins=bins) #—————————————————— # Create a dataframe #—————————————————— df = pd.DataFrame({ “S Interval”: [f”{int(bin_edges[i])}-{int(bin_edges[i+1])}” for i in range(len(bin_edges)-1)], “Frequency”: frequency }) print(df) print(np.mean(S)) #####################################################Simulation Code for table 2 ##################################################### import numpy as np import pandas as pd import statsmodels.api as sm from statsmodels.stats.stattools import durbin_watson from tabulate import tabulate np.random.seed(1) # Pour rendre les résultats reproductibles #—————————————————— # Definition of functions #—————————————————— def generate_random_walk(T): “”” Génère une série de longueur T suivant un random walk : Y_t = Y_{t-1} + e_t, où e_t ~ N(0,1). “”” e = np.random.normal(0, 1, size=T) return np.cumsum(e) def generate_arima_0_1_1(T): “”” Génère un ARIMA(0,1,1) selon la méthode de Granger & Newbold : la série est obtenue en additionnant une marche aléatoire et un bruit blanc indépendant. “”” rw = generate_random_walk(T) wn = np.random.normal(0, 1, size=T) return rw + wn def difference(series): “”” Calcule la différence première d’une série unidimensionnelle. Retourne une série de longueur T-1. “”” return np.diff(series) #—————————————————— # Paramètres #—————————————————— T = 50 # longueur de chaque série n_sims = 100 # nombre de simulations Monte Carlo alpha = 0.05 # seuil de significativité #—————————————————— # Definition of function for simulation #—————————————————— def run_simulation_case(case_name, m_values=[1,2,3,4,5]): “”” case_name : un identifiant pour le type de génération : – ‘rw-levels’ : random walk (levels) – ‘rw-diffs’ : differences of RW (white noise) – ‘arima-levels’ : ARIMA(0,1,1) en niveaux – ‘arima-diffs’ : différences d’un ARIMA(0,1,1) = > MA(1) m_values : liste du nombre de régresseurs. Retourne un DataFrame avec pour chaque m : – % de rejets de H0 – Durbin-Watson moyen – R^2_adj moyen – % de R^2 > 0.1 “”” results = [] for m in m_values: count_reject = 0 dw_list = [] r2_adjusted_list = [] for _ in range(n_sims): #————————————– # 1) Generation of independents de Y_t and X_{j,t}. #—————————————- if case_name == ‘rw-levels’: Y = generate_random_walk(T) Xs = [generate_random_walk(T) for __ in range(m)] elif case_name == ‘rw-diffs’: # Y et X sont les différences d’un RW, i.e. ~ white noise Y_rw = generate_random_walk(T) Y = difference(Y_rw) Xs = [] for __ in range(m): X_rw = generate_random_walk(T) Xs.append(difference(X_rw)) # NB : maintenant Y et Xs ont longueur T-1 # = > ajuster T_effectif = T-1 # = > on prendra T_effectif points pour la régression elif case_name == ‘arima-levels’: Y = generate_arima_0_1_1(T) Xs = [generate_arima_0_1_1(T) for __ in range(m)] elif case_name == ‘arima-diffs’: # Différences d’un ARIMA(0,1,1) = > MA(1) Y_arima = generate_arima_0_1_1(T) Y = difference(Y_arima) Xs = [] for __ in range(m): X_arima = generate_arima_0_1_1(T) Xs.append(difference(X_arima)) # 2) Prépare les données pour la régression # Selon le cas, la longueur est T ou T-1 if case_name in [‘rw-levels’,’arima-levels’]: Y_reg = Y X_reg = np.column_stack(Xs) if m >0 else np.array([]) else: # dans les cas de différences, la longueur est T-1 Y_reg = Y X_reg = np.column_stack(Xs) if m >0 else np.array([]) # 3) Régression OLS X_with_const = sm.add_constant(X_reg) # Ajout de l’ordonnée à l’origine model = sm.OLS(Y_reg, X_with_const).fit() # 4) Test global F : H0 : tous les beta_j = 0 # On regarde si p-value < alpha if model.f_pvalue is not None and model.f_pvalue 0.7) results.append({ ‘m’: m, ‘Reject %’: reject_percent, ‘Mean DW’: dw_mean, ‘Mean R^2’: r2_mean, ‘% R^2_adj >0.7’: r2_above_0_7_percent }) return pd.DataFrame(results) #—————————————————— # Application of the simulation #—————————————————— cases = [‘rw-levels’, ‘rw-diffs’, ‘arima-levels’, ‘arima-diffs’] all_results = {} for c in cases: df_res = run_simulation_case(c, m_values=[1,2,3,4,5]) all_results[c] = df_res #—————————————————— # Store data in table #—————————————————— for case, df_res in all_results.items(): print(f”nn{case}”) print(tabulate(df_res, headers=’keys’, tablefmt=’fancy_grid’)) References Granger, Clive WJ, and Paul Newbold. 1974. “Spurious Regressions in Econometrics.” Journal of Econometrics 2 (2): 111–20. Knowles, EAG. 1954. “Exercises in Theoretical Statistics.” Oxford University Press.

1. Introduction

It’s pretty clear that most of our work will be automated by AI in the future. This will be possible because many researchers and professionals are working hard to make their work available online. These contributions not only help us understand fundamental concepts but also refine AI models, ultimately freeing up time to focus on other activities.

However, there is one concept that remains misunderstood, even among experts. It is spurious regression in time series analysis. This issue arises when regression models suggest strong relationships between variables, even when none exist. It is typically observed in time series regression equations that seem to have a high degree of fit — as indicated by a high R² (coefficient of multiple correlation) — but with an extremely low Durbin-Watson statistic (d), signaling strong autocorrelation in the error terms.

What is particularly surprising is that almost all econometric textbooks warn about the danger of autocorrelated errors, yet this issue persists in many published papers. Granger and Newbold (1974) identified several examples. For instance, they found published equations with R² = 0.997 and the Durbin-Watson statistic (d) equal to 0.53. The most extreme found is an equation with R² = 0.999 and d = 0.093.

It is especially problematic in economics and finance, where many key variables exhibit autocorrelation or serial correlation between adjacent values, particularly if the sampling interval is small, such as a week or a month, leading to misleading conclusions if not handled correctly. For example, today’s GDP is strongly correlated with the GDP of the previous quarter. Our post provides a detailed explanation of the results from Granger and Newbold (1974) and Python simulation (see section 7) replicating the key results presented in their article.

Whether you’re an economist, data scientist, or analyst working with time series data, understanding this issue is crucial to ensuring your models produce meaningful results.

To walk you through this paper, the next section will introduce the random walk and the ARIMA(0,1,1) process. In section 3, we will explain how Granger and Newbold (1974) describe the emergence of nonsense regressions, with examples illustrated in section 4. Finally, we’ll show how to avoid spurious regressions when working with time series data.

2. Simple presentation of a Random Walk and ARIMA(0,1,1) Process

2.1 Random Walk

Let 𝐗ₜ be a time series. We say that 𝐗ₜ follows a random walk if its representation is given by:

𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ. (1)

Where 𝜖ₜ is a white noise. It can be written as a sum of white noise, a useful form for simulation. It is a non-stationary time series because its variance depends on the time t.

2.2 ARIMA(0,1,1) Process

The ARIMA(0,1,1) process is given by:

𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ − 𝜃 𝜖ₜ₋₁. (2)

where 𝜖ₜ is a white noise. The ARIMA(0,1,1) process is non-stationary. It can be written as a sum of an independent random walk and white noise:

𝐗ₜ = 𝐗₀ + random walk + white noise. (3) This form is useful for simulation.

Those non-stationary series are often employed as benchmarks against which the forecasting performance of other models is judged.

3. Random walk can lead to Nonsense Regression

First, let’s recall the Linear Regression model. The linear regression model is given by:

𝐘 = 𝐗𝛽 + 𝜖. (4)

Where 𝐘 is a T × 1 vector of the dependent variable, 𝛽 is a K × 1 vector of the coefficients, 𝐗 is a T × K matrix of the independent variables containing a column of ones and (K−1) columns with T observations on each of the (K−1) independent variables, which are stochastic but distributed independently of the T × 1 vector of the errors 𝜖. It is generally assumed that:

𝐄(𝜖) = 0, (5)

and

𝐄(𝜖𝜖′) = 𝜎²𝐈. (6)

where 𝐈 is the identity matrix.

A test of the contribution of independent variables to the explanation of the dependent variable is the F-test. The null hypothesis of the test is given by:

𝐇₀: 𝛽₁ = 𝛽₂ = ⋯ = 𝛽ₖ₋₁ = 0, (7)

And the statistic of the test is given by:

𝐅 = (𝐑² / (𝐊−1)) / ((1−𝐑²) / (𝐓−𝐊)). (8)

where 𝐑² is the coefficient of determination.

If we want to construct the statistic of the test, let’s assume that the null hypothesis is true, and one tries to fit a regression of the form (Equation 4) to the levels of an economic time series. Suppose next that these series are not stationary or are highly autocorrelated. In such a situation, the test procedure is invalid since 𝐅 in (Equation 8) is not distributed as an F-distribution under the null hypothesis (Equation 7). In fact, under the null hypothesis, the errors or residuals from (Equation 4) are given by:

𝜖ₜ = 𝐘ₜ − 𝐗𝛽₀ ; t = 1, 2, …, T. (9)

And will have the same autocorrelation structure as the original series 𝐘.

Some idea of the distribution problem can arise in the situation when:

𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ. (10)

Where 𝐘ₜ and 𝐗ₜ follow independent first-order autoregressive processes:

𝐘ₜ = 𝜌 𝐘ₜ₋₁ + 𝜂ₜ, and 𝐗ₜ = 𝜌* 𝐗ₜ₋₁ + 𝜈ₜ. (11)

Where 𝜂ₜ and 𝜈ₜ are white noise.

We know that in this case, 𝐑² is the square of the correlation between 𝐘ₜ and 𝐗ₜ. They use Kendall’s result from the article Knowles (1954), which expresses the variance of 𝐑:

𝐕𝐚𝐫(𝐑) = (1/T)* (1 + 𝜌𝜌*) / (1 − 𝜌𝜌*). (12)

Since 𝐑 is constrained to lie between -1 and 1, if its variance is greater than 1/3, the distribution of 𝐑 cannot have a mode at 0. This implies that 𝜌𝜌* > (T−1) / (T+1).

Thus, for example, if T = 20 and 𝜌 = 𝜌*, a distribution that is not unimodal at 0 will be obtained if 𝜌 > 0.86, and if 𝜌 = 0.9, 𝐕𝐚𝐫(𝐑) = 0.47. So the 𝐄(𝐑²) will be close to 0.47.

It has been shown that when 𝜌 is close to 1, 𝐑² can be very high, suggesting a strong relationship between 𝐘ₜ and 𝐗ₜ. However, in reality, the two series are completely independent. When 𝜌 is near 1, both series behave like random walks or near-random walks. On top of that, both series are highly autocorrelated, which causes the residuals from the regression to also be strongly autocorrelated. As a result, the Durbin-Watson statistic 𝐝 will be very low.

This is why a high 𝐑² in this context should never be taken as evidence of a true relationship between the two series.

To explore the possibility of obtaining a spurious regression when regressing two independent random walks, a series of simulations proposed by Granger and Newbold (1974) will be conducted in the next section.

4. Simulation results using Python.

In this section, we will show using simulations that using the regression model with independent random walks bias the estimation of the coefficients and the hypothesis tests of the coefficients are invalid. The Python code that will produce the results of the simulation will be presented in section 6.

A regression equation proposed by Granger and Newbold (1974) is given by:

𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ

Where 𝐘ₜ and 𝐗ₜ were generated as independent random walks, each of length 50. The values 𝐒 = |𝛽̂₁| / √(𝐒𝐄̂(𝛽̂₁)), representing the statistic for testing the significance of 𝛽₁, for 100 simulations will be reported in the table below.

Table 1: Regressing two independent random walks

The null hypothesis of no relationship between 𝐘ₜ and 𝐗ₜ is rejected at the 5% level if 𝐒 > 2. This table shows that the null hypothesis (𝛽 = 0) is wrongly rejected in about a quarter (71 times) of all cases. This is awkward because the two variables are independent random walks, meaning there’s no actual relationship. Let’s break down why this happens.

If 𝛽̂₁ / 𝐒𝐄̂ follows a 𝐍(0,1), the expected value of 𝐒, its absolute value, should be √2 / π ≈ 0.8 (√2/π is the mean of the absolute value of a standard normal distribution). However, the simulation results show an average of 4.59, meaning the estimated 𝐒 is underestimated by a factor of:

4.59 / 0.8 = 5.7

In classical statistics, we usually use a t-test threshold of around 2 to check the significance of a coefficient. However, these results show that, in this case, you would need to use a threshold of 11.4 to properly test for significance:

2 × (4.59 / 0.8) = 11.4

Interpretation: We’ve just shown that including variables that don’t belong in the model — especially random walks — can lead to completely invalid significance tests for the coefficients.

To make their simulations even clearer, Granger and Newbold (1974) ran a series of regressions using variables that follow either a random walk or an ARIMA(0,1,1) process.

Here is how they set up their simulations:

They regressed a dependent series 𝐘ₜ on m series 𝐗ⱼ,ₜ (with j = 1, 2, …, m), varying m from 1 to 5. The dependent series 𝐘ₜ and the independent series 𝐗ⱼ,ₜ follow the same types of processes, and they tested four cases:

  • Case 1 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow random walks.
  • Case 2 (Differences): They use the first differences of the random walks, which are stationary.
  • Case 3 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow ARIMA(0,1,1).
  • Case 4 (Differences): They use the first differences of the previous ARIMA(0,1,1) processes, which are stationary.

Each series has a length of 50 observations, and they ran 100 simulations for each case.

All error terms are distributed as 𝐍(0,1), and the ARIMA(0,1,1) series are derived as the sum of the random walk and independent white noise. The simulation results, based on 100 replications with series of length 50, are summarized in the next table.

Table 2: Regressions of a series on m independent ‘explanatory’ series.

Interpretation of the results :

  • It is seen that the probability of not rejecting the null hypothesis of no relationship between 𝐘ₜ and 𝐗ⱼ,ₜ becomes very small when m ≥ 3 when regressions are made with random walk series (rw-levels). The 𝐑² and the mean Durbin-Watson increase. Similar results are obtained when the regressions are made with ARIMA(0,1,1) series (arima-levels).
  • When white noise series (rw-diffs) are used, classical regression analysis is valid since the error series will be white noise and least squares will be efficient.
  • However, when the regressions are made with the differences of ARIMA(0,1,1) series (arima-diffs) or first-order moving average series MA(1) process, the null hypothesis is rejected, on average:

(10 + 16 + 5 + 6 + 6) / 5 = 8.6

which is greater than 5% of the time.

If your variables are random walks or close to them, and you include unnecessary variables in your regression, you will often get fallacious results. High 𝐑² and low Durbin-Watson values do not confirm a true relationship but instead indicate a likely spurious one.

5. How to avoid spurious regression in time series

It’s really hard to come up with a complete list of ways to avoid spurious regressions. However, there are a few good practices you can follow to minimize the risk as much as possible.

If one performs a regression analysis with time series data and finds that the residuals are strongly autocorrelated, there is a serious problem when it comes to interpreting the coefficients of the equation. To check for autocorrelation in the residuals, one can use the Durbin-Watson test or the Portmanteau test.

Based on the study above, we can conclude that if a regression analysis performed with economical variables produces strongly autocorrelated residuals, meaning a low Durbin-Watson statistic, then the results of the analysis are likely to be spurious, whatever the value of the coefficient of determination R² observed.

In such cases, it is important to understand where the mis-specification comes from. According to the literature, misspecification usually falls into three categories : (i) the omission of a relevant variable, (ii) the inclusion of an irrelevant variable, or (iii) autocorrelation of the errors. Most of the time, mis-specification comes from a mix of these three sources.

To avoid spurious regression in a time series, several recommendations can be made:

  • The first recommendation is to select the right macroeconomic variables that are likely to explain the dependent variable. This can be done by reviewing the literature or consulting experts in the field.
  • The second recommendation is to stationarize the series by taking first differences. In most cases, the first differences of macroeconomic variables are stationary and still easy to interpret. For macroeconomic data, it’s strongly recommended to differentiate the series once to reduce the autocorrelation of the residuals, especially when the sample size is small. There is indeed sometimes strong serial correlation observed in these variables. A simple calculation shows that the first differences will almost always have much smaller serial correlations than the original series.
  • The third recommendation is to use the Box-Jenkins methodology to model each macroeconomic variable individually and then search for relationships between the series by relating the residuals from each individual model. The idea here is that the Box-Jenkins process extracts the explained part of the series, leaving the residuals, which contain only what can’t be explained by the series’ own past behavior. This makes it easier to check whether these unexplained parts (residuals) are related across variables.

6. Conclusion

Many econometrics textbooks warn about specification errors in regression models, but the problem still shows up in many published papers. Granger and Newbold (1974) highlighted the risk of spurious regressions, where you get a high paired with very low Durbin-Watson statistics.

Using Python simulations, we showed some of the main causes of these spurious regressions, especially including variables that don’t belong in the model and are highly autocorrelated. We also demonstrated how these issues can completely distort hypothesis tests on the coefficients.

Hopefully, this post will help reduce the risk of spurious regressions in future econometric analyses.

7. Appendice: Python code for simulation.

#####################################################Simulation Code for table 1 #####################################################

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

np.random.seed(123)
M = 100 
n = 50
S = np.zeros(M)
for i in range(M):
#---------------------------------------------------------------
# Generate the data
#---------------------------------------------------------------
    espilon_y = np.random.normal(0, 1, n)
    espilon_x = np.random.normal(0, 1, n)

    Y = np.cumsum(espilon_y)
    X = np.cumsum(espilon_x)
#---------------------------------------------------------------
# Fit the model
#---------------------------------------------------------------
    X = sm.add_constant(X)
    model = sm.OLS(Y, X).fit()
#---------------------------------------------------------------
# Compute the statistic
#------------------------------------------------------
    S[i] = np.abs(model.params[1])/model.bse[1]


#------------------------------------------------------ 
#              Maximum value of S
#------------------------------------------------------
S_max = int(np.ceil(max(S)))

#------------------------------------------------------ 
#                Create bins
#------------------------------------------------------
bins = np.arange(0, S_max + 2, 1)  

#------------------------------------------------------
#    Compute the histogram
#------------------------------------------------------
frequency, bin_edges = np.histogram(S, bins=bins)

#------------------------------------------------------
#    Create a dataframe
#------------------------------------------------------

df = pd.DataFrame({
    "S Interval": [f"{int(bin_edges[i])}-{int(bin_edges[i+1])}" for i in range(len(bin_edges)-1)],
    "Frequency": frequency
})
print(df)
print(np.mean(S))

#####################################################Simulation Code for table 2 #####################################################

import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.stats.stattools import durbin_watson
from tabulate import tabulate

np.random.seed(1)  # Pour rendre les résultats reproductibles

#------------------------------------------------------
# Definition of functions
#------------------------------------------------------

def generate_random_walk(T):
    """
    Génère une série de longueur T suivant un random walk :
        Y_t = Y_{t-1} + e_t,
    où e_t ~ N(0,1).
    """
    e = np.random.normal(0, 1, size=T)
    return np.cumsum(e)

def generate_arima_0_1_1(T):
    """
    Génère un ARIMA(0,1,1) selon la méthode de Granger & Newbold :
    la série est obtenue en additionnant une marche aléatoire et un bruit blanc indépendant.
    """
    rw = generate_random_walk(T)
    wn = np.random.normal(0, 1, size=T)
    return rw + wn

def difference(series):
    """
    Calcule la différence première d'une série unidimensionnelle.
    Retourne une série de longueur T-1.
    """
    return np.diff(series)

#------------------------------------------------------
# Paramètres
#------------------------------------------------------

T = 50           # longueur de chaque série
n_sims = 100     # nombre de simulations Monte Carlo
alpha = 0.05     # seuil de significativité

#------------------------------------------------------
# Definition of function for simulation
#------------------------------------------------------

def run_simulation_case(case_name, m_values=[1,2,3,4,5]):
    """
    case_name : un identifiant pour le type de génération :
        - 'rw-levels' : random walk (levels)
        - 'rw-diffs'  : differences of RW (white noise)
        - 'arima-levels' : ARIMA(0,1,1) en niveaux
        - 'arima-diffs'  : différences d'un ARIMA(0,1,1) => MA(1)
    
    m_values : liste du nombre de régresseurs.
    
    Retourne un DataFrame avec pour chaque m :
        - % de rejets de H0
        - Durbin-Watson moyen
        - R^2_adj moyen
        - % de R^2 > 0.1
    """
    results = []
    
    for m in m_values:
        count_reject = 0
        dw_list = []
        r2_adjusted_list = []
        
        for _ in range(n_sims):
#--------------------------------------
# 1) Generation of independents de Y_t and X_{j,t}.
#----------------------------------------
            if case_name == 'rw-levels':
                Y = generate_random_walk(T)
                Xs = [generate_random_walk(T) for __ in range(m)]
            
            elif case_name == 'rw-diffs':
                # Y et X sont les différences d'un RW, i.e. ~ white noise
                Y_rw = generate_random_walk(T)
                Y = difference(Y_rw)
                Xs = []
                for __ in range(m):
                    X_rw = generate_random_walk(T)
                    Xs.append(difference(X_rw))
                # NB : maintenant Y et Xs ont longueur T-1
                # => ajuster T_effectif = T-1
                # => on prendra T_effectif points pour la régression
            
            elif case_name == 'arima-levels':
                Y = generate_arima_0_1_1(T)
                Xs = [generate_arima_0_1_1(T) for __ in range(m)]
            
            elif case_name == 'arima-diffs':
                # Différences d'un ARIMA(0,1,1) => MA(1)
                Y_arima = generate_arima_0_1_1(T)
                Y = difference(Y_arima)
                Xs = []
                for __ in range(m):
                    X_arima = generate_arima_0_1_1(T)
                    Xs.append(difference(X_arima))
            
            # 2) Prépare les données pour la régression
            #    Selon le cas, la longueur est T ou T-1
            if case_name in ['rw-levels','arima-levels']:
                Y_reg = Y
                X_reg = np.column_stack(Xs) if m>0 else np.array([])
            else:
                # dans les cas de différences, la longueur est T-1
                Y_reg = Y
                X_reg = np.column_stack(Xs) if m>0 else np.array([])
            
            # 3) Régression OLS
            X_with_const = sm.add_constant(X_reg)  # Ajout de l'ordonnée à l'origine
            model = sm.OLS(Y_reg, X_with_const).fit()
            
            # 4) Test global F : H0 : tous les beta_j = 0
            #    On regarde si p-value < alpha
            if model.f_pvalue is not None and model.f_pvalue  0.7)
        
        results.append({
            'm': m,
            'Reject %': reject_percent,
            'Mean DW': dw_mean,
            'Mean R^2': r2_mean,
            '% R^2_adj>0.7': r2_above_0_7_percent
        })
    
    return pd.DataFrame(results)
    
#------------------------------------------------------
# Application of the simulation
#------------------------------------------------------       

cases = ['rw-levels', 'rw-diffs', 'arima-levels', 'arima-diffs']
all_results = {}

for c in cases:
    df_res = run_simulation_case(c, m_values=[1,2,3,4,5])
    all_results[c] = df_res

#------------------------------------------------------
# Store data in table
#------------------------------------------------------

for case, df_res in all_results.items():
    print(f"nn{case}")
    print(tabulate(df_res, headers='keys', tablefmt='fancy_grid'))

References

  • Granger, Clive WJ, and Paul Newbold. 1974. “Spurious Regressions in Econometrics.” Journal of Econometrics 2 (2): 111–20.
  • Knowles, EAG. 1954. “Exercises in Theoretical Statistics.” Oxford University Press.
Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Cisco routers knocked out due to Cloudflare DNS change

Exposes architectural fragility Networking consultant Yvette Schmitter, CEO of the Fusion Collective consulting firm, said the Cloudflare change “exposed Cisco’s architectural fragility when [some Cisco] switches worldwide entered fatal reboot loops every 10-30 minutes.” What happened? “Cloudflare changed record ordering. Cisco’s firmware, instead of handling unexpected DNS responses gracefully, treated

Read More »

Venezuela Oil Being Held at Sea Swells

The volume of Venezuelan crude floating at sea has spiked to the highest level in more than three years after the US seized the country’s leader, Nicolas Maduro, and asserted control over its energy resources. More than 29 million barrels of Venezuelan oil are now on vessels stationary at sea, up from about 20 million barrels earlier this week, according to data from Kpler. Most of the increase has been seen in waters in Asia, where China has long been the largest importer of the South American nation’s output. “Chinese teapots are already bracing for the possibility that the barrels now in transit will be their last,” said Muyu Xu, a senior crude analyst at Kpler, referring to independent Chinese processors. The oil market has been rocked this week by the US intervention into OPEC member Venezuela, which sits on the world’s largest proven crude reserves. The Trump administration has said it plans to control future sales of Venezuelan oil and hold the proceeds, with the new arrangement to last “indefinitely,” according to Energy Secretary Chris Wright. It has also maintained a naval blockade on flows, although US-bound cargoes have been allowed. The upheaval has cast doubt on where the Venezuelan oil that’s now in transit or floating storage will end up. Still, Wright also said Washington would not prevent China from accessing Venezuelan oil, according to comments to Fox News. “We’re not going to cut off China,” he said. “The illicit trade in oil with Iran and Russia, the illegal gun-running stuff, that’s going to be cut off.” WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Iran Turmoil Pushes Oil to Weekly Gain Streak

Oil notched its longest streak of weekly gains since June as Iran intensified a crackdown on protests across the country and US President Donald Trump threatened repercussions if demonstrators were targeted. West Texas Intermediate futures settled near $59 a barrel after rising more than 5% over the prior two sessions. Tehran said that “rioters” who damage public property or clash with security forces will face the death penalty, just a day after the US president warned the country’s regime would “pay hell” if protesters were killed. The unrest is the most significant challenge to Supreme Leader Ayatollah Ali Khamenei since a nationwide uprising in 2022. Protests are disrupting air travel in and out of the country, which produces more than 3 million barrels a day of crude. The scale of risk shows up clearest in options markets, where the skew toward bullish calls is the biggest for US crude futures since July. The Iranian turmoil shifted the focus away from Venezuela, where Trump said further attacks were canceled, citing improved cooperation from the country, leading to a brief dip in oil prices earlier. An energy quarantine is still in effect, though, and the US continues to have its military in position for further action in the region after the capture of Venezuelan President Nicolas Maduro last week. Trump met with oil executives at the White House on Friday and said the US intends to decide which companies will be allowed to go into Venezuela. “We’re dealing with the country, so we’re empowered to make that deal,” he said, adding that “giant” oil companies will spend $100 billion of their own money in investment. Venezuela’s acting President Delcy Rodriguez, for her part, issued a statement Friday saying the country is a victim of an “illegitimate and illegal criminal aggression” by the

Read More »

Russia’s Crude Output in December Made Deep Plunge

Russia’s crude oil production plunged by the most in 18 months in December, pincered by western sanctions that are causing the nation’s barrels to pile up at sea and a surge of Ukrainian drone attacks on its energy infrastructure. The nation pumped an average 9.326 million barrels a day of crude oil last month, according to people with knowledge of government data, who asked not to be identified discussing classified information. The figure — which doesn’t include output of condensate — is more than 100,000 barrels a day below November, and almost 250,000 barrels a day lower than Russia is allowed to pump under agreement with the Organization of the Petroleum Exporting Countries and allies. The slump comes at a time when Ukraine has been carrying out wide ranging drone attacks on Russian oil infrastructure — directly curbing output and affecting refineries that consume the barrels. At the same time, Russian cargoes are amassing at sea amid signs of reticence among some buyers to take them following sweeping US sanctions targeting the nation’s two largest producers, Rosneft PJSC and Lukoil PJSC. Russia’s Energy Ministry didn’t immediately respond to a Bloomberg request for comment on the December crude production figures. It’s a public holiday in Russia. The December decline was also the deepest since June 2024 — a period when Russia was supposed to be cutting its production anyway under an agreement with OPEC+. The producer group agreed to return barrels to the market between April and December 2025, and then hold output steady in the first quarter of 2026.  Until December, Russia’s output had been rising, even if growth had been petering out before year end. Russia’s required level of production for the final month of 2025 was 9.574 million barrels a day, according to OPEC data. Historically, Russia had been a laggard in complying with

Read More »

Burgum Says VEN Oil Revival Won’t Rely on Funding From USA

The Trump administration is unlikely to provide financial support to help US oil companies revitalize Venezuela’s oil sector, Interior Secretary Doug Burgum said Friday, throwing cold water on hopes the multibillion-dollar effort would be subsidized by the US government.  “The capital is going to come from the capital markets and come from the energy companies,” Burgum, who also leads the White House’s National Energy Dominance Council, told Bloomberg Television. “I don’t see that these companies are going to need support from the US, other than things around security. If we can provide a secure, stable environment, the resource here is so significant and so large that it’s going to be attractive for people to go in and develop.”  Burgum’s remarks come after President Donald Trump previously suggested the effort, estimated to cost upwards of $100 billion over the next decade, could be reimbursed by the US. The president on Monday told NBC News “a tremendous amount of money will have to be spent and the oil companies will spend it, and then they’ll get reimbursed by us or through revenue.” Oil companies, which are set to meet with Trump, Burgum and other administration officials at the White House later Friday, have been wary of committing tens of billions of dollars to Venezuela over the next decade. Executives have sought assurances on physical and financial security amid concerns about the stability of a post-Nicolás Maduro government.  Energy Secretary Chris Wright said on Fox News Friday the US Export-Import Bank could be used to provide credit support.  “I have been deluged with companies interested to go to Venezuela, and so far, no one’s asked for money,” Wright said in response to a question about providing direct grants to oil firms. “What they want is the US to use our leverage to make

Read More »

Texas Oil, Gas Industry Employed Nearly 500K Texans in 2025

The Texas oil and natural gas industry employed 495,501 Texans last year, according to the Texas Oil & Gas Association’s (TXOGA) 2025 Energy and Economic Impact report, which was released this week. The sector that employed the most workers in 2025 was ‘support activities for oil and gas operations’, with 110,612 employees, followed by ‘gasoline stations with convenience stores’, with 81,268 employees, and ‘oil and gas pipeline and related structures construction’, with 50,667 employees, the report showed. ‘Crude petroleum extraction’ ranked as the oil and gas sector with the fourth most employees in 2025, with 49,187, and ‘oil and gas field machinery and equipment’ ranked fifth, with 29,280, the report revealed. TXOGA stated in the report that “every direct job in the Texas oil and natural gas industry creates approximately two additional jobs”, outlining that “1.4 million total jobs [were] supported across the Texas economy” in 2025. Texas oil and natural gas employers paid an average of $133,095 per job in 2025, according to the report, which noted that this was 68 percent more than the average paid by the rest of Texas’ private sector. The report showed that oil and gas taxes came in at $54,481 per employee last year, while “all other sector taxes” were $7,225 per employee. “Based on the combined state and local taxes and state royalties attributable to the industry, the oil and natural gas industry pays far more per employee than the average across all other Texas private-sector industries,” TXOGA stated in its report. According to TXOGA’s latest report, in 2025, the Texas oil and natural gas industry paid state and local taxes and state royalties totaling $27.0 billion. TXOGA pointed out in the report that this equates to nearly $74 million every day. A statement sent to Rigzone by the TXOGA team this

Read More »

Nodal Hits Record Annual Volumes in Power, Environmental Markets

Nodal Exchange LLC, a derivatives trading platform for North American commodity markets, saw 3.1 billion megawatt hours (MWh) of power futures and 749,222 lots of environmental futures and options traded in 2025, achieving new annual highs. Power futures traded last year on the Tysons, Virginia-based exchange rose four percent year-on-year to 3.1 billion MWh. The December volume of 235 million MWh was up 29 percent from December 2024, Nodal said in an online statement Thursday. “Nodal continues to be the market leader in North American monthly power futures having 56 percent of the open interest with 1.51 billion MWh at the end of 2025”, Nodal said. “The open interest represents over $166 billion of notional value (both sides)”. Meanwhile environmental market open interest ended 2025 at a record 391,264 lots, up one percent from 2024. “December deliveries of 37,173 lots marked the fifth-largest delivery month for environmental products on Nodal”, Nodal said. “Renewable energy certificate futures and options posted volume of 465,189 lots in 2025, up 11 percent from a year earlier and ended the year with open interest of 323,591 lots, up 10 percent. “Nodal continues to expand environmental offerings having over 68 percent of the North American Renewable Energy Certificate market measured in clean MWh generation. “Nodal, in collaboration with IncubEx, launched several new environmental futures contracts in 2025, including Auction Clearing Price contracts for California, Washington and RGGI carbon allowances.  Nodal was the first exchange to launch PJM Emission Free Energy Certificate Futures, which allow for delivery of nuclear energy certificates alongside hydro. Other new launches included Virginia In-State Compliance REC Futures, New York Environmental Disclosure Program REC Futures and Alberta TIER EPC Options”. For natural gas, traded volumes last year totaled 958 trillion British thermal units (TBtu), Nodal said. Traded gas volumes in January-November 2025 reached a

Read More »

DCF Poll: Analyzing AI Data Center Growth

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #1796c1 !important; border-color: #1796c1 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #1796c1 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #1796c1 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #1796c1 !important; border-color: #1796c1 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #1796c1 !important; border-color: #1796c1 !important; } Coming out of 2025, AI data center development remains defined by momentum. But momentum is not the same as certainty. Behind the headlines, operators, investors, utilities, and policymakers are all testing the assumptions that carried projects forward over the past two years, from power availability and capital conditions to architecture choices and community response. Some will hold. Others may not. To open our 2026 industry polling, we’re taking a closer look at which pillars of AI data center growth are under the most pressure. What assumption about AI data center growth feels most fragile right now?

Read More »

JLL’s 2026 Global Data Center Outlook: Navigating the AI Supercycle, Power Scarcity and Structural Market Transformation

Sovereign AI and National Infrastructure Policy JLL frames artificial intelligence infrastructure as an emerging national strategic asset, with sovereign AI initiatives representing an estimated $8 billion in cumulative capital expenditure by 2030. While modest relative to hyperscale investment totals, this segment carries outsized strategic importance. Data localization mandates, evolving AI regulation, and national security considerations are increasingly driving governments to prioritize domestic compute capacity, often with pricing premiums reaching as high as 60%. Examples cited across Europe, the Middle East, North America, and Asia underscore a consistent pattern: digital sovereignty is no longer an abstract policy goal, but a concrete driver of data center siting, ownership structures, and financing models. In practice, sovereign AI initiatives are accelerating demand for locally controlled infrastructure, influencing where capital is deployed and how assets are underwritten. For developers and investors, this shift introduces a distinct set of considerations. Sovereign projects tend to favor jurisdictional alignment, long-term tenancy, and enhanced security requirements, while also benefiting from regulatory tailwinds and, in some cases, direct state involvement. As AI capabilities become more tightly linked to economic competitiveness and national resilience, policy-driven demand is likely to remain a durable (if specialized) component of global data center growth. Energy and Sustainability as the Central Constraint Energy availability emerges as the report’s dominant structural constraint. In many major markets, average grid interconnection timelines now extend beyond four years, effectively decoupling data center development schedules from traditional utility planning cycles. As a result, operators are increasingly pursuing alternative energy strategies to maintain project momentum, including: Behind-the-meter generation Expanded use of natural gas, particularly in the United States Private-wire renewable energy projects Battery energy storage systems (BESS) JLL points to declining battery costs, seen falling below $90 per kilowatt-hour in select deployments, as a meaningful enabler of grid flexibility, renewable firming, and

Read More »

SoftBank, DigitalBridge, and Stargate: The Next Phase of OpenAI’s Infrastructure Strategy

OpenAI framed Stargate as an AI infrastructure platform; a mechanism to secure long-duration, frontier-scale compute across both training and inference by coordinating capital, land, power, and supply chain with major partners. When OpenAI announced Stargate in January 2025, the headline commitment was explicit: an intention to invest up to $500 billion over four to five years to build new AI infrastructure in the U.S., with $100 billion targeted for near-term deployment. The strategic backdrop in 2025 was straightforward. OpenAI’s model roadmap—larger models, more agents, expanded multimodality, and rising enterprise workloads—was driving a compute curve increasingly difficult to satisfy through conventional cloud procurement alone. Stargate emerged as a form of “control plane” for: Capacity ownership and priority access, rather than simply renting GPUs. Power-first site selection, encompassing grid interconnects, generation, water access, and permitting. A broader partner ecosystem beyond Microsoft, while still maintaining a working relationship with Microsoft for cloud capacity where appropriate. 2025 Progress: From Launch to Portfolio Buildout January 2025: Stargate Launches as a National-Scale Initiative OpenAI publicly launched Project Stargate on Jan. 21, 2025, positioning it as a national-scale AI infrastructure initiative. At this early stage, the work was less about construction and more about establishing governance, aligning partners, and shaping a public narrative in which compute was framed as “industrial policy meets real estate meets energy,” rather than simply an exercise in buying more GPUs. July 2025: Oracle Partnership Anchors a 4.5-GW Capacity Step On July 22, 2025, OpenAI announced that Stargate had advanced through a partnership with Oracle to develop 4.5 gigawatts of additional U.S. data center capacity. The scale of the commitment marked a clear transition from conceptual ambition to site- and megawatt-level planning. A figure of this magnitude reshaped the narrative. At 4.5 GW, Stargate forced alignment across transformers, transmission upgrades, switchgear, long-lead cooling

Read More »

Lenovo unveils purpose-built AI inferencing servers

There is also the Lenovo ThinkSystem SR650i, which offers high-density GPU computing power for faster AI inference and is intended for easy installation in existing data centers to work with existing systems. Finally, there is the Lenovo ThinkEdge SE455i for smaller, edge locations such as retail outlets, telecom sites, and industrial facilities. Its compact design allows for low-latency AI inference close to where data is generated and is rugged enough to operate in temperatures ranging from -5°C to 55°C. All of the servers include Lenovo’s Neptune air- and liquid-cooling technology and are available through the TruScale pay-as-you-go pricing model. In addition to the new hardware, Lenovo introduced new AI Advisory Services with AI Factory Integration. This service gives access to professionals for identifying, deploying, and managing best-fit AI Inferencing servers. It also launched Premier Support Plus, a service that gives professional assistance in data center management, freeing up IT resources for more important projects.

Read More »

Samsung warns of memory shortages driving industry-wide price surge in 2026

SK Hynix reported during its October earnings call that its HBM, DRAM, and NAND capacity is “essentially sold out” for 2026, while Micron recently exited the consumer memory market entirely to focus on enterprise and AI customers. Enterprise hardware costs surge The supply constraints have translated directly into sharp price increases across enterprise hardware. Samsung raised prices for 32GB DDR5 modules to $239 from $149 in September, a 60% increase, while contract pricing for DDR5 has surged more than 100%, reaching $19.50 per unit compared to around $7 earlier in 2025. DRAM prices have already risen approximately 50% year to date and are expected to climb another 30% in Q4 2025, followed by an additional 20% in early 2026, according to Counterpoint Research. The firm projected that DDR5 64GB RDIMM modules, widely used in enterprise data centers, could cost twice as much by the end of 2026 as they did in early 2025. Gartner forecast DRAM prices to increase by 47% in 2026 due to significant undersupply in both traditional and legacy DRAM markets, Chauhan said. Procurement leverage shifts to hyperscalers The pricing pressures and supply constraints are reshaping the power dynamics in enterprise procurement. For enterprise procurement, supplier size no longer guarantees stability. “As supply becomes more contested in 2026, procurement leverage will hinge less on volume and more on strategic alignment,” Rawat said. Hyperscale cloud providers secure supply through long-term commitments, capacity reservations, and direct fab investments, obtaining lower costs and assured availability. Mid-market firms rely on shorter contracts and spot sourcing, competing for residual capacity after large buyers claim priority supply.

Read More »

Eight Trends That Will Shape the Data Center Industry in 2026

For much of the past decade, the data center industry has been able to speak in broad strokes. Growth was strong. Demand was durable. Power was assumed to arrive eventually. And “the data center” could still be discussed as a single, increasingly important, but largely invisible, piece of digital infrastructure. That era is ending. As the industry heads into 2026, the dominant forces shaping data center development are no longer additive. They are interlocking and increasingly unforgiving. AI drives density. Density drives cooling. Cooling and density drive power. Power drives site selection, timelines, capital structure, and public response. And once those forces converge, they pull the industry into places it has not always had to operate comfortably: utility planning rooms, regulatory hearings, capital committee debates, and community negotiations. The throughline of this year’s forecast is clarity: Clarity about workload classes. Clarity about physics. Clarity about risk. And clarity about where the industry’s assumptions may no longer hold. One of the most important shifts entering 2026 is that it may increasingly no longer be accurate, or useful, to talk about “data centers” as a single category. What public discourse often lumps together now conceals two very different realities: AI factories built around sustained, power-dense GPU utilization, and general-purpose data centers supporting a far more elastic mix of cloud, enterprise, storage, and interconnection workloads. That distinction is no longer academic. It is shaping how projects are financed, how power is delivered, how facilities are cooled, and how communities respond. It’s also worth qualifying a line we’ve used before, and still stand by in spirit: that every data center is becoming an AI data center. In 2026, we feel that statement is best understood more as a trajectory, and less a design brief. AI is now embedded across the data center stack: in

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »