Stay Ahead, Stay ONMINE

Linear Regression in Time Series: Sources of Spurious Regression

1. Introduction It’s pretty clear that most of our work will be automated by AI in the future. This will be possible because many researchers and professionals are working hard to make their work available online. These contributions not only help us understand fundamental concepts but also refine AI models, ultimately freeing up time to focus on other activities. However, there is one concept that remains misunderstood, even among experts. It is spurious regression in time series analysis. This issue arises when regression models suggest strong relationships between variables, even when none exist. It is typically observed in time series regression equations that seem to have a high degree of fit — as indicated by a high R² (coefficient of multiple correlation) — but with an extremely low Durbin-Watson statistic (d), signaling strong autocorrelation in the error terms. What is particularly surprising is that almost all econometric textbooks warn about the danger of autocorrelated errors, yet this issue persists in many published papers. Granger and Newbold (1974) identified several examples. For instance, they found published equations with R² = 0.997 and the Durbin-Watson statistic (d) equal to 0.53. The most extreme found is an equation with R² = 0.999 and d = 0.093. It is especially problematic in economics and finance, where many key variables exhibit autocorrelation or serial correlation between adjacent values, particularly if the sampling interval is small, such as a week or a month, leading to misleading conclusions if not handled correctly. For example, today’s GDP is strongly correlated with the GDP of the previous quarter. Our post provides a detailed explanation of the results from Granger and Newbold (1974) and Python simulation (see section 7) replicating the key results presented in their article. Whether you’re an economist, data scientist, or analyst working with time series data, understanding this issue is crucial to ensuring your models produce meaningful results. To walk you through this paper, the next section will introduce the random walk and the ARIMA(0,1,1) process. In section 3, we will explain how Granger and Newbold (1974) describe the emergence of nonsense regressions, with examples illustrated in section 4. Finally, we’ll show how to avoid spurious regressions when working with time series data. 2. Simple presentation of a Random Walk and ARIMA(0,1,1) Process 2.1 Random Walk Let 𝐗ₜ be a time series. We say that 𝐗ₜ follows a random walk if its representation is given by: 𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ. (1) Where 𝜖ₜ is a white noise. It can be written as a sum of white noise, a useful form for simulation. It is a non-stationary time series because its variance depends on the time t. 2.2 ARIMA(0,1,1) Process The ARIMA(0,1,1) process is given by: 𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ − 𝜃 𝜖ₜ₋₁. (2) where 𝜖ₜ is a white noise. The ARIMA(0,1,1) process is non-stationary. It can be written as a sum of an independent random walk and white noise: 𝐗ₜ = 𝐗₀ + random walk + white noise. (3) This form is useful for simulation. Those non-stationary series are often employed as benchmarks against which the forecasting performance of other models is judged. 3. Random walk can lead to Nonsense Regression First, let’s recall the Linear Regression model. The linear regression model is given by: 𝐘 = 𝐗𝛽 + 𝜖. (4) Where 𝐘 is a T × 1 vector of the dependent variable, 𝛽 is a K × 1 vector of the coefficients, 𝐗 is a T × K matrix of the independent variables containing a column of ones and (K−1) columns with T observations on each of the (K−1) independent variables, which are stochastic but distributed independently of the T × 1 vector of the errors 𝜖. It is generally assumed that: 𝐄(𝜖) = 0, (5) and 𝐄(𝜖𝜖′) = 𝜎²𝐈. (6) where 𝐈 is the identity matrix. A test of the contribution of independent variables to the explanation of the dependent variable is the F-test. The null hypothesis of the test is given by: 𝐇₀: 𝛽₁ = 𝛽₂ = ⋯ = 𝛽ₖ₋₁ = 0, (7) And the statistic of the test is given by: 𝐅 = (𝐑² / (𝐊−1)) / ((1−𝐑²) / (𝐓−𝐊)). (8) where 𝐑² is the coefficient of determination. If we want to construct the statistic of the test, let’s assume that the null hypothesis is true, and one tries to fit a regression of the form (Equation 4) to the levels of an economic time series. Suppose next that these series are not stationary or are highly autocorrelated. In such a situation, the test procedure is invalid since 𝐅 in (Equation 8) is not distributed as an F-distribution under the null hypothesis (Equation 7). In fact, under the null hypothesis, the errors or residuals from (Equation 4) are given by: 𝜖ₜ = 𝐘ₜ − 𝐗𝛽₀ ; t = 1, 2, …, T. (9) And will have the same autocorrelation structure as the original series 𝐘. Some idea of the distribution problem can arise in the situation when: 𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ. (10) Where 𝐘ₜ and 𝐗ₜ follow independent first-order autoregressive processes: 𝐘ₜ = 𝜌 𝐘ₜ₋₁ + 𝜂ₜ, and 𝐗ₜ = 𝜌* 𝐗ₜ₋₁ + 𝜈ₜ. (11) Where 𝜂ₜ and 𝜈ₜ are white noise. We know that in this case, 𝐑² is the square of the correlation between 𝐘ₜ and 𝐗ₜ. They use Kendall’s result from the article Knowles (1954), which expresses the variance of 𝐑: 𝐕𝐚𝐫(𝐑) = (1/T)* (1 + 𝜌𝜌*) / (1 − 𝜌𝜌*). (12) Since 𝐑 is constrained to lie between -1 and 1, if its variance is greater than 1/3, the distribution of 𝐑 cannot have a mode at 0. This implies that 𝜌𝜌* > (T−1) / (T+1). Thus, for example, if T = 20 and 𝜌 = 𝜌*, a distribution that is not unimodal at 0 will be obtained if 𝜌 > 0.86, and if 𝜌 = 0.9, 𝐕𝐚𝐫(𝐑) = 0.47. So the 𝐄(𝐑²) will be close to 0.47. It has been shown that when 𝜌 is close to 1, 𝐑² can be very high, suggesting a strong relationship between 𝐘ₜ and 𝐗ₜ. However, in reality, the two series are completely independent. When 𝜌 is near 1, both series behave like random walks or near-random walks. On top of that, both series are highly autocorrelated, which causes the residuals from the regression to also be strongly autocorrelated. As a result, the Durbin-Watson statistic 𝐝 will be very low. This is why a high 𝐑² in this context should never be taken as evidence of a true relationship between the two series. To explore the possibility of obtaining a spurious regression when regressing two independent random walks, a series of simulations proposed by Granger and Newbold (1974) will be conducted in the next section. 4. Simulation results using Python. In this section, we will show using simulations that using the regression model with independent random walks bias the estimation of the coefficients and the hypothesis tests of the coefficients are invalid. The Python code that will produce the results of the simulation will be presented in section 6. A regression equation proposed by Granger and Newbold (1974) is given by: 𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ Where 𝐘ₜ and 𝐗ₜ were generated as independent random walks, each of length 50. The values 𝐒 = |𝛽̂₁| / √(𝐒𝐄̂(𝛽̂₁)), representing the statistic for testing the significance of 𝛽₁, for 100 simulations will be reported in the table below. Table 1: Regressing two independent random walks The null hypothesis of no relationship between 𝐘ₜ and 𝐗ₜ is rejected at the 5% level if 𝐒 > 2. This table shows that the null hypothesis (𝛽 = 0) is wrongly rejected in about a quarter (71 times) of all cases. This is awkward because the two variables are independent random walks, meaning there’s no actual relationship. Let’s break down why this happens. If 𝛽̂₁ / 𝐒𝐄̂ follows a 𝐍(0,1), the expected value of 𝐒, its absolute value, should be √2 / π ≈ 0.8 (√2/π is the mean of the absolute value of a standard normal distribution). However, the simulation results show an average of 4.59, meaning the estimated 𝐒 is underestimated by a factor of: 4.59 / 0.8 = 5.7 In classical statistics, we usually use a t-test threshold of around 2 to check the significance of a coefficient. However, these results show that, in this case, you would need to use a threshold of 11.4 to properly test for significance: 2 × (4.59 / 0.8) = 11.4 Interpretation: We’ve just shown that including variables that don’t belong in the model — especially random walks — can lead to completely invalid significance tests for the coefficients. To make their simulations even clearer, Granger and Newbold (1974) ran a series of regressions using variables that follow either a random walk or an ARIMA(0,1,1) process. Here is how they set up their simulations: They regressed a dependent series 𝐘ₜ on m series 𝐗ⱼ,ₜ (with j = 1, 2, …, m), varying m from 1 to 5. The dependent series 𝐘ₜ and the independent series 𝐗ⱼ,ₜ follow the same types of processes, and they tested four cases: Case 1 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow random walks. Case 2 (Differences): They use the first differences of the random walks, which are stationary. Case 3 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow ARIMA(0,1,1). Case 4 (Differences): They use the first differences of the previous ARIMA(0,1,1) processes, which are stationary. Each series has a length of 50 observations, and they ran 100 simulations for each case. All error terms are distributed as 𝐍(0,1), and the ARIMA(0,1,1) series are derived as the sum of the random walk and independent white noise. The simulation results, based on 100 replications with series of length 50, are summarized in the next table. Table 2: Regressions of a series on m independent ‘explanatory’ series. Interpretation of the results : It is seen that the probability of not rejecting the null hypothesis of no relationship between 𝐘ₜ and 𝐗ⱼ,ₜ becomes very small when m ≥ 3 when regressions are made with random walk series (rw-levels). The 𝐑² and the mean Durbin-Watson increase. Similar results are obtained when the regressions are made with ARIMA(0,1,1) series (arima-levels). When white noise series (rw-diffs) are used, classical regression analysis is valid since the error series will be white noise and least squares will be efficient. However, when the regressions are made with the differences of ARIMA(0,1,1) series (arima-diffs) or first-order moving average series MA(1) process, the null hypothesis is rejected, on average: (10 + 16 + 5 + 6 + 6) / 5 = 8.6 which is greater than 5% of the time. If your variables are random walks or close to them, and you include unnecessary variables in your regression, you will often get fallacious results. High 𝐑² and low Durbin-Watson values do not confirm a true relationship but instead indicate a likely spurious one. 5. How to avoid spurious regression in time series It’s really hard to come up with a complete list of ways to avoid spurious regressions. However, there are a few good practices you can follow to minimize the risk as much as possible. If one performs a regression analysis with time series data and finds that the residuals are strongly autocorrelated, there is a serious problem when it comes to interpreting the coefficients of the equation. To check for autocorrelation in the residuals, one can use the Durbin-Watson test or the Portmanteau test. Based on the study above, we can conclude that if a regression analysis performed with economical variables produces strongly autocorrelated residuals, meaning a low Durbin-Watson statistic, then the results of the analysis are likely to be spurious, whatever the value of the coefficient of determination R² observed. In such cases, it is important to understand where the mis-specification comes from. According to the literature, misspecification usually falls into three categories : (i) the omission of a relevant variable, (ii) the inclusion of an irrelevant variable, or (iii) autocorrelation of the errors. Most of the time, mis-specification comes from a mix of these three sources. To avoid spurious regression in a time series, several recommendations can be made: The first recommendation is to select the right macroeconomic variables that are likely to explain the dependent variable. This can be done by reviewing the literature or consulting experts in the field. The second recommendation is to stationarize the series by taking first differences. In most cases, the first differences of macroeconomic variables are stationary and still easy to interpret. For macroeconomic data, it’s strongly recommended to differentiate the series once to reduce the autocorrelation of the residuals, especially when the sample size is small. There is indeed sometimes strong serial correlation observed in these variables. A simple calculation shows that the first differences will almost always have much smaller serial correlations than the original series. The third recommendation is to use the Box-Jenkins methodology to model each macroeconomic variable individually and then search for relationships between the series by relating the residuals from each individual model. The idea here is that the Box-Jenkins process extracts the explained part of the series, leaving the residuals, which contain only what can’t be explained by the series’ own past behavior. This makes it easier to check whether these unexplained parts (residuals) are related across variables. 6. Conclusion Many econometrics textbooks warn about specification errors in regression models, but the problem still shows up in many published papers. Granger and Newbold (1974) highlighted the risk of spurious regressions, where you get a high paired with very low Durbin-Watson statistics. Using Python simulations, we showed some of the main causes of these spurious regressions, especially including variables that don’t belong in the model and are highly autocorrelated. We also demonstrated how these issues can completely distort hypothesis tests on the coefficients. Hopefully, this post will help reduce the risk of spurious regressions in future econometric analyses. 7. Appendice: Python code for simulation. #####################################################Simulation Code for table 1 ##################################################### import numpy as np import pandas as pd import statsmodels.api as sm import matplotlib.pyplot as plt np.random.seed(123) M = 100 n = 50 S = np.zeros(M) for i in range(M): #————————————————————— # Generate the data #————————————————————— espilon_y = np.random.normal(0, 1, n) espilon_x = np.random.normal(0, 1, n) Y = np.cumsum(espilon_y) X = np.cumsum(espilon_x) #————————————————————— # Fit the model #————————————————————— X = sm.add_constant(X) model = sm.OLS(Y, X).fit() #————————————————————— # Compute the statistic #—————————————————— S[i] = np.abs(model.params[1])/model.bse[1] #—————————————————— # Maximum value of S #—————————————————— S_max = int(np.ceil(max(S))) #—————————————————— # Create bins #—————————————————— bins = np.arange(0, S_max + 2, 1) #—————————————————— # Compute the histogram #—————————————————— frequency, bin_edges = np.histogram(S, bins=bins) #—————————————————— # Create a dataframe #—————————————————— df = pd.DataFrame({ “S Interval”: [f”{int(bin_edges[i])}-{int(bin_edges[i+1])}” for i in range(len(bin_edges)-1)], “Frequency”: frequency }) print(df) print(np.mean(S)) #####################################################Simulation Code for table 2 ##################################################### import numpy as np import pandas as pd import statsmodels.api as sm from statsmodels.stats.stattools import durbin_watson from tabulate import tabulate np.random.seed(1) # Pour rendre les résultats reproductibles #—————————————————— # Definition of functions #—————————————————— def generate_random_walk(T): “”” Génère une série de longueur T suivant un random walk : Y_t = Y_{t-1} + e_t, où e_t ~ N(0,1). “”” e = np.random.normal(0, 1, size=T) return np.cumsum(e) def generate_arima_0_1_1(T): “”” Génère un ARIMA(0,1,1) selon la méthode de Granger & Newbold : la série est obtenue en additionnant une marche aléatoire et un bruit blanc indépendant. “”” rw = generate_random_walk(T) wn = np.random.normal(0, 1, size=T) return rw + wn def difference(series): “”” Calcule la différence première d’une série unidimensionnelle. Retourne une série de longueur T-1. “”” return np.diff(series) #—————————————————— # Paramètres #—————————————————— T = 50 # longueur de chaque série n_sims = 100 # nombre de simulations Monte Carlo alpha = 0.05 # seuil de significativité #—————————————————— # Definition of function for simulation #—————————————————— def run_simulation_case(case_name, m_values=[1,2,3,4,5]): “”” case_name : un identifiant pour le type de génération : – ‘rw-levels’ : random walk (levels) – ‘rw-diffs’ : differences of RW (white noise) – ‘arima-levels’ : ARIMA(0,1,1) en niveaux – ‘arima-diffs’ : différences d’un ARIMA(0,1,1) = > MA(1) m_values : liste du nombre de régresseurs. Retourne un DataFrame avec pour chaque m : – % de rejets de H0 – Durbin-Watson moyen – R^2_adj moyen – % de R^2 > 0.1 “”” results = [] for m in m_values: count_reject = 0 dw_list = [] r2_adjusted_list = [] for _ in range(n_sims): #————————————– # 1) Generation of independents de Y_t and X_{j,t}. #—————————————- if case_name == ‘rw-levels’: Y = generate_random_walk(T) Xs = [generate_random_walk(T) for __ in range(m)] elif case_name == ‘rw-diffs’: # Y et X sont les différences d’un RW, i.e. ~ white noise Y_rw = generate_random_walk(T) Y = difference(Y_rw) Xs = [] for __ in range(m): X_rw = generate_random_walk(T) Xs.append(difference(X_rw)) # NB : maintenant Y et Xs ont longueur T-1 # = > ajuster T_effectif = T-1 # = > on prendra T_effectif points pour la régression elif case_name == ‘arima-levels’: Y = generate_arima_0_1_1(T) Xs = [generate_arima_0_1_1(T) for __ in range(m)] elif case_name == ‘arima-diffs’: # Différences d’un ARIMA(0,1,1) = > MA(1) Y_arima = generate_arima_0_1_1(T) Y = difference(Y_arima) Xs = [] for __ in range(m): X_arima = generate_arima_0_1_1(T) Xs.append(difference(X_arima)) # 2) Prépare les données pour la régression # Selon le cas, la longueur est T ou T-1 if case_name in [‘rw-levels’,’arima-levels’]: Y_reg = Y X_reg = np.column_stack(Xs) if m >0 else np.array([]) else: # dans les cas de différences, la longueur est T-1 Y_reg = Y X_reg = np.column_stack(Xs) if m >0 else np.array([]) # 3) Régression OLS X_with_const = sm.add_constant(X_reg) # Ajout de l’ordonnée à l’origine model = sm.OLS(Y_reg, X_with_const).fit() # 4) Test global F : H0 : tous les beta_j = 0 # On regarde si p-value < alpha if model.f_pvalue is not None and model.f_pvalue 0.7) results.append({ ‘m’: m, ‘Reject %’: reject_percent, ‘Mean DW’: dw_mean, ‘Mean R^2’: r2_mean, ‘% R^2_adj >0.7’: r2_above_0_7_percent }) return pd.DataFrame(results) #—————————————————— # Application of the simulation #—————————————————— cases = [‘rw-levels’, ‘rw-diffs’, ‘arima-levels’, ‘arima-diffs’] all_results = {} for c in cases: df_res = run_simulation_case(c, m_values=[1,2,3,4,5]) all_results[c] = df_res #—————————————————— # Store data in table #—————————————————— for case, df_res in all_results.items(): print(f”nn{case}”) print(tabulate(df_res, headers=’keys’, tablefmt=’fancy_grid’)) References Granger, Clive WJ, and Paul Newbold. 1974. “Spurious Regressions in Econometrics.” Journal of Econometrics 2 (2): 111–20. Knowles, EAG. 1954. “Exercises in Theoretical Statistics.” Oxford University Press.

1. Introduction

It’s pretty clear that most of our work will be automated by AI in the future. This will be possible because many researchers and professionals are working hard to make their work available online. These contributions not only help us understand fundamental concepts but also refine AI models, ultimately freeing up time to focus on other activities.

However, there is one concept that remains misunderstood, even among experts. It is spurious regression in time series analysis. This issue arises when regression models suggest strong relationships between variables, even when none exist. It is typically observed in time series regression equations that seem to have a high degree of fit — as indicated by a high R² (coefficient of multiple correlation) — but with an extremely low Durbin-Watson statistic (d), signaling strong autocorrelation in the error terms.

What is particularly surprising is that almost all econometric textbooks warn about the danger of autocorrelated errors, yet this issue persists in many published papers. Granger and Newbold (1974) identified several examples. For instance, they found published equations with R² = 0.997 and the Durbin-Watson statistic (d) equal to 0.53. The most extreme found is an equation with R² = 0.999 and d = 0.093.

It is especially problematic in economics and finance, where many key variables exhibit autocorrelation or serial correlation between adjacent values, particularly if the sampling interval is small, such as a week or a month, leading to misleading conclusions if not handled correctly. For example, today’s GDP is strongly correlated with the GDP of the previous quarter. Our post provides a detailed explanation of the results from Granger and Newbold (1974) and Python simulation (see section 7) replicating the key results presented in their article.

Whether you’re an economist, data scientist, or analyst working with time series data, understanding this issue is crucial to ensuring your models produce meaningful results.

To walk you through this paper, the next section will introduce the random walk and the ARIMA(0,1,1) process. In section 3, we will explain how Granger and Newbold (1974) describe the emergence of nonsense regressions, with examples illustrated in section 4. Finally, we’ll show how to avoid spurious regressions when working with time series data.

2. Simple presentation of a Random Walk and ARIMA(0,1,1) Process

2.1 Random Walk

Let 𝐗ₜ be a time series. We say that 𝐗ₜ follows a random walk if its representation is given by:

𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ. (1)

Where 𝜖ₜ is a white noise. It can be written as a sum of white noise, a useful form for simulation. It is a non-stationary time series because its variance depends on the time t.

2.2 ARIMA(0,1,1) Process

The ARIMA(0,1,1) process is given by:

𝐗ₜ = 𝐗ₜ₋₁ + 𝜖ₜ − 𝜃 𝜖ₜ₋₁. (2)

where 𝜖ₜ is a white noise. The ARIMA(0,1,1) process is non-stationary. It can be written as a sum of an independent random walk and white noise:

𝐗ₜ = 𝐗₀ + random walk + white noise. (3) This form is useful for simulation.

Those non-stationary series are often employed as benchmarks against which the forecasting performance of other models is judged.

3. Random walk can lead to Nonsense Regression

First, let’s recall the Linear Regression model. The linear regression model is given by:

𝐘 = 𝐗𝛽 + 𝜖. (4)

Where 𝐘 is a T × 1 vector of the dependent variable, 𝛽 is a K × 1 vector of the coefficients, 𝐗 is a T × K matrix of the independent variables containing a column of ones and (K−1) columns with T observations on each of the (K−1) independent variables, which are stochastic but distributed independently of the T × 1 vector of the errors 𝜖. It is generally assumed that:

𝐄(𝜖) = 0, (5)

and

𝐄(𝜖𝜖′) = 𝜎²𝐈. (6)

where 𝐈 is the identity matrix.

A test of the contribution of independent variables to the explanation of the dependent variable is the F-test. The null hypothesis of the test is given by:

𝐇₀: 𝛽₁ = 𝛽₂ = ⋯ = 𝛽ₖ₋₁ = 0, (7)

And the statistic of the test is given by:

𝐅 = (𝐑² / (𝐊−1)) / ((1−𝐑²) / (𝐓−𝐊)). (8)

where 𝐑² is the coefficient of determination.

If we want to construct the statistic of the test, let’s assume that the null hypothesis is true, and one tries to fit a regression of the form (Equation 4) to the levels of an economic time series. Suppose next that these series are not stationary or are highly autocorrelated. In such a situation, the test procedure is invalid since 𝐅 in (Equation 8) is not distributed as an F-distribution under the null hypothesis (Equation 7). In fact, under the null hypothesis, the errors or residuals from (Equation 4) are given by:

𝜖ₜ = 𝐘ₜ − 𝐗𝛽₀ ; t = 1, 2, …, T. (9)

And will have the same autocorrelation structure as the original series 𝐘.

Some idea of the distribution problem can arise in the situation when:

𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ. (10)

Where 𝐘ₜ and 𝐗ₜ follow independent first-order autoregressive processes:

𝐘ₜ = 𝜌 𝐘ₜ₋₁ + 𝜂ₜ, and 𝐗ₜ = 𝜌* 𝐗ₜ₋₁ + 𝜈ₜ. (11)

Where 𝜂ₜ and 𝜈ₜ are white noise.

We know that in this case, 𝐑² is the square of the correlation between 𝐘ₜ and 𝐗ₜ. They use Kendall’s result from the article Knowles (1954), which expresses the variance of 𝐑:

𝐕𝐚𝐫(𝐑) = (1/T)* (1 + 𝜌𝜌*) / (1 − 𝜌𝜌*). (12)

Since 𝐑 is constrained to lie between -1 and 1, if its variance is greater than 1/3, the distribution of 𝐑 cannot have a mode at 0. This implies that 𝜌𝜌* > (T−1) / (T+1).

Thus, for example, if T = 20 and 𝜌 = 𝜌*, a distribution that is not unimodal at 0 will be obtained if 𝜌 > 0.86, and if 𝜌 = 0.9, 𝐕𝐚𝐫(𝐑) = 0.47. So the 𝐄(𝐑²) will be close to 0.47.

It has been shown that when 𝜌 is close to 1, 𝐑² can be very high, suggesting a strong relationship between 𝐘ₜ and 𝐗ₜ. However, in reality, the two series are completely independent. When 𝜌 is near 1, both series behave like random walks or near-random walks. On top of that, both series are highly autocorrelated, which causes the residuals from the regression to also be strongly autocorrelated. As a result, the Durbin-Watson statistic 𝐝 will be very low.

This is why a high 𝐑² in this context should never be taken as evidence of a true relationship between the two series.

To explore the possibility of obtaining a spurious regression when regressing two independent random walks, a series of simulations proposed by Granger and Newbold (1974) will be conducted in the next section.

4. Simulation results using Python.

In this section, we will show using simulations that using the regression model with independent random walks bias the estimation of the coefficients and the hypothesis tests of the coefficients are invalid. The Python code that will produce the results of the simulation will be presented in section 6.

A regression equation proposed by Granger and Newbold (1974) is given by:

𝐘ₜ = 𝛽₀ + 𝐗ₜ𝛽₁ + 𝜖ₜ

Where 𝐘ₜ and 𝐗ₜ were generated as independent random walks, each of length 50. The values 𝐒 = |𝛽̂₁| / √(𝐒𝐄̂(𝛽̂₁)), representing the statistic for testing the significance of 𝛽₁, for 100 simulations will be reported in the table below.

Table 1: Regressing two independent random walks

The null hypothesis of no relationship between 𝐘ₜ and 𝐗ₜ is rejected at the 5% level if 𝐒 > 2. This table shows that the null hypothesis (𝛽 = 0) is wrongly rejected in about a quarter (71 times) of all cases. This is awkward because the two variables are independent random walks, meaning there’s no actual relationship. Let’s break down why this happens.

If 𝛽̂₁ / 𝐒𝐄̂ follows a 𝐍(0,1), the expected value of 𝐒, its absolute value, should be √2 / π ≈ 0.8 (√2/π is the mean of the absolute value of a standard normal distribution). However, the simulation results show an average of 4.59, meaning the estimated 𝐒 is underestimated by a factor of:

4.59 / 0.8 = 5.7

In classical statistics, we usually use a t-test threshold of around 2 to check the significance of a coefficient. However, these results show that, in this case, you would need to use a threshold of 11.4 to properly test for significance:

2 × (4.59 / 0.8) = 11.4

Interpretation: We’ve just shown that including variables that don’t belong in the model — especially random walks — can lead to completely invalid significance tests for the coefficients.

To make their simulations even clearer, Granger and Newbold (1974) ran a series of regressions using variables that follow either a random walk or an ARIMA(0,1,1) process.

Here is how they set up their simulations:

They regressed a dependent series 𝐘ₜ on m series 𝐗ⱼ,ₜ (with j = 1, 2, …, m), varying m from 1 to 5. The dependent series 𝐘ₜ and the independent series 𝐗ⱼ,ₜ follow the same types of processes, and they tested four cases:

  • Case 1 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow random walks.
  • Case 2 (Differences): They use the first differences of the random walks, which are stationary.
  • Case 3 (Levels): 𝐘ₜ and 𝐗ⱼ,ₜ follow ARIMA(0,1,1).
  • Case 4 (Differences): They use the first differences of the previous ARIMA(0,1,1) processes, which are stationary.

Each series has a length of 50 observations, and they ran 100 simulations for each case.

All error terms are distributed as 𝐍(0,1), and the ARIMA(0,1,1) series are derived as the sum of the random walk and independent white noise. The simulation results, based on 100 replications with series of length 50, are summarized in the next table.

Table 2: Regressions of a series on m independent ‘explanatory’ series.

Interpretation of the results :

  • It is seen that the probability of not rejecting the null hypothesis of no relationship between 𝐘ₜ and 𝐗ⱼ,ₜ becomes very small when m ≥ 3 when regressions are made with random walk series (rw-levels). The 𝐑² and the mean Durbin-Watson increase. Similar results are obtained when the regressions are made with ARIMA(0,1,1) series (arima-levels).
  • When white noise series (rw-diffs) are used, classical regression analysis is valid since the error series will be white noise and least squares will be efficient.
  • However, when the regressions are made with the differences of ARIMA(0,1,1) series (arima-diffs) or first-order moving average series MA(1) process, the null hypothesis is rejected, on average:

(10 + 16 + 5 + 6 + 6) / 5 = 8.6

which is greater than 5% of the time.

If your variables are random walks or close to them, and you include unnecessary variables in your regression, you will often get fallacious results. High 𝐑² and low Durbin-Watson values do not confirm a true relationship but instead indicate a likely spurious one.

5. How to avoid spurious regression in time series

It’s really hard to come up with a complete list of ways to avoid spurious regressions. However, there are a few good practices you can follow to minimize the risk as much as possible.

If one performs a regression analysis with time series data and finds that the residuals are strongly autocorrelated, there is a serious problem when it comes to interpreting the coefficients of the equation. To check for autocorrelation in the residuals, one can use the Durbin-Watson test or the Portmanteau test.

Based on the study above, we can conclude that if a regression analysis performed with economical variables produces strongly autocorrelated residuals, meaning a low Durbin-Watson statistic, then the results of the analysis are likely to be spurious, whatever the value of the coefficient of determination R² observed.

In such cases, it is important to understand where the mis-specification comes from. According to the literature, misspecification usually falls into three categories : (i) the omission of a relevant variable, (ii) the inclusion of an irrelevant variable, or (iii) autocorrelation of the errors. Most of the time, mis-specification comes from a mix of these three sources.

To avoid spurious regression in a time series, several recommendations can be made:

  • The first recommendation is to select the right macroeconomic variables that are likely to explain the dependent variable. This can be done by reviewing the literature or consulting experts in the field.
  • The second recommendation is to stationarize the series by taking first differences. In most cases, the first differences of macroeconomic variables are stationary and still easy to interpret. For macroeconomic data, it’s strongly recommended to differentiate the series once to reduce the autocorrelation of the residuals, especially when the sample size is small. There is indeed sometimes strong serial correlation observed in these variables. A simple calculation shows that the first differences will almost always have much smaller serial correlations than the original series.
  • The third recommendation is to use the Box-Jenkins methodology to model each macroeconomic variable individually and then search for relationships between the series by relating the residuals from each individual model. The idea here is that the Box-Jenkins process extracts the explained part of the series, leaving the residuals, which contain only what can’t be explained by the series’ own past behavior. This makes it easier to check whether these unexplained parts (residuals) are related across variables.

6. Conclusion

Many econometrics textbooks warn about specification errors in regression models, but the problem still shows up in many published papers. Granger and Newbold (1974) highlighted the risk of spurious regressions, where you get a high paired with very low Durbin-Watson statistics.

Using Python simulations, we showed some of the main causes of these spurious regressions, especially including variables that don’t belong in the model and are highly autocorrelated. We also demonstrated how these issues can completely distort hypothesis tests on the coefficients.

Hopefully, this post will help reduce the risk of spurious regressions in future econometric analyses.

7. Appendice: Python code for simulation.

#####################################################Simulation Code for table 1 #####################################################

import numpy as np
import pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt

np.random.seed(123)
M = 100 
n = 50
S = np.zeros(M)
for i in range(M):
#---------------------------------------------------------------
# Generate the data
#---------------------------------------------------------------
    espilon_y = np.random.normal(0, 1, n)
    espilon_x = np.random.normal(0, 1, n)

    Y = np.cumsum(espilon_y)
    X = np.cumsum(espilon_x)
#---------------------------------------------------------------
# Fit the model
#---------------------------------------------------------------
    X = sm.add_constant(X)
    model = sm.OLS(Y, X).fit()
#---------------------------------------------------------------
# Compute the statistic
#------------------------------------------------------
    S[i] = np.abs(model.params[1])/model.bse[1]


#------------------------------------------------------ 
#              Maximum value of S
#------------------------------------------------------
S_max = int(np.ceil(max(S)))

#------------------------------------------------------ 
#                Create bins
#------------------------------------------------------
bins = np.arange(0, S_max + 2, 1)  

#------------------------------------------------------
#    Compute the histogram
#------------------------------------------------------
frequency, bin_edges = np.histogram(S, bins=bins)

#------------------------------------------------------
#    Create a dataframe
#------------------------------------------------------

df = pd.DataFrame({
    "S Interval": [f"{int(bin_edges[i])}-{int(bin_edges[i+1])}" for i in range(len(bin_edges)-1)],
    "Frequency": frequency
})
print(df)
print(np.mean(S))

#####################################################Simulation Code for table 2 #####################################################

import numpy as np
import pandas as pd
import statsmodels.api as sm
from statsmodels.stats.stattools import durbin_watson
from tabulate import tabulate

np.random.seed(1)  # Pour rendre les résultats reproductibles

#------------------------------------------------------
# Definition of functions
#------------------------------------------------------

def generate_random_walk(T):
    """
    Génère une série de longueur T suivant un random walk :
        Y_t = Y_{t-1} + e_t,
    où e_t ~ N(0,1).
    """
    e = np.random.normal(0, 1, size=T)
    return np.cumsum(e)

def generate_arima_0_1_1(T):
    """
    Génère un ARIMA(0,1,1) selon la méthode de Granger & Newbold :
    la série est obtenue en additionnant une marche aléatoire et un bruit blanc indépendant.
    """
    rw = generate_random_walk(T)
    wn = np.random.normal(0, 1, size=T)
    return rw + wn

def difference(series):
    """
    Calcule la différence première d'une série unidimensionnelle.
    Retourne une série de longueur T-1.
    """
    return np.diff(series)

#------------------------------------------------------
# Paramètres
#------------------------------------------------------

T = 50           # longueur de chaque série
n_sims = 100     # nombre de simulations Monte Carlo
alpha = 0.05     # seuil de significativité

#------------------------------------------------------
# Definition of function for simulation
#------------------------------------------------------

def run_simulation_case(case_name, m_values=[1,2,3,4,5]):
    """
    case_name : un identifiant pour le type de génération :
        - 'rw-levels' : random walk (levels)
        - 'rw-diffs'  : differences of RW (white noise)
        - 'arima-levels' : ARIMA(0,1,1) en niveaux
        - 'arima-diffs'  : différences d'un ARIMA(0,1,1) => MA(1)
    
    m_values : liste du nombre de régresseurs.
    
    Retourne un DataFrame avec pour chaque m :
        - % de rejets de H0
        - Durbin-Watson moyen
        - R^2_adj moyen
        - % de R^2 > 0.1
    """
    results = []
    
    for m in m_values:
        count_reject = 0
        dw_list = []
        r2_adjusted_list = []
        
        for _ in range(n_sims):
#--------------------------------------
# 1) Generation of independents de Y_t and X_{j,t}.
#----------------------------------------
            if case_name == 'rw-levels':
                Y = generate_random_walk(T)
                Xs = [generate_random_walk(T) for __ in range(m)]
            
            elif case_name == 'rw-diffs':
                # Y et X sont les différences d'un RW, i.e. ~ white noise
                Y_rw = generate_random_walk(T)
                Y = difference(Y_rw)
                Xs = []
                for __ in range(m):
                    X_rw = generate_random_walk(T)
                    Xs.append(difference(X_rw))
                # NB : maintenant Y et Xs ont longueur T-1
                # => ajuster T_effectif = T-1
                # => on prendra T_effectif points pour la régression
            
            elif case_name == 'arima-levels':
                Y = generate_arima_0_1_1(T)
                Xs = [generate_arima_0_1_1(T) for __ in range(m)]
            
            elif case_name == 'arima-diffs':
                # Différences d'un ARIMA(0,1,1) => MA(1)
                Y_arima = generate_arima_0_1_1(T)
                Y = difference(Y_arima)
                Xs = []
                for __ in range(m):
                    X_arima = generate_arima_0_1_1(T)
                    Xs.append(difference(X_arima))
            
            # 2) Prépare les données pour la régression
            #    Selon le cas, la longueur est T ou T-1
            if case_name in ['rw-levels','arima-levels']:
                Y_reg = Y
                X_reg = np.column_stack(Xs) if m>0 else np.array([])
            else:
                # dans les cas de différences, la longueur est T-1
                Y_reg = Y
                X_reg = np.column_stack(Xs) if m>0 else np.array([])
            
            # 3) Régression OLS
            X_with_const = sm.add_constant(X_reg)  # Ajout de l'ordonnée à l'origine
            model = sm.OLS(Y_reg, X_with_const).fit()
            
            # 4) Test global F : H0 : tous les beta_j = 0
            #    On regarde si p-value < alpha
            if model.f_pvalue is not None and model.f_pvalue  0.7)
        
        results.append({
            'm': m,
            'Reject %': reject_percent,
            'Mean DW': dw_mean,
            'Mean R^2': r2_mean,
            '% R^2_adj>0.7': r2_above_0_7_percent
        })
    
    return pd.DataFrame(results)
    
#------------------------------------------------------
# Application of the simulation
#------------------------------------------------------       

cases = ['rw-levels', 'rw-diffs', 'arima-levels', 'arima-diffs']
all_results = {}

for c in cases:
    df_res = run_simulation_case(c, m_values=[1,2,3,4,5])
    all_results[c] = df_res

#------------------------------------------------------
# Store data in table
#------------------------------------------------------

for case, df_res in all_results.items():
    print(f"nn{case}")
    print(tabulate(df_res, headers='keys', tablefmt='fancy_grid'))

References

  • Granger, Clive WJ, and Paul Newbold. 1974. “Spurious Regressions in Econometrics.” Journal of Econometrics 2 (2): 111–20.
  • Knowles, EAG. 1954. “Exercises in Theoretical Statistics.” Oxford University Press.
Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Gluware tackles AI agent coordination with Titan platform

The first phase focused on configuration management and drift detection. Gluware’s system identified when network devices deviated from approved configurations and proposed fixes, but network operations teams manually reviewed and approved each remediation. The second phase introduced automatic remediation. As customers gained confidence, they allowed the system to automatically correct

Read More »

Ransomware gangs find a new hostage: Your AWS S3 buckets

To succeed, attackers typically look for S3 buckets that have: versioning disabled ( so old versions can’t be restored), object-lock disabled ( so files can be overwritten or deleted), wide write permissions (via mis-configured IAM policies or leaked credentials), and hold high-value data (backup files, production config dumps). Once inside,

Read More »

Cisco initiative targets device security

Cisco is announcing a security initiative that will push customers to update or replace aging infrastructure components, such as routers, switches and firewalls, as well as discourage them from using any insecure features. Called Resilient Infrastructure, the plan calls for Cisco to strengthen network security by increasing default protections, removing

Read More »

Baker Hughes Books 1.3 GW Gas Turbine Order from Dynamis

Dynamis Power Solutions LLC has awarded Baker Hughes Co a contract for the supply of 25 aeroderivative gas turbines with a combined capacity of 1.3 gigawatts (GW). The turbines, including LM2500, LM6000 and LM9000, will be deployed for “mobile power generation across a wide range of oil and gas applications, including upstream, refining and petrochemical”, said a joint statement Thursday. “Dynamis packages gas turbines and generators in its distinctive mobile power solutions. As part of the agreement, Dynamis will package 10 of Baker Hughes’ efficient and dry low emissions LM9000 gas turbines in a new offering called the DT70-70 MW, which will total 700 MW of gas turbine power generation capacity, delivering the oil and gas industry’s highest reported mobile power density (MW per square foot) to date”, the companies said.  Matthew Crawford, chief executive of The Woodlands, Texas-based Dynamis, said, “Through our decade-long collaboration with Baker Hughes, we are redefining what’s possible in the mobile power generation market for oil and gas through our delivery of a new solution with power density once thought unattainable. Our use of LM9000s will offer twice the power of our flagship solution – the best-in-class DT35 – without compromising flexibility, reliability or efficiency”. The statement said, “Designed to support unique and complex operational needs of industries requiring natural gas power solutions, the DT70 is based off Dynamis’ successful DT35 – a 1.5-GW installed base which has been in operation for nearly a decade in more than 1,200 locations throughout the North America region”. “Dynamis’ new application of Baker Hughes’ LM9000s boasts enhanced versatility for large power consumers in the oil and gas space, resilience in challenging environments and the ability to power – benefits that are emphasized by the unit’s compact footprint and record-setting short rig-up and commissioning times”, it added. The companies did not disclose the contract price. Baker

Read More »

Sasol Chief Exec Sees Chem Business Potentially Listing by 2028

Sasol Ltd. Chief Executive Officer Simon Baloyi said the South African company may spin off its international chemicals business as soon as 2028, depending on how quickly profit grows. Shares of the fuel and chemicals firm have gained about 47% this year — heading for its best performance since 2021 — as Baloyi, who became CEO last year, focuses on increasing output from the Secunda manufacturing hub in South Africa and turning around the international chemicals division ahead of a potential listing. That part of the company includes the $12.8 billion sprawling Lake Charles complex in Louisiana.  A listing could happen as early as 2028 or 2029, given efforts to strengthen the unit, Baloyi said in an interview at Bloomberg’s Johannesburg office on Thursday. It could be listed “once we have a resilient business that can withstand any cycle that comes its way,” and once earnings before interest, taxes, depreciation and amortization near the $800 million-to-$1 billion range, he said. Another factor that will affect the decision is reducing debt. The chemicals unit’s Ebitda has improved to around $400 million, though the market remains tough, the CEO said. Major oil producers recently said a downturn in the chemicals sector is showing little sign of easing, amid a surge in Chinese supplies and lackluster demand. A turnaround of the business would be a major achievement for Sasol. The Lake Charles chemicals project was originally designed to expand the company’s operational footprint abroad, but suffered from mismanagement issues, hurricanes and billions of dollars in cost overruns that ballooned debt. In 2020, the year the project reached completion, Sasol sold a $2 billion stake in the US based-chemicals business to form a joint venture with LyondellBasell Industries NV to cut debt. It also accelerated an asset-sale program that wrapped up the following year. Sasol could make “disciplined” investments to upgrade

Read More »

Oil Slides on Peace Deal Pressure

Oil fell as traders assessed the prospect of a Ukraine-Russia peace deal that would add supply to a saturated market, with reports emerging that the US threatened to stop supporting Kyiv unless it agrees to a pact that favors Moscow. The newly-active January West Texas Intermediate contract fell about 1.6% to settle near $58 a barrel, its fourth day down out of five. Prices pared some losses after President Donald Trump said he would not remove sanctions on Russia as talks continue. Curbs on the country’s two largest oil producers went into effect on Friday. Despite those sanctions taking hold without delay and Ukraine’s top European allies rejecting key parts of the US-Russian peace plan, markets are preparing for a deal, said Gregory Brew, a geopolitical analyst at the Eurasia Group. “The market is pricing in this peace plan, which appears to have more US energy behind it than was apparent earlier in this week,” Brew said. Trump, speaking on Fox News Radio, said he thinks Thursday is “an appropriate” deadline for Ukraine to agree to the US-proposed peace plan with Russia. Even if the pressure campaign doesn’t yield a pact, traders remain skeptical of concrete impacts from the sanctions, Brew said. Trump’s changing tone has underscored that perception, said Rebecca Babin, a senior energy trader at CIBC Private Wealth Group. “Regardless of whether a deal is ultimately reached, confidence in strict sanctions enforcement is fading,” Babin said. “As a result, shorts are adding to positions, betting that even without a deal, the rhetoric suggests Trump may be stepping back from actions that would materially impact crude and product flows.” Trend-following commodity trading advisers went completely short on WTI and Brent on Friday for the first time since May, according to data from Bridgeton Research Group. If there is progress

Read More »

Reliance Stops Using Russian Oil in Part of Jamnagar

India’s Reliance Industries Ltd. said it would stop processing Russian oil at part of its giant Jamnagar oil refinery as US sanctions force the company to shy away from dealings with Moscow. The export-focused part of the refinery, which accounts for about half of its 1.4 million barrels a day of capacity, took its last shipment of Russian crude on Thursday, the company said in statement.  The move would mean the site could keep supplying fuel to Europe when new sanctions banning the import of petroleum made from Russian crude come into effect early next year. It will also demonstrate compliance with a US effort to force processors away from Russian barrels.  Reliance isn’t currently buying Russian oil and hasn’t taken a view yet on whether it will resume doing so, a person with knowledge of the matter said, asking not to be identified because the information isn’t public. Together, the two sites at Jamnagar make it the world’s biggest oil refinery. Still, the company said in a statement that some purchases bought before the US put sanctions on Russia’s two largest oil companies would discharge at another part of the Jamnagar facility that supplies the domestic market, it added. The US announcement of sanctions on Lukoil PJSC and Rosneft PJSC last month sent shockwaves through Asian oil buyers, as it meant a swath of Russia’s flows are pumped by blacklisted firms. Processors in India and China had snapped up cheap Russian barrels in the aftermath of the war in Ukraine, denting the impact of rampant global inflation in 2022.  A deadline to wind down deals with the duo is set to pass on Friday, putting pressure on the companies and countries that had continued to buy barrels from Moscow after Russia invaded Ukraine. While Indian refiners have been booking

Read More »

DOE Seeks Input on Gas Turbine Manufacturing to Increase Domestic Energy Production

WASHINGTON — The U.S. Department of Energy’s (DOE) Hydrocarbons and Geothermal Energy Office (HGEO) today issued a request for information (RFI) focused on evaluating challenges faced by U.S. manufacturers that currently constrain gas turbine production capacity. Natural gas turbines offer several benefits for domestic electricity generation, including high operational flexibility, efficiencies, and reliability. DOE will use stakeholder feedback to inform effective research and development that can increase the pace of manufacturing these crucial energy generating technologies. This effort supports President Trump’s commitment to boost production of our domestic energy resources to ensure affordable and reliable energy for all Americans and protect our national and economic security. According to the U.S. Energy Information Administration, electricity demand, which remained relatively flat for the last two decades, is now expected to grow at an average rate of 1.7% per year in the short-term forecast and to exceed 6,000 terawatt-hours by 2050, a 50% increase from 2024 levels. Such demand—due in part to rapid growth in data centers and artificial intelligence, reshoring of American manufacturing, and increased electrification in building operations, transportation, and industry—will strain equipment supply chains, especially gas turbines, which provide more than 40% of electricity in the United States. Further, with the recent spike in electricity demand, the delivery wait time for gas turbines has doubled from two to three years to as many as seven years, resulting in price increases due to the limited supply. Such long lead times and high prices threaten to constrain the effective supply of electricity to meet demand.  To assist DOE in evaluating the gaps that constrain the production capacity of U.S. manufacturers of gas turbines, DOE is seeking input from interested parties in the categories of manufacturing technology, workforce, sub-suppliers, and materials. To review the RFI, please click here. Responses must be submitted electronically to [email protected], with the subject line “U.S.

Read More »

Lukoil Dissolves International Board

Russian energy giant Lukoil PJSC dissolved the supervisory board of its international business, the latest sign of how US sanctions — the first of which begin on Friday — are affecting the firm. As part of the dissolution, the Moscow-based firm “recalled” Sergei Kochkurov, chief executive officer of the parent company, as well as Evgeny Khavkin and Gennady Fedotov. The step, taken during an Oct. 28 board meeting, was posted by Lukoil International GmbH on Austria’s corporate register on Friday.  The US Treasury’s Office of Foreign Assets Control announced on Oct. 22 that it was sanctioning Lukoil and fellow Russian giant Rosneft PJSC. The measures start today although some actions against Lukoil assets have been delayed until Dec. 13. The move stressed the firm globally: Russian oil prices plunged, its international trading business Litasco has shed staff and wound up at least some operations. Lukoil’s share of revenue from the West Qurna 2 oil field in Iraq has been frozen by Baghdad and western suitors are circling the firm’s global assets. The decision to dissolve the board and recall Lukoil International’s overseers will leave the company’s managing director Alexander Matytsyn in charge. The company is still fully owned by Lukoil. On Wednesday, the Vienna-based unit also published its fully audited group report for 2022 — taking about two years longer than normal to do so. The move offered a first detailed view of how the company fared in the first year of Russia’s invasion of Ukraine. According to those accounts, completed by KPMG on Oct. 9 this year, Lukoil International booked €95 billion of revenue and a net income of €7.8 billion in 2022 — a period that reflected the height of the European energy crisis. Some of the world’s largest energy companies, including Exxon Mobil Corp., Chevron Corp. and

Read More »

Microsoft’s Fairwater Atlanta and the Rise of the Distributed AI Supercomputer

Microsoft’s second Fairwater data center in Atlanta isn’t just “another big GPU shed.” It represents the other half of a deliberate architectural experiment: proving that two massive AI campuses, separated by roughly 700 miles, can operate as one coherent, distributed supercomputer. The Atlanta installation is the latest expression of Microsoft’s AI-first data center design: purpose-built for training and serving frontier models rather than supporting mixed cloud workloads. It links directly to the original Fairwater campus in Wisconsin, as well as to earlier generations of Azure AI supercomputers, through a dedicated AI WAN backbone that Microsoft describes as the foundation of a “planet-scale AI superfactory.” Inside a Fairwater Site: Preparing for Multi-Site Distribution Efficient multi-site training only works if each individual site behaves as a clean, well-structured unit. Microsoft’s intra-site design is deliberately simplified so that cross-site coordination has a predictable abstraction boundary—essential for treating multiple campuses as one distributed AI system. Each Fairwater installation presents itself as a single, flat, high-regularity cluster: Up to 72 NVIDIA Blackwell GPUs per rack, using GB200 NVL72 rack-scale systems. NVLink provides the ultra-low-latency, high-bandwidth scale-up fabric within the rack, while the Spectrum-X Ethernet stack handles scale-out. Each rack delivers roughly 1.8 TB/s of GPU-to-GPU bandwidth and exposes a multi-terabyte pooled memory space addressable via NVLink—critical for large-model sharding, activation checkpointing, and parallelism strategies. Racks feed into a two-tier Ethernet scale-out network offering 800 Gbps GPU-to-GPU connectivity with very low hop counts, engineered to scale to hundreds of thousands of GPUs without encountering the classic port-count and topology constraints of traditional Clos fabrics. Microsoft confirms that the fabric relies heavily on: SONiC-based switching and a broad commodity Ethernet ecosystem to avoid vendor lock-in and accelerate architectural iteration. Custom network optimizations, such as packet trimming, packet spray, high-frequency telemetry, and advanced congestion-control mechanisms, to prevent collective

Read More »

Land & Expand: Hyperscale, AI Factory, Megascale

Land & Expand is Data Center Frontier’s periodic roundup of notable North American data center development activity, tracking the newest sites, land plays, retrofits, and hyperscale campus expansions shaping the industry’s build cycle. October delivered a steady cadence of announcements, with several megascale projects advancing from concept to commitment. The month was defined by continued momentum in OpenAI and Oracle’s Stargate initiative (now spanning multiple U.S. regions) as well as major new investments from Google, Meta, DataBank, and emerging AI cloud players accelerating high-density reuse strategies. The result is a clearer picture of how the next wave of AI-first infrastructure is taking shape across the country. Google Begins $4B West Memphis Hyperscale Buildout Google formally broke ground on its $4 billion hyperscale campus in West Memphis, Arkansas, marking the company’s first data center in the state and the anchor for a new Mid-South operational hub. The project spans just over 1,000 acres, with initial site preparation and utility coordination already underway. Google and Entergy Arkansas confirmed a 600 MW solar generation partnership, structured to add dedicated renewable supply to the regional grid. As part of the launch, Google announced a $25 million Energy Impact Fund for local community affordability programs and energy-resilience improvements—an unusually early community-benefit commitment for a first-phase hyperscale project. Cooling specifics have not yet been made public. Water sourcing—whether reclaimed, potable, or hybrid seasonal mode—remains under review, as the company finalizes environmental permits. Public filings reference a large-scale onsite water treatment facility, similar to Google’s deployments in The Dalles and Council Bluffs. Local governance documents show that prior to the October announcement, West Memphis approved a 30-year PILOT via Groot LLC (Google’s land assembly entity), with early filings referencing a typical placeholder of ~50 direct jobs. At launch, officials emphasized hundreds of full-time operations roles and thousands

Read More »

The New Digital Infrastructure Geography: Green Street’s David Guarino on AI Demand, Power Scarcity, and the Next Phase of Data Center Growth

As the global data center industry races through its most frenetic build cycle in history, one question continues to define the market’s mood: is this the peak of an AI-fueled supercycle, or the beginning of a structurally different era for digital infrastructure? For Green Street Managing Director and Head of Global Data Center and Tower Research David Guarino, the answer—based firmly on observable fundamentals—is increasingly clear. Demand remains blisteringly strong. Capital appetite is deepening. And the very definition of a “data center market” is shifting beneath the industry’s feet. In a wide-ranging discussion with Data Center Frontier, Guarino outlined why data centers continue to stand out in the commercial real estate landscape, how AI is reshaping underwriting and development models, why behind-the-meter power is quietly reorganizing the U.S. map, and what Green Street sees ahead for rents, REITs, and the next wave of hyperscale expansion. A ‘Safe’ Asset in an Uncertain CRE Landscape Among institutional investors, the post-COVID era was the moment data centers stepped decisively out of “niche” territory. Guarino notes that pandemic-era reliance on digital services crystallized a structural recognition: data centers deliver stable, predictable cash flows, anchored by the highest-credit tenants in global real estate. Hyperscalers today dominate new leasing and routinely sign 15-year (or longer) contracts, a duration largely unmatched across CRE categories. When compared with one-year apartment leases, five-year office leases, or mall anchor terms, the stability story becomes plain. “These are AAA-caliber companies signing the longest leases in the sector’s history,” Guarino said. “From a real estate point of view, that combination of tenant quality and lease duration continues to position the asset class as uniquely durable.” And development returns remain exceptional. Even without assuming endless AI growth, the math works: strong demand, rising rents, and high-credit tenants create unusually predictable performance relative to

Read More »

The Flexential Blueprint: New CEO Ryan Mallory on Power, AI, and Bending the Physics Curve

In a coordinated leadership transition this fall, Ryan Mallory has stepped into the role of CEO at Flexential, succeeding Chris Downie. The move, described as thoughtful and planned, signals not a shift in direction, but a reinforcement of the company’s core strategy, with a sharpened focus on the unprecedented opportunities presented by the artificial intelligence revolution. In an exclusive interview on the Data Center Frontier Show Podcast, Mallory outlined a confident vision for Flexential, positioning the company at the critical intersection of enterprise IT and next-generation AI infrastructure. “Flexential will continue to focus on being an industry and market leader in wholesale, multi-tenant, and interconnection capabilities,” Mallory stated, affirming the company’s foundational strengths. His central thesis is that the AI infrastructure boom is not a monolithic wave, but a multi-stage evolution where Flexential’s model is uniquely suited for the emerging “inference edge.” The AI Build Cycle: A Three-Act Play Mallory frames the AI infrastructure market as a three-stage process, each lasting roughly four years. We are currently at the tail end of Stage 1, which began with the ChatGPT explosion three years ago. This phase, characterized by a frantic rush for capacity, has led to elongated lead times for critical infrastructure like generators, switchgear, and GPUs. The capacity from this initial build-out is expected to come online between late 2025 and late 2026. Stage 2, beginning around 2026 and stretching to 2030, will see the next wave of builds, with significant capacity hitting the market in 2028-2029. “This stage will reveal the viability of AI and actual consumption models,” Mallory notes, adding that air-cooled infrastructure will still dominate during this period. Stage 3, looking ahead to the early 2030s, will focus on long-term scale, mirroring the evolution of the public cloud. For Mallory, the enduring nature of this build cycle—contrasted

Read More »

Centersquare Launches $1 Billion Expansion to Scale an AI-Ready North American Data Center Platform

A Platform Built for Both Colo and AI Density The combined Evoque–Cyxtera platform entered the market with hundreds of megawatts of installed capacity and a clear runway for expansion. That scale positioned Centersquare to offer both traditional enterprise colocation and the higher-density, AI-ready footprints increasingly demanded through 2024 and 2025. The addition of these ten facilities demonstrates that the consolidation strategy is gaining traction, giving the platform more owned capacity to densify and more regional optionality as AI deployment accelerates. What’s in the $1 Billion Package — and Why It Matters 1) Lease-to-Own Conversions in Boston & Minneapolis Centersquare’s decision to purchase two long-operated but previously leased sites in Boston and Minneapolis reduces long-term occupancy risk and gives the operator full capex control. Owning the buildings unlocks the ability to schedule power and cooling upgrades on Centersquare’s terms, accelerate retrofits for high-density AI aisles, deploy liquid-ready thermal topologies, and add incremental power blocks without navigating landlord approval cycles. This structural flexibility aligns directly with the platform’s “AI-era backbone” positioning. 2) Eight Additional Data Centers Across Six Metros The acquisitions broaden scale in fast-rising secondary markets—Tulsa, Nashville, Raleigh—while deepening Centersquare’s presence in Dallas and expanding its Canadian footprint in Toronto and Montréal. Dallas remains a core scaling hub, but Nashville and Raleigh are increasingly important for enterprises modernizing their stacks and deploying regional AI workloads at lower cost and with faster timelines than congested Tier-1 corridors. Tulsa provides a network-adjacent, cost-efficient option for disaster recovery, edge aggregation, and latency-tolerant compute. In Canada, Toronto and Montréal offer strong enterprise demand, attractive economics, and grid advantages—including Québec’s hydro-powered, low-carbon energy mix—that position them well for AI training spillover and inference workloads requiring reliable, competitively priced power. 3) Self-Funded With Cash on Hand In the current rate environment, funding the entire $1 billion package

Read More »

Fission Forward: Next-Gen Nuclear Power Developments for the AI Data Center Boom

Constellation proposes to begin with 1.5 GW of fast-tracked projects, including 800 MW of battery energy storage and 700 MW of new natural gas generation to address short-term reliability needs. The remaining 4.3 GW represents longer-term investment at the Calvert Cliffs Clean Energy Center: extending both units for an additional 20 years beyond their current 2034 and 2036 license expirations, implementing a 10% uprate that would add roughly 190 MW of output, and pursuing 2 GW of next-generation nuclear at the existing site. For Maryland, a state defined by a dense I-95 fiber corridor, accelerating data center buildout, and rising AI-driven load, the plan could be transformative. If Constellation moves from “option” to “program,” the company estimates that 70% of the state’s electricity supply could come from clean energy sources, positioning Maryland as a top-tier market for 24/7 carbon-free power. TerraPower’s Natrium SMR Clears a Key Federal Milestone On Oct. 23, the Nuclear Regulatory Commission issued the final environmental impact statement (FEIS) for TerraPower’s Natrium small modular reactor in Kemmerer, Wyoming. While not a construction permit, FEIS completion removes a major element of federal environmental risk and keeps the project on track for the next phase of NRC review. TerraPower and its subsidiary, US SFR Owner, LLC, originally submitted the construction permit application on March 28, 2024. Natrium is a sodium-cooled fast reactor producing roughly 345 MW of electric output, paired with a molten-salt thermal-storage system capable of boosting generation to about 500 MW during peak periods. The design combines firm baseload power with flexible, dispatchable capability, an attractive profile for hyperscalers evaluating 24/7 clean energy options in the western U.S. The project is part of the DOE’s Advanced Reactor Demonstration Program, intended to replace retiring coal capacity in PacifiCorp’s service territory while showcasing advanced fission technology. For operators planning multi-GW

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »