Stay Ahead, Stay ONMINE

Nine Rules for SIMD Acceleration of Your Rust Code (Part 1)

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD. SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities. Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier. The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes! See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet. On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.) Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations. The rules are: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. CCC: Check, Control, and Choose your computer’s SIMD capabilities. Learn core::simd, but selectively. Brainstorm candidate algorithms. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. See Part 2 for these rules: 7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64. 8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking. 9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature. Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions. Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them: core::arch core::simd Nightly Delightfully easy and portable. Limits downstream users to nightly. I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile. In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps: First, create a project called simd_hello: cargo new simd_hello cd simd_hello Edit src/main.rs to contain (Rust playground): // Tell nightly Rust to enable ‘portable_simd’ #![feature(portable_simd)] use core::simd::prelude::*; // constant Simd structs const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); fn main() { // create a Simd struct from a slice of LANES bytes let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; // add 13 to each byte // compare each byte to ‘Z’, where the byte is greater than ‘Z’, subtract 26 let mask = data.simd_gt(ZEES); // compare each byte to ‘Z’ data = mask.select(data – TWENTYSIXS, data); let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); } Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly). You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously. Let’s look at each section of the program to see how it works. It starts with: #![feature(portable_simd)] use core::simd::prelude::*; Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits. In the code’s next section, we define useful constants: const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const. The next two lines copy our encrypted text into data and then adds 13 to each letter. let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility. The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255. Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’. let mask = data.simd_gt(ZEES); data = mask.select(data – TWENTYSIXS, data); This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common. The program ends like so: let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying. Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power. Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities. To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command. Run with: rustup override set nightly cargo install cargo-simd-detect –force cargo simd-detect On my machine, it outputs: extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true false avx512f 512-bit/64-bytes true false This says that my machine supports the sse2, avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension. The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions. Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable: # For Windows Command Prompt set RUSTFLAGS=-C target-feature=+avx2 # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-feature=+avx2″ “Force install” and run simd-detect again and you should see that avx2 is enabled. # Force install every time to see changes to ‘enabled’ cargo install cargo-simd-detect –force cargo simd-detect extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true true avx512f 512-bit/64-bytes true false Alternatively, you can turn on every SIMD extension that your machine supports: # For Windows Command Prompt set RUSTFLAGS=-C target-cpu=native # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-cpu=native” On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers. You can set SIMD extensions back to their default (sse2 on Intel/AMD) with: # For Windows Command Prompt set RUSTFLAGS= # For Unix-like shells (like Bash) unset RUSTFLAGS You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming. Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust. Rule 3: Learn core::simd, but selectively. To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation. Structs Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them. Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis. SimdElements Floating-Point Types: f32, f64 Integer Types: i8, u8, i16, u16, i32, u32, i64, u64, isize, usize — but not i128, u128 Simd constructors Simd::from_array – creates a Simd struct by copying a fixed-length array. Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice. Simd::splat – replicates a single value across all lanes of a Simd struct. slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers). Simd conversion Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference. Simd methods and operators simd[i] – extract a value from a lane of a Simd. simd + simd – performs element-wise addition of two Simd structs. Also, supported -, *, /, %, remainder, bitwise-and, -or, xor, -not, -shift. simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too. Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_lt, simd_le, simd_ge, simd_lt, simd_eq, simd_ne. Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right. simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes. simd == simd – checks for equality between two Simd structs, returning a regular bool result. Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_or, reduce_xor, reduce_max, reduce_min, reduce_sum (but noreduce_eq). Mask methods and operators Mask::select – selects elements from two Simd struct based on a mask. Mask::all – tells if the mask is all true. Mask::any – tells if the mask contains any true. All about lanes Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct. SupportedLaneCount – tells the allowed values of LANES. Use by generics. simd.lanes – const method that tells a Simd struct’s number of lanes. Low-level alignment, offsets, etc. When possible, use to_simd instead. More, perhaps of interest With these building blocks at hand, it’s time to build something. Rule 4: Brainstorm candidate algorithms. What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7). I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful. Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers 100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0 Ultimately become three Rust ranges: 0..=0, 100..=499, 501..=999. (Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.) Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges 100..=499, 501..=999, 100..=100, 0..=0. with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges. I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges: 100..=499, 501..=999, 999..=999, 100..=100, 0..=0. If so, from_iter could then quickly finish the processing. Let’s start by writing is_consecutive with regular Rust: pub const LANES: usize = 16; pub fn is_consecutive_regular(chunk: &[u32; LANES]) – > bool { for i in 1..LANES { if chunk[i – 1].checked_add(1) != Some(chunk[i]) { return false; } } true } The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow. Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt: Splat0 use std::simd::prelude::*; const COMPARISON_VALUE_SPLAT0: Simd = Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]); pub fn is_consecutive_splat0(chunk: Simd) – > bool { if chunk[0].overflowing_add(LANES as u32 – 1) != (chunk[LANES – 1], false) { return false; } let added = chunk + COMPARISON_VALUE_SPLAT0; Simd::splat(added[0]) == added } Here is an outline of its calculations: Source: This and all following images by author. It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value. Splat1 & Splat2 When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1: const COMPARISON_VALUE_SPLAT1: Simd = Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); pub fn is_consecutive_splat1(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; Simd::splat(chunk[0]) == subtracted } Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted. He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access. I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates. Swizzle Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes. pub fn is_consecutive_sizzle(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; simd_swizzle!(subtracted, [0; LANES]) == subtracted } Rotate This one is different. I had high hopes for it. const COMPARISON_VALUE_ROTATE: Simd = Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]); pub fn is_consecutive_rotate(chunk: Simd) – > bool { let rotated = chunk.rotate_elements_right::(); chunk – rotated == COMPARISON_VALUE_ROTATE } The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.) Now that we have candidates, let’s start to evaluate them. Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed. Don’t worry if you don’t know assembly language, you can still get something out of looking at it. The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this: Referring to the numbers in the figure above, follow these steps to use Godbolt: Open godbolt.org with your web browser. Add a new source editor. Select Rust as your language. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates. Add a new compiler. Set the compiler version to nightly. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f. If there are errors, look at the output. If you want to share or save the state of the tool, click “Share” From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check. In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2: Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off. Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same. You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use. The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code. Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. Let’s first generalize Splat1 with generics. #[inline] pub fn is_consecutive_splat1_gen( chunk: Simd, comparison_value: Simd, ) – > bool where T: SimdElement + PartialEq, Simd: Sub, LaneCount: SupportedLaneCount, { let subtracted = chunk – comparison_value; Simd::splat(chunk[0]) == subtracted } First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions. The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define. If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you. We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work: // DOESN’T WORK BECAUSE From is not const pub const fn comparison_value_splat_gen() – > Simd where T: SimdElement + Default + From + AddAssign, LaneCount: SupportedLaneCount, { let mut arr: [T; N] = [T::from(0usize); N]; let mut i_usize = 0; while i_usize { #[inline] pub fn $function(chunk: Simd) – > bool where LaneCount: SupportedLaneCount, { define_comparison_value_splat!(comparison_value_splat, $type); let subtracted = chunk – comparison_value_splat(); Simd::splat(chunk[0]) == subtracted } }; } #[macro_export] macro_rules! define_comparison_value_splat { ($function:ident, $type:ty) = > { pub const fn $function() – > Simd where LaneCount: SupportedLaneCount, { let mut arr: [$type; N] = [0; N]; let mut i = 0; while i bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount; } macro_rules! impl_is_consecutive { ($type:ty) = > { impl IsConsecutive for $type { #[inline] // very important fn is_consecutive(chunk: Simd) – > bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount, { define_is_consecutive_splat1!(is_consecutive_splat1, $type); is_consecutive_splat1(chunk) } } }; } impl_is_consecutive!(i8); impl_is_consecutive!(i16); impl_is_consecutive!(i32); impl_is_consecutive!(i64); impl_is_consecutive!(isize); impl_is_consecutive!(u8); impl_is_consecutive!(u16); impl_is_consecutive!(u32); impl_is_consecutive!(u64); impl_is_consecutive!(usize); We can now call fully generic code (Rust Playground): // Works on i32 and 16 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32))); let ninety_nines: Simd = black_box(Simd::from_array([99; 16])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); // Works on i8 and 64 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8))); let ninety_nines: Simd = black_box(Simd::from_array([99; 64])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest. Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there. Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD.

SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities.

Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier.


The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes!

See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet.

On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.)

Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations.

The rules are:

  1. Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.
  2. CCC: Check, Control, and Choose your computer’s SIMD capabilities.
  3. Learn core::simd, but selectively.
  4. Brainstorm candidate algorithms.
  5. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.
  6. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

See Part 2 for these rules:

7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64.

8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking.

9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature.

Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions.

Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.

Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them:

core::arch

core::simd

  • Nightly
  • Delightfully easy and portable.
  • Limits downstream users to nightly.

I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile.


In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps:

First, create a project called simd_hello:

cargo new simd_hello
cd simd_hello

Edit src/main.rs to contain (Rust playground):

// Tell nightly Rust to enable 'portable_simd'
#![feature(portable_simd)]
use core::simd::prelude::*;

// constant Simd structs
const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

fn main() {
    // create a Simd struct from a slice of LANES bytes
    let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");

    data += THIRTEENS; // add 13 to each byte

    // compare each byte to 'Z', where the byte is greater than 'Z', subtract 26
    let mask = data.simd_gt(ZEES); // compare each byte to 'Z'
    data = mask.select(data - TWENTYSIXS, data);

    let output = String::from_utf8_lossy(data.as_array());
    assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
    println!("{}", output);
}

Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly).

You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously.

Let’s look at each section of the program to see how it works. It starts with:

#![feature(portable_simd)]
use core::simd::prelude::*;

Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits.

In the code’s next section, we define useful constants:

const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const.

The next two lines copy our encrypted text into data and then adds 13 to each letter.

let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");
data += THIRTEENS;

What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility.

The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255.

Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’.

let mask = data.simd_gt(ZEES);
data = mask.select(data - TWENTYSIXS, data);

This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common.

The program ends like so:

let output = String::from_utf8_lossy(data.as_array());
assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
println!("{}", output);

Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying.

Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power.

Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities.

To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command.

Run with:

rustup override set nightly
cargo install cargo-simd-detect --force
cargo simd-detect

On my machine, it outputs:

extension       width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            false
avx512f         512-bit/64-bytes        true            false

This says that my machine supports the sse2avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension.

The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions.

Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable:

# For Windows Command Prompt
set RUSTFLAGS=-C target-feature=+avx2

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-feature=+avx2"

“Force install” and run simd-detect again and you should see that avx2 is enabled.

# Force install every time to see changes to 'enabled'
cargo install cargo-simd-detect --force
cargo simd-detect
extension         width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            true
avx512f         512-bit/64-bytes        true            false

Alternatively, you can turn on every SIMD extension that your machine supports:

# For Windows Command Prompt
set RUSTFLAGS=-C target-cpu=native

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-cpu=native"

On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers.

You can set SIMD extensions back to their default (sse2 on Intel/AMD) with:

# For Windows Command Prompt
set RUSTFLAGS=

# For Unix-like shells (like Bash)
unset RUSTFLAGS

You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming.

Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust.

Rule 3: Learn core::simd, but selectively.

To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation.

Structs

  • Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them.
  • Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis.

SimdElements

  • Floating-Point Types: f32f64
  • Integer Types: i8u8i16u16i32u32i64u64isizeusize
  • — but not i128u128

Simd constructors

  • Simd::from_array – creates a Simd struct by copying a fixed-length array.
  • Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice.
  • Simd::splat – replicates a single value across all lanes of a Simd struct.
  • slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers).

Simd conversion

  • Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference.

Simd methods and operators

  • simd[i] – extract a value from a lane of a Simd.
  • simd + simd – performs element-wise addition of two Simd structs. Also, supported -*/%, remainder, bitwise-and, -or, xor, -not, -shift.
  • simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too.
  • Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_ltsimd_lesimd_gesimd_ltsimd_eqsimd_ne.
  • Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right.
  • simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes.
  • simd == simd – checks for equality between two Simd structs, returning a regular bool result.
  • Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_orreduce_xorreduce_maxreduce_minreduce_sum (but noreduce_eq).

Mask methods and operators

  • Mask::select – selects elements from two Simd struct based on a mask.
  • Mask::all – tells if the mask is all true.
  • Mask::any – tells if the mask contains any true.

All about lanes

  • Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct.
  • SupportedLaneCount – tells the allowed values of LANES. Use by generics.
  • simd.lanes – const method that tells a Simd struct’s number of lanes.

Low-level alignment, offsets, etc.

When possible, use to_simd instead.

More, perhaps of interest

With these building blocks at hand, it’s time to build something.

Rule 4: Brainstorm candidate algorithms.

What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7).

I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful.

Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers

100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0

Ultimately become three Rust ranges:

0..=0, 100..=499, 501..=999.

(Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.)

Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges

100..=499, 501..=999, 100..=100, 0..=0.

with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges.

I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges:

100..=499, 501..=999, 999..=999, 100..=100, 0..=0.

If so, from_iter could then quickly finish the processing.

Let’s start by writing is_consecutive with regular Rust:

pub const LANES: usize = 16;
pub fn is_consecutive_regular(chunk: &[u32; LANES]) -> bool {
    for i in 1..LANES {
        if chunk[i - 1].checked_add(1) != Some(chunk[i]) {
            return false;
        }
    }
    true
}

The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow.

Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt:

Splat0

use std::simd::prelude::*;

const COMPARISON_VALUE_SPLAT0: Simd =
    Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);

pub fn is_consecutive_splat0(chunk: Simd) -> bool {
    if chunk[0].overflowing_add(LANES as u32 - 1) != (chunk[LANES - 1], false) {
        return false;
    }
    let added = chunk + COMPARISON_VALUE_SPLAT0;
    Simd::splat(added[0]) == added
}

Here is an outline of its calculations:

Source: This and all following images by author.

It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value.

Splat1 & Splat2

When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1:

const COMPARISON_VALUE_SPLAT1: Simd =
    Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);

pub fn is_consecutive_splat1(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    Simd::splat(chunk[0]) == subtracted
}

Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted.

He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access.

I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates.

Swizzle

Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes.

pub fn is_consecutive_sizzle(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    simd_swizzle!(subtracted, [0; LANES]) == subtracted
}

Rotate

This one is different. I had high hopes for it.

const COMPARISON_VALUE_ROTATE: Simd =
    Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]);

pub fn is_consecutive_rotate(chunk: Simd) -> bool {
    let rotated = chunk.rotate_elements_right::();
    chunk - rotated == COMPARISON_VALUE_ROTATE
}

The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.)

Now that we have candidates, let’s start to evaluate them.

Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.

We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed.

Don’t worry if you don’t know assembly language, you can still get something out of looking at it.

The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this:

Referring to the numbers in the figure above, follow these steps to use Godbolt:

  1. Open godbolt.org with your web browser.
  2. Add a new source editor.
  3. Select Rust as your language.
  4. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates.
  5. Add a new compiler.
  6. Set the compiler version to nightly.
  7. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f.
  8. If there are errors, look at the output.
  9. If you want to share or save the state of the tool, click “Share”

From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check.

In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2:

Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off.

Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same.

You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use.

The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code.

Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

Let’s first generalize Splat1 with generics.

#[inline]
pub fn is_consecutive_splat1_gen(
    chunk: Simd,
    comparison_value: Simd,
) -> bool
where
    T: SimdElement + PartialEq,
    Simd: Sub, Output = Simd>,
    LaneCount: SupportedLaneCount,
{
    let subtracted = chunk - comparison_value;
    Simd::splat(chunk[0]) == subtracted
}

First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions.

The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define.

If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you.

We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work:

// DOESN'T WORK BECAUSE From is not const
pub const fn comparison_value_splat_gen() -> Simd
where
    T: SimdElement + Default + From + AddAssign,
    LaneCount: SupportedLaneCount,
{
    let mut arr: [T; N] = [T::from(0usize); N];
    let mut i_usize = 0;
    while i_usize < N {
        arr[i_usize] = T::from(i_usize);
        i_usize += 1;
    }
    Simd::from_array(arr)
}

Macros are the last refuge of scoundrels. So, let’s use macros:

#[macro_export]
macro_rules! define_is_consecutive_splat1 {
    ($function:ident, $type:ty) => {
        #[inline]
        pub fn $function(chunk: Simd) -> bool
        where
            LaneCount: SupportedLaneCount,
        {
            define_comparison_value_splat!(comparison_value_splat, $type);

            let subtracted = chunk - comparison_value_splat();
            Simd::splat(chunk[0]) == subtracted
        }
    };
}
#[macro_export]
macro_rules! define_comparison_value_splat {
    ($function:ident, $type:ty) => {
        pub const fn $function() -> Simd
        where
            LaneCount: SupportedLaneCount,
        {
            let mut arr: [$type; N] = [0; N];
            let mut i = 0;
            while i < N {
                arr[i] = i as $type;
                i += 1;
            }
            Simd::from_array(arr)
        }
    };
}

This lets us run on any particular element type and all number of LANES (Rust Playground):

define_is_consecutive_splat1!(is_consecutive_splat1_i32, i32);

let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));
assert!(is_consecutive_splat1_i32(a));
assert!(!is_consecutive_splat1_i32(ninety_nines));

Sadly, this still isn’t enough for range-set-blaze. It needs to run on all element types (not just one) and (ideally) all LANES (not just one).

Happily, there’s a workaround, that again depends on macros. It also exploits the fact that we only need to support a finite list of types, namely: i8i16i32i64isizeu8u16u32u64, and usize. If you need to also (or instead) support f32 and f64, that’s fine.

If, on the other hand, you need to support i128 and u128, you may be out of luck. The core::simd module doesn’t support them. We’ll see in Rule 8 how range-set-blaze gets around that at a performance cost.

The workaround defines a new trait, here called IsConsecutive. We then use a macro (that calls a macro, that calls a macro) to implement the trait on the 10 types of interest.

pub trait IsConsecutive {
    fn is_consecutive(chunk: Simd) -> bool
    where
        Self: SimdElement,
        Simd: Sub, Output = Simd>,
        LaneCount: SupportedLaneCount;
}

macro_rules! impl_is_consecutive {
    ($type:ty) => {
        impl IsConsecutive for $type {
            #[inline] // very important
            fn is_consecutive(chunk: Simd) -> bool
            where
                Self: SimdElement,
                Simd: Sub, Output = Simd>,
                LaneCount: SupportedLaneCount,
            {
                define_is_consecutive_splat1!(is_consecutive_splat1, $type);
                is_consecutive_splat1(chunk)
            }
        }
    };
}

impl_is_consecutive!(i8);
impl_is_consecutive!(i16);
impl_is_consecutive!(i32);
impl_is_consecutive!(i64);
impl_is_consecutive!(isize);
impl_is_consecutive!(u8);
impl_is_consecutive!(u16);
impl_is_consecutive!(u32);
impl_is_consecutive!(u64);
impl_is_consecutive!(usize);

We can now call fully generic code (Rust Playground):

// Works on i32 and 16 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

// Works on i8 and 64 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 64]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest.


Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there.

Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Rust 1.93 updates bundled musl library to boost networking

The Rust team has unveiled Rust 1.93, the latest version of the programming language designed to create fast and safe system-level software. This release improves operations involving the DNS resolver for the musl implementation of the  C standard library. Linux binaries are expected to be more reliable for networking as

Read More »

Intel nabs Qualcomm veteran to lead GPU initiative

Intel has struggled for more than two decades to develop a successful GPU/accelerated computing strategy, going all the way back to the aughts and the ill-fated Larrabee effort.  Its most recent efforts centered around Ponte Vecchio and Gaudi chips, neither of which have gained any traction. Still, CEO Lip-Bu Tan

Read More »

New Relic extends observability into ChatGPT-hosted apps

New Relic’s cloud-based observability platform monitors applications and services in real time to provide insights into software, hardware, and cloud performance. The new capability extends the platform’s browser agent into the GPT iframe environment. It captures standard telemetry data, including latency and connectivity of an application within the GPT iframe.

Read More »

TenneT, Uniper Partner for Power Station for Frankfurt Region

Uniper SE and TenneT BV have agreed to develop a new central network node in Großkrotzenburg, Germany to serve data center-driven growth in power demand in the greater Frankfurt area, targeting to start operation earlier than planned. Under the partnership, German power and gas utility Uniper agreed to sell part of a plot of land at the Staudinger power plant to enable TenneT, a transmission system operator in the Netherlands and Germany, to build a switching station. “The core of the project is the construction of a new 380-kilovolt switchyard, which will create extensive additional capacity for urgently needed customer connections in the Rhine-Main area”, said a joint statement online. “The connection of new and existing extra-high-voltage lines will further strengthen electricity transmission to the Frankfurt metropolitan area and neighboring regions, particularly Lower Franconia. “At the same time, the new grid infrastructure will form the basis for connecting important Uniper transformation projects at the Staudinger site. Plans include a hydrogen-ready combined cycle gas turbine plant as part of the German government’s expected tender for flexible generation capacities, as well as the prospective establishment of battery storage facilities and data centers”. The station is scheduled to start service by 2030, Uniper said. “With this project, we are launching our extensive grid expansion program in the Rhine-Main region, one of Germany’s key growth areas”, said TenneT Germany chief operating officer Ina Kamps. In September 2025 Tennet said it had submitted a plan to authorities and thereby launched the approval process for a 380 kV extra-high-voltage overhead line stretching about nine kilometers (5.59 miles) between Bommersheim and Eschborn. The new line would replace a section of the 380-kV line between the Frankfurt Südwest and Karben substations. “This is a first, important step towards a demand-oriented and sustainable electricity grid in the region”, TenneT said

Read More »

Energy Secretary Issues Emergency Order to Secure Texas Grid Amid Winter Storm Fern

WASHINGTON—The U.S. Department of Energy (DOE) today issued an emergency order for the deployment of backup generation resources in order to mitigate blackouts in Texas during Winter Storm Fern. Issued pursuant to Section 202(c) of the Federal Power Act, the order authorizes the Electric Reliability Council of Texas (ERCOT) to deploy backup generation resources at data centers and other major facilities. Today’s action follows a letter Secretary Wright sent Thursday to grid operators asking them to be prepared to use backup generation if needed to mitigate the risk of blackouts during the storm. DOE estimates more than 35 GW of unused backup generation remains available nationwide. The order will help ERCOT with the extreme temperatures and storm destruction across Texas and reduce costs for Americans during the winter storm. “The Trump administration is committed to unleashing all available power generation needed to keep Americans safe during Winter Storm Fern,” said Energy Secretary Wright. “Unfortunately, the last administration had the nation on track to lose significant amounts of baseload power, but we are doing everything in our power to reverse those reckless decisions. The Trump administration will continue taking action to ensure that the 35 GW of untapped backup generation that exists across the country can be deployed as needed during Winter Storm Fern and in the future.” On day one, President Trump declared a national energy emergency after the Biden administration’s energy subtraction agenda left behind a grid increasingly vulnerable to blackouts. According to the North American Electric Reliability Corporation (NERC), “Winter electricity demand is rising at the fastest rate in recent years,” while the premature forced closure of reliable generation such as coal and natural gas plants leaves American families vulnerable to power outages. The NERC 2025 – 2026 Winter Reliability Assessment further warns that areas across the continental United States have an elevated risk of

Read More »

Energy Secretary Secures Mid-Atlantic Grid Amid Winter Storm Fern

WASHINGTON—The U.S. Department of Energy (DOE) today issued an emergency order to mitigate blackouts in the Mid-Atlantic during Winter Storm Fern. Issued pursuant to Section 202(c) of the Federal Power Act, the order authorizes PJM Interconnection, LLC (PJM) to run specified resources located within the PJM Region, regardless of limits established by environmental permits or state law. The order will help PJM with the extreme temperatures and storm destruction across the Mid-Atlantic and reduce costs for Americans during the winter storm. “As Winter Storm Fern brings extreme cold and dangerous conditions to the Mid-Atlantic, maintaining affordable, reliable, and secure power in the PJM region is non-negotiable,” said U.S. Secretary of Energy Chris Wright. “The previous administration’s energy subtraction policies weakened the grid, leaving Americans more vulnerable during events like Winter Storm Fern. Thanks to President Trump’s leadership, we are reversing those failures and using every available tool to keep the lights on and Americans safe through this storm.” On day one, President Trump declared a national energy emergency after the Biden administration’s energy subtraction agenda left behind a grid increasingly vulnerable to blackouts. According to the North American Electric Reliability Corporation (NERC), “Winter electricity demand is rising at the fastest rate in recent years,” while the premature forced closure of reliable generation such as coal and natural gas plants leaves American families vulnerable to power outages. The NERC 2025 – 2026 Winter Reliability Assessment further warns that areas across the continental United States have an elevated risk of blackouts during extreme weather conditions. Power outages cost the American people $44 billion per year, according to data from DOE’s National Laboratories. This order will help mitigate power outages in the Mid-Atlantic and highlights the commonsense policies of the Trump Administration to ensure Americans have access to affordable, reliable and secure electricity. The order is in effect from January 25—January 31, 2026. 

Read More »

USA Is Canceling Almost $30B in Biden-Era Energy Loans

The Trump administration said it’s canceling almost $30 billion of financing from the Energy Department’s green bank after reviewing transactions approved under former President Joe Biden. The Energy Department said Thursday that its Loan Programs Office — now called the Office of Energy Dominance Financing — also plans to revise another $53 billion of funding. In a statement, the department said it has eliminated about $9.5 billion in financing for wind and solar projects as part of the adjustment and plans to redirect the funding toward natural gas and nuclear projects. The Energy Department, which didn’t immediately respond to a request for comment, didn’t provide specific details on which other deals were affected. The Energy Department’s loans office swelled into a $400 billion green bank under Biden, partly due to an infusion in funds from his signature Inflation Reduction Act. The office has been used to finance Tesla Inc.’s Model S sedan and some of the first new nuclear reactors built in the US in decades by Southern Co. But the program drew criticism from Energy Secretary Chris Wright, who said the department closed or offered $85 billion of financing in the final months of the Biden presidency after Donald Trump’s election. “We found more dollars were rushed out the door of the Loan Programs Office in the final months of the Biden Administration than had been disbursed in over 15 years,” Wright said in Thursday’s statement.  While Trump once proposed killing the Energy Department program — arguing during his first term that the government had no business picking winners and losers — his administration later sought to tap the bank to pay for its own energy priorities. The administration has laid out plans to use the program, which has more than $289 billion in loan authority remaining, to finance

Read More »

Crude Closes Higher on Iran, Cold Weather

Oil rose as traders factored in the possibility of US military action in Iran that could upend supplies from one of OPEC’s leading producers, and a massive winter storm in the US pushing up the price of refined products. West Texas Intermediate rose 2.9% to settle above $61, posting a fifth weekly gain. Prices rose after President Donald Trump revived his threats to use military force against Iran’s senior leadership, with a US Navy carrier strike group moving toward the Middle East. While Trump previously walked back pledges to attack the country, a renewed pressure campaign could add to oil’s geopolitical risk premium given Iran’s strategic importance to the industry. Adding to the concern and the geopolitically driven bullish momentum, the US is also pressuring Iraq to disarm Iran-backed militias, the Financial Times reported. Meanwhile, the Kremlin poured cold water on hopes of a breakthrough to end Russia’s war in Ukraine. An end to the conflict could limit supply disruptions and sanctions on Moscow’s crude. “The bottom line is that geopolitical headlines remain plentiful and uncertainty remains exceptionally high. Heading into the weekend, crude is likely to trade in whichever direction the headlines push it,” said Rebecca Babin, a senior energy trader at CIBC Private Wealth Group. “For now, recent shifts in military assets and official commentary appear to be leaning back toward renewed concerns over potential military action involving Iran,” Babin added. If the US strikes Iran, prompting a retaliation, it is unlikely but possible that the conflict will impact oil supplies, according to Rapidan Energy Group. The geopolitical analysis firm assigned a 20% probability to a “sustained and severe interruption” in energy production and flows in the region. Oil products such as diesel, which can be used as heating oil in the US Northeast, are also pushing higher

Read More »

SLB Predicts Worst Is Behind Global Oil Market

SLB, the world’s largest oilfield-services provider, raised its dividend and posted fourth-quarter earnings that beat estimates as activity in the Middle East and other key regions accelerated and its data-center business rapidly expanded. The worst may be behind the global oil market, Chief Executive Officer Olivier Le Peuch said in a statement, predicting a gradual ramp-up in drilling activity in major regions including OPEC countries after a supply glut sent crude prices tumbling last year. Deriving the bulk of its revenue from overseas markets, Houston-based SLB is often regarded as a bellwether for the global oil industry and its financial health. Shares rose by as much as 4.8% to $51.67, briefly hitting the highest price since April 2024 before paring gains. “As we move into 2026, we believe that the headwinds we experienced in key regions in 2025 are behind us,” Le Peuch said. “In particular, we expect rig activity in the Middle East to increase compared to today’s level, and our footprint in the region puts us in a strong position to benefit from this recovery.” The data-center business, which grew 121% from a year earlier, helped to shield the company from lower oil prices and geopolitical uncertainty, he added. SLB has also increased its focus on production and recovery services, which help drillers to boost efficiency and extract more crude at lower cost. SLB has been expanding into oilfield tech and other ancillary business lines to offset muted growth in traditional drilling and US shale activity.  SLB posted adjusted fourth-quarter earnings of 78 cents a share, surpassing analysts’ estimates of 74 cents. The company increased its quarterly divided 3.5% to 29.5 cents a share. The company’s global footprint positions it to benefit from US government efforts to revive Venezuelan oil production, Bloomberg Intelligence analyst Scott Levine wrote in

Read More »

Intel’s AI pivot could make lower-end PCs scarce in 2026

However, he noted, “CPUs are not being cannibalized by GPUs. Instead, they have become ‘chokepoints’ in AI infrastructure.” For instance, CPUs such as Granite Rapids are essential in GPU clusters, and for handling agentic AI workloads and orchestrating distributed inference. How pricing might increase for enterprises Ultimately, rapid demand for higher-end offerings resulted in foundry shortages of Intel 10/7 nodes, Bickley noted, which represent the bulk of the company’s production volume. He pointed out that it can take up to three quarters for new server wafers to move through the fab process, so Intel will be “under the gun” until at least Q2 2026, when it projects an increase in chip production. Meanwhile, manufacturing capacity for Xeon is currently sold out for 2026, with varying lead times by distributor, while custom silicon programs are seeing lead times of 6 to 8 months, with some orders rolling into 2027, Bickley said. In the data center, memory is the key bottleneck, with expected price increases of more than 65% year over year in 2026 and up to 25% for NAND Flash, he noted. Some specific products have already seen price inflation of over 1,000% since 2025, and new greenfield capacity for memory is not expected until 2027 or 2028. Moor’s Sag was a little more optimistic, forecasting that, on the client side, “memory prices will probably stabilize this year until more capacity comes online in 2027.” How enterprises can prepare Supplier diversification is the best solution for enterprises right now, Sag noted. While it might make things more complex, it also allows data center operators to better absorb price shocks because they can rebalance against suppliers who have either planned better or have more resilient supply chains.

Read More »

Reports of SATA’s demise are overblown, but the technology is aging fast

The SATA 1.0 interface made its debut in 2003. It was developed by a consortium consisting of Intel, Dell, and storage vendors like Seagate and Maxtor. It quickly advanced to SATA III in 2009, but there never was a SATA IV. There was just nibbling around the edges with incremental updates as momentum and emphasis shifted to PCI Express and NVMe. So is there any life to be had in the venerable SATA interface? Surprisingly, yes, say the analysts. “At a high level, yes, SATA for consumer is pretty much a dead end, although if you’re storing TB of photos and videos, it is still the least expensive option,” said Bob O’Donnell, president and chief analyst with TECHnalysis Research. Similarly for enterprise, for massive storage demands, the 20 and 30 TB SATA drives from companies like Seagate and WD are apparently still in wide use in cloud data centers for things like cold storage. “In fact, both of those companies are seeing recording revenues based, in part, on the demand for these huge, high-capacity low-cost drives,” he said. “SATA doesn’t make much sense anymore. It underperforms NVMe significantly,” said Rob Enderle, principal analyst with The Enderle Group. “It really doesn’t make much sense to continue make it given Samsung allegedly makes three to four times more margin on NVMe.” And like O’Donnell, Enderle sees continued life for SATA-based high-capacity hard drives. “There will likely be legacy makers doing SATA for some time. IT doesn’t flip technology quickly and SATA drives do wear out, so there will likely be those producing legacy SATA products for some time,” he said.

Read More »

DCN becoming the new WAN for AI-era applications

“DCN is increasingly treated as an end-to-end operating model that standardizes connectivity, security policy enforcement, and telemetry across users, the middle mile, and cloud/application edges,” Sanchez said. Dell’Oro defines DCN as platforms and services that deliver consistent connectivity, policy enforcement, and telemetry from users, across the WAN, to distributed cloud and application edges spanning branch sites, data centers and public clouds. The category is gaining relevance as hybrid architectures and AI-era traffic patterns increase the operational penalty for fragmented control planes. DCN buyers are moving beyond isolated upgrades and are prioritizing architectures that reduce operational seams across connectivity, security and telemetry so that incident response and change control can follow a single thread, according to Dell’Oro’s research. What makes DCN distinct is that it links user-to-application experience with where policy and visibility are enforced. This matters as application delivery paths become more dynamic and workloads shift between on-premises data centers, public cloud, and edge locations. The architectural requirement is eliminating handoffs between networking and security teams rather than optimizing individual network segments. Where DCN is growing the fastest Cloud/application edge is the fastest-growing DCN pillar. This segment deploys policy enforcement and telemetry collection points adjacent to workloads rather than backhauling traffic to centralized security stacks. “Multi-cloud remains a reality, but it is no longer the durable driver by itself,” Sanchez said. “Cloud/application edge is accelerating because enterprises are trying to make application paths predictable and secure across hybrid environments, and that requires pushing application-aware steering, policy enforcement, and unified telemetry closer to workloads.”

Read More »

Edged US Builds Waterless, High-Density AI Data Center Campuses at Scale

Edged US is targeting a narrow but increasingly valuable lane of the hyperscale AI infrastructure market: high-density compute delivered at speed, paired with a sustainability posture centered on waterless, closed-loop cooling and a portfolio-wide design PUE target of roughly 1.15. Two recent announcements illustrate the model. In Aurora, Illinois, Edged is developing a 72-MW facility purpose-built for AI training and inference, with liquid-to-chip cooling designed to support rack densities exceeding 200 kW. In Irving, Texas, a 24-MW campus expansion combines air-cooled densities above 120 kW per rack with liquid-to-chip capability reaching 400 kW. Taken together, the projects point to a consistent strategy: standardized, multi-building campuses in major markets; a vertically integrated technical stack with cooling at its core; and an operating model built around repeatable designs, modular systems, and readiness for rapidly escalating AI densities. A Campus-First Platform Strategy Edged US’s platform strategy is built around campus-scale expansion rather than one-off facilities. The company positions itself as a gigawatt-scale, AI-ready portfolio expanding across major U.S. metros through repeatable design targets and multi-building campuses: an emphasis that is deliberate and increasingly consequential. In Chicago/Aurora, Edged is developing a multi-building campus with an initial facility already online and a second 72-MW building under construction. Dallas/Irving follows the same playbook: the first facility opened in January 2025, with a second 24-MW building approved unanimously by the city. Taken together with developments in Atlanta, Chicago, Columbus, Dallas, Des Moines, Kansas City, and Phoenix, the footprint reflects a portfolio-first mindset rather than a collection of bespoke sites. This focus on campus-based expansion matters because the AI factory era increasingly rewards developers that can execute three things at once: Lock down power and land at scale. Standardize delivery across markets. Operate efficiently while staying aligned with community and regulatory expectations. Edged is explicitly selling the second

Read More »

CBRE’s 2026 Data Center Outlook: Demand Surges as Delivery Becomes the Constraint

The U.S. data center market is entering 2026 with fundamentals that remain unmatched across commercial real estate, but the nature of the dominant constraint has shifted. Demand is no longer gated by capital, connectivity, or even land. It is gated by the ability to deliver very large blocks of power, on aggressive timelines, at a predictable cost. According to the CBRE 2026 U.S. Real Estate Market Outlook as overseen by Gordon Dolven and Pat Lynch, the sector is on track to post another record year for leasing activity, even as vacancy remains at historic lows and pricing reaches all-time highs. What has changed is the scale at which demand now presents itself, and the difficulty of meeting it. Large-Block Leasing Rewrites the Economics AI-driven workloads are reshaping leasing dynamics in ways that break from prior hyperscale norms. Where 10-MW-plus deployments once commanded pricing concessions, CBRE now observes the opposite behavior: large, contiguous blocks of capacity are commanding premiums. Neocloud providers, GPU-as-a-service platforms and AI startups, many backed by aggressive capital deployment strategies, are actively competing for full-building and campus-scale capacity.  For operators, this is altering development and merchandising strategies. Rather than subdividing shells for flexibility, owners increasingly face a strategic choice: hold buildings intact to preserve optionality for single-tenant, high-density users who are willing to pay for scale. In effect, scale itself has become the scarce asset. Behind-the-Meter Power Moves to the Foreground For data centers, power availability meaning not just access, but certainty of delivery, is now the defining variable in the market.  CBRE notes accelerating adoption of behind-the-meter strategies as operators seek to bypass increasingly constrained utility timelines. On-site generation using natural gas, solar, wind, and battery storage is gaining traction, particularly in deregulated electricity markets where operators have more latitude to structure BYOP (bring your own power) solutions. 

Read More »

Blue Origin targets enterprise networks with a multi-terabit satellite connectivity plan

“It’s ideal for remote, sparse, or sensitive regions,” said Manish Rawat, analyst at TechInsights. “Key use cases include cloud-to-cloud links, data center replication, government, defense, and disaster recovery workloads. It supports rapid or temporary deployments and prioritizes fewer customers with high capacity, strict SLAs, and deep carrier integration.” Adoption, however, is expected to largely depend on the sector. For governments and organizations operating highly critical or sensitive infrastructure, where reliability and security outweigh cost considerations, this could be attractive as a redundancy option. “Banks, national security agencies, and other mission-critical operators may consider it as an alternate routing path,” Jain said. “For most enterprises, however, it is unlikely to replace terrestrial connectivity and would instead function as a supplementary layer.” Real-world performance Although satellite connectivity offers potential advantages, analysts note that questions remain around real-world performance. “TeraWave’s 6 Tbps refers to total constellation capacity, not per-user throughput, achieved via multiple optical inter-satellite links and ground gateways,” Rawat said. “Optical crosslinks provide high aggregate bandwidth but not a single terabit-class pipe. Performance lies between fiber and GEO satellites, with lower intercontinental latency than GEO but higher than fiber.” Operational factors could also affect network stability. Jitter is generally low, but handovers, rerouting, and weather conditions can introduce intermittent performance spikes. Packet loss is expected to remain modest but episodic, Rawat added.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »