Stay Ahead, Stay ONMINE

Nine Rules for SIMD Acceleration of Your Rust Code (Part 1)

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD. SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities. Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier. The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes! See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet. On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.) Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations. The rules are: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. CCC: Check, Control, and Choose your computer’s SIMD capabilities. Learn core::simd, but selectively. Brainstorm candidate algorithms. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. See Part 2 for these rules: 7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64. 8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking. 9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature. Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions. Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them: core::arch core::simd Nightly Delightfully easy and portable. Limits downstream users to nightly. I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile. In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps: First, create a project called simd_hello: cargo new simd_hello cd simd_hello Edit src/main.rs to contain (Rust playground): // Tell nightly Rust to enable ‘portable_simd’ #![feature(portable_simd)] use core::simd::prelude::*; // constant Simd structs const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); fn main() { // create a Simd struct from a slice of LANES bytes let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; // add 13 to each byte // compare each byte to ‘Z’, where the byte is greater than ‘Z’, subtract 26 let mask = data.simd_gt(ZEES); // compare each byte to ‘Z’ data = mask.select(data – TWENTYSIXS, data); let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); } Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly). You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously. Let’s look at each section of the program to see how it works. It starts with: #![feature(portable_simd)] use core::simd::prelude::*; Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits. In the code’s next section, we define useful constants: const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const. The next two lines copy our encrypted text into data and then adds 13 to each letter. let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility. The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255. Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’. let mask = data.simd_gt(ZEES); data = mask.select(data – TWENTYSIXS, data); This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common. The program ends like so: let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying. Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power. Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities. To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command. Run with: rustup override set nightly cargo install cargo-simd-detect –force cargo simd-detect On my machine, it outputs: extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true false avx512f 512-bit/64-bytes true false This says that my machine supports the sse2, avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension. The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions. Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable: # For Windows Command Prompt set RUSTFLAGS=-C target-feature=+avx2 # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-feature=+avx2″ “Force install” and run simd-detect again and you should see that avx2 is enabled. # Force install every time to see changes to ‘enabled’ cargo install cargo-simd-detect –force cargo simd-detect extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true true avx512f 512-bit/64-bytes true false Alternatively, you can turn on every SIMD extension that your machine supports: # For Windows Command Prompt set RUSTFLAGS=-C target-cpu=native # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-cpu=native” On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers. You can set SIMD extensions back to their default (sse2 on Intel/AMD) with: # For Windows Command Prompt set RUSTFLAGS= # For Unix-like shells (like Bash) unset RUSTFLAGS You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming. Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust. Rule 3: Learn core::simd, but selectively. To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation. Structs Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them. Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis. SimdElements Floating-Point Types: f32, f64 Integer Types: i8, u8, i16, u16, i32, u32, i64, u64, isize, usize — but not i128, u128 Simd constructors Simd::from_array – creates a Simd struct by copying a fixed-length array. Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice. Simd::splat – replicates a single value across all lanes of a Simd struct. slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers). Simd conversion Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference. Simd methods and operators simd[i] – extract a value from a lane of a Simd. simd + simd – performs element-wise addition of two Simd structs. Also, supported -, *, /, %, remainder, bitwise-and, -or, xor, -not, -shift. simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too. Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_lt, simd_le, simd_ge, simd_lt, simd_eq, simd_ne. Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right. simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes. simd == simd – checks for equality between two Simd structs, returning a regular bool result. Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_or, reduce_xor, reduce_max, reduce_min, reduce_sum (but noreduce_eq). Mask methods and operators Mask::select – selects elements from two Simd struct based on a mask. Mask::all – tells if the mask is all true. Mask::any – tells if the mask contains any true. All about lanes Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct. SupportedLaneCount – tells the allowed values of LANES. Use by generics. simd.lanes – const method that tells a Simd struct’s number of lanes. Low-level alignment, offsets, etc. When possible, use to_simd instead. More, perhaps of interest With these building blocks at hand, it’s time to build something. Rule 4: Brainstorm candidate algorithms. What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7). I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful. Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers 100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0 Ultimately become three Rust ranges: 0..=0, 100..=499, 501..=999. (Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.) Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges 100..=499, 501..=999, 100..=100, 0..=0. with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges. I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges: 100..=499, 501..=999, 999..=999, 100..=100, 0..=0. If so, from_iter could then quickly finish the processing. Let’s start by writing is_consecutive with regular Rust: pub const LANES: usize = 16; pub fn is_consecutive_regular(chunk: &[u32; LANES]) – > bool { for i in 1..LANES { if chunk[i – 1].checked_add(1) != Some(chunk[i]) { return false; } } true } The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow. Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt: Splat0 use std::simd::prelude::*; const COMPARISON_VALUE_SPLAT0: Simd = Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]); pub fn is_consecutive_splat0(chunk: Simd) – > bool { if chunk[0].overflowing_add(LANES as u32 – 1) != (chunk[LANES – 1], false) { return false; } let added = chunk + COMPARISON_VALUE_SPLAT0; Simd::splat(added[0]) == added } Here is an outline of its calculations: Source: This and all following images by author. It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value. Splat1 & Splat2 When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1: const COMPARISON_VALUE_SPLAT1: Simd = Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); pub fn is_consecutive_splat1(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; Simd::splat(chunk[0]) == subtracted } Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted. He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access. I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates. Swizzle Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes. pub fn is_consecutive_sizzle(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; simd_swizzle!(subtracted, [0; LANES]) == subtracted } Rotate This one is different. I had high hopes for it. const COMPARISON_VALUE_ROTATE: Simd = Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]); pub fn is_consecutive_rotate(chunk: Simd) – > bool { let rotated = chunk.rotate_elements_right::(); chunk – rotated == COMPARISON_VALUE_ROTATE } The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.) Now that we have candidates, let’s start to evaluate them. Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed. Don’t worry if you don’t know assembly language, you can still get something out of looking at it. The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this: Referring to the numbers in the figure above, follow these steps to use Godbolt: Open godbolt.org with your web browser. Add a new source editor. Select Rust as your language. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates. Add a new compiler. Set the compiler version to nightly. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f. If there are errors, look at the output. If you want to share or save the state of the tool, click “Share” From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check. In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2: Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off. Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same. You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use. The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code. Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. Let’s first generalize Splat1 with generics. #[inline] pub fn is_consecutive_splat1_gen( chunk: Simd, comparison_value: Simd, ) – > bool where T: SimdElement + PartialEq, Simd: Sub, LaneCount: SupportedLaneCount, { let subtracted = chunk – comparison_value; Simd::splat(chunk[0]) == subtracted } First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions. The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define. If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you. We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work: // DOESN’T WORK BECAUSE From is not const pub const fn comparison_value_splat_gen() – > Simd where T: SimdElement + Default + From + AddAssign, LaneCount: SupportedLaneCount, { let mut arr: [T; N] = [T::from(0usize); N]; let mut i_usize = 0; while i_usize { #[inline] pub fn $function(chunk: Simd) – > bool where LaneCount: SupportedLaneCount, { define_comparison_value_splat!(comparison_value_splat, $type); let subtracted = chunk – comparison_value_splat(); Simd::splat(chunk[0]) == subtracted } }; } #[macro_export] macro_rules! define_comparison_value_splat { ($function:ident, $type:ty) = > { pub const fn $function() – > Simd where LaneCount: SupportedLaneCount, { let mut arr: [$type; N] = [0; N]; let mut i = 0; while i bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount; } macro_rules! impl_is_consecutive { ($type:ty) = > { impl IsConsecutive for $type { #[inline] // very important fn is_consecutive(chunk: Simd) – > bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount, { define_is_consecutive_splat1!(is_consecutive_splat1, $type); is_consecutive_splat1(chunk) } } }; } impl_is_consecutive!(i8); impl_is_consecutive!(i16); impl_is_consecutive!(i32); impl_is_consecutive!(i64); impl_is_consecutive!(isize); impl_is_consecutive!(u8); impl_is_consecutive!(u16); impl_is_consecutive!(u32); impl_is_consecutive!(u64); impl_is_consecutive!(usize); We can now call fully generic code (Rust Playground): // Works on i32 and 16 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32))); let ninety_nines: Simd = black_box(Simd::from_array([99; 16])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); // Works on i8 and 64 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8))); let ninety_nines: Simd = black_box(Simd::from_array([99; 64])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest. Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there. Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD.

SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities.

Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier.


The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes!

See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet.

On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.)

Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations.

The rules are:

  1. Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.
  2. CCC: Check, Control, and Choose your computer’s SIMD capabilities.
  3. Learn core::simd, but selectively.
  4. Brainstorm candidate algorithms.
  5. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.
  6. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

See Part 2 for these rules:

7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64.

8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking.

9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature.

Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions.

Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.

Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them:

core::arch

core::simd

  • Nightly
  • Delightfully easy and portable.
  • Limits downstream users to nightly.

I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile.


In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps:

First, create a project called simd_hello:

cargo new simd_hello
cd simd_hello

Edit src/main.rs to contain (Rust playground):

// Tell nightly Rust to enable 'portable_simd'
#![feature(portable_simd)]
use core::simd::prelude::*;

// constant Simd structs
const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

fn main() {
    // create a Simd struct from a slice of LANES bytes
    let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");

    data += THIRTEENS; // add 13 to each byte

    // compare each byte to 'Z', where the byte is greater than 'Z', subtract 26
    let mask = data.simd_gt(ZEES); // compare each byte to 'Z'
    data = mask.select(data - TWENTYSIXS, data);

    let output = String::from_utf8_lossy(data.as_array());
    assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
    println!("{}", output);
}

Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly).

You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously.

Let’s look at each section of the program to see how it works. It starts with:

#![feature(portable_simd)]
use core::simd::prelude::*;

Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits.

In the code’s next section, we define useful constants:

const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const.

The next two lines copy our encrypted text into data and then adds 13 to each letter.

let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");
data += THIRTEENS;

What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility.

The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255.

Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’.

let mask = data.simd_gt(ZEES);
data = mask.select(data - TWENTYSIXS, data);

This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common.

The program ends like so:

let output = String::from_utf8_lossy(data.as_array());
assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
println!("{}", output);

Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying.

Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power.

Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities.

To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command.

Run with:

rustup override set nightly
cargo install cargo-simd-detect --force
cargo simd-detect

On my machine, it outputs:

extension       width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            false
avx512f         512-bit/64-bytes        true            false

This says that my machine supports the sse2avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension.

The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions.

Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable:

# For Windows Command Prompt
set RUSTFLAGS=-C target-feature=+avx2

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-feature=+avx2"

“Force install” and run simd-detect again and you should see that avx2 is enabled.

# Force install every time to see changes to 'enabled'
cargo install cargo-simd-detect --force
cargo simd-detect
extension         width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            true
avx512f         512-bit/64-bytes        true            false

Alternatively, you can turn on every SIMD extension that your machine supports:

# For Windows Command Prompt
set RUSTFLAGS=-C target-cpu=native

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-cpu=native"

On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers.

You can set SIMD extensions back to their default (sse2 on Intel/AMD) with:

# For Windows Command Prompt
set RUSTFLAGS=

# For Unix-like shells (like Bash)
unset RUSTFLAGS

You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming.

Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust.

Rule 3: Learn core::simd, but selectively.

To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation.

Structs

  • Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them.
  • Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis.

SimdElements

  • Floating-Point Types: f32f64
  • Integer Types: i8u8i16u16i32u32i64u64isizeusize
  • — but not i128u128

Simd constructors

  • Simd::from_array – creates a Simd struct by copying a fixed-length array.
  • Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice.
  • Simd::splat – replicates a single value across all lanes of a Simd struct.
  • slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers).

Simd conversion

  • Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference.

Simd methods and operators

  • simd[i] – extract a value from a lane of a Simd.
  • simd + simd – performs element-wise addition of two Simd structs. Also, supported -*/%, remainder, bitwise-and, -or, xor, -not, -shift.
  • simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too.
  • Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_ltsimd_lesimd_gesimd_ltsimd_eqsimd_ne.
  • Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right.
  • simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes.
  • simd == simd – checks for equality between two Simd structs, returning a regular bool result.
  • Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_orreduce_xorreduce_maxreduce_minreduce_sum (but noreduce_eq).

Mask methods and operators

  • Mask::select – selects elements from two Simd struct based on a mask.
  • Mask::all – tells if the mask is all true.
  • Mask::any – tells if the mask contains any true.

All about lanes

  • Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct.
  • SupportedLaneCount – tells the allowed values of LANES. Use by generics.
  • simd.lanes – const method that tells a Simd struct’s number of lanes.

Low-level alignment, offsets, etc.

When possible, use to_simd instead.

More, perhaps of interest

With these building blocks at hand, it’s time to build something.

Rule 4: Brainstorm candidate algorithms.

What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7).

I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful.

Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers

100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0

Ultimately become three Rust ranges:

0..=0, 100..=499, 501..=999.

(Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.)

Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges

100..=499, 501..=999, 100..=100, 0..=0.

with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges.

I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges:

100..=499, 501..=999, 999..=999, 100..=100, 0..=0.

If so, from_iter could then quickly finish the processing.

Let’s start by writing is_consecutive with regular Rust:

pub const LANES: usize = 16;
pub fn is_consecutive_regular(chunk: &[u32; LANES]) -> bool {
    for i in 1..LANES {
        if chunk[i - 1].checked_add(1) != Some(chunk[i]) {
            return false;
        }
    }
    true
}

The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow.

Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt:

Splat0

use std::simd::prelude::*;

const COMPARISON_VALUE_SPLAT0: Simd =
    Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);

pub fn is_consecutive_splat0(chunk: Simd) -> bool {
    if chunk[0].overflowing_add(LANES as u32 - 1) != (chunk[LANES - 1], false) {
        return false;
    }
    let added = chunk + COMPARISON_VALUE_SPLAT0;
    Simd::splat(added[0]) == added
}

Here is an outline of its calculations:

Source: This and all following images by author.

It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value.

Splat1 & Splat2

When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1:

const COMPARISON_VALUE_SPLAT1: Simd =
    Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);

pub fn is_consecutive_splat1(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    Simd::splat(chunk[0]) == subtracted
}

Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted.

He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access.

I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates.

Swizzle

Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes.

pub fn is_consecutive_sizzle(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    simd_swizzle!(subtracted, [0; LANES]) == subtracted
}

Rotate

This one is different. I had high hopes for it.

const COMPARISON_VALUE_ROTATE: Simd =
    Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]);

pub fn is_consecutive_rotate(chunk: Simd) -> bool {
    let rotated = chunk.rotate_elements_right::();
    chunk - rotated == COMPARISON_VALUE_ROTATE
}

The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.)

Now that we have candidates, let’s start to evaluate them.

Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.

We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed.

Don’t worry if you don’t know assembly language, you can still get something out of looking at it.

The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this:

Referring to the numbers in the figure above, follow these steps to use Godbolt:

  1. Open godbolt.org with your web browser.
  2. Add a new source editor.
  3. Select Rust as your language.
  4. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates.
  5. Add a new compiler.
  6. Set the compiler version to nightly.
  7. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f.
  8. If there are errors, look at the output.
  9. If you want to share or save the state of the tool, click “Share”

From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check.

In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2:

Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off.

Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same.

You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use.

The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code.

Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

Let’s first generalize Splat1 with generics.

#[inline]
pub fn is_consecutive_splat1_gen(
    chunk: Simd,
    comparison_value: Simd,
) -> bool
where
    T: SimdElement + PartialEq,
    Simd: Sub, Output = Simd>,
    LaneCount: SupportedLaneCount,
{
    let subtracted = chunk - comparison_value;
    Simd::splat(chunk[0]) == subtracted
}

First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions.

The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define.

If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you.

We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work:

// DOESN'T WORK BECAUSE From is not const
pub const fn comparison_value_splat_gen() -> Simd
where
    T: SimdElement + Default + From + AddAssign,
    LaneCount: SupportedLaneCount,
{
    let mut arr: [T; N] = [T::from(0usize); N];
    let mut i_usize = 0;
    while i_usize < N {
        arr[i_usize] = T::from(i_usize);
        i_usize += 1;
    }
    Simd::from_array(arr)
}

Macros are the last refuge of scoundrels. So, let’s use macros:

#[macro_export]
macro_rules! define_is_consecutive_splat1 {
    ($function:ident, $type:ty) => {
        #[inline]
        pub fn $function(chunk: Simd) -> bool
        where
            LaneCount: SupportedLaneCount,
        {
            define_comparison_value_splat!(comparison_value_splat, $type);

            let subtracted = chunk - comparison_value_splat();
            Simd::splat(chunk[0]) == subtracted
        }
    };
}
#[macro_export]
macro_rules! define_comparison_value_splat {
    ($function:ident, $type:ty) => {
        pub const fn $function() -> Simd
        where
            LaneCount: SupportedLaneCount,
        {
            let mut arr: [$type; N] = [0; N];
            let mut i = 0;
            while i < N {
                arr[i] = i as $type;
                i += 1;
            }
            Simd::from_array(arr)
        }
    };
}

This lets us run on any particular element type and all number of LANES (Rust Playground):

define_is_consecutive_splat1!(is_consecutive_splat1_i32, i32);

let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));
assert!(is_consecutive_splat1_i32(a));
assert!(!is_consecutive_splat1_i32(ninety_nines));

Sadly, this still isn’t enough for range-set-blaze. It needs to run on all element types (not just one) and (ideally) all LANES (not just one).

Happily, there’s a workaround, that again depends on macros. It also exploits the fact that we only need to support a finite list of types, namely: i8i16i32i64isizeu8u16u32u64, and usize. If you need to also (or instead) support f32 and f64, that’s fine.

If, on the other hand, you need to support i128 and u128, you may be out of luck. The core::simd module doesn’t support them. We’ll see in Rule 8 how range-set-blaze gets around that at a performance cost.

The workaround defines a new trait, here called IsConsecutive. We then use a macro (that calls a macro, that calls a macro) to implement the trait on the 10 types of interest.

pub trait IsConsecutive {
    fn is_consecutive(chunk: Simd) -> bool
    where
        Self: SimdElement,
        Simd: Sub, Output = Simd>,
        LaneCount: SupportedLaneCount;
}

macro_rules! impl_is_consecutive {
    ($type:ty) => {
        impl IsConsecutive for $type {
            #[inline] // very important
            fn is_consecutive(chunk: Simd) -> bool
            where
                Self: SimdElement,
                Simd: Sub, Output = Simd>,
                LaneCount: SupportedLaneCount,
            {
                define_is_consecutive_splat1!(is_consecutive_splat1, $type);
                is_consecutive_splat1(chunk)
            }
        }
    };
}

impl_is_consecutive!(i8);
impl_is_consecutive!(i16);
impl_is_consecutive!(i32);
impl_is_consecutive!(i64);
impl_is_consecutive!(isize);
impl_is_consecutive!(u8);
impl_is_consecutive!(u16);
impl_is_consecutive!(u32);
impl_is_consecutive!(u64);
impl_is_consecutive!(usize);

We can now call fully generic code (Rust Playground):

// Works on i32 and 16 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

// Works on i8 and 64 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 64]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest.


Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there.

Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

IP Fabric 7.9 boosts visibility across hybrid environments

Multicloud and hybrid network viability has also been extended to include IPv6 path analysis, helping teams reason about connectivity in dual-stack and hybrid environments. This capability addresses a practical challenge for enterprises deploying IPv6 alongside existing IPv4 infrastructure. Network teams can now validate that applications can reach IPv6 endpoints and

Read More »

Kolibri Reports Increased Flows at New Oklahoma Wells

Kolibri Global Energy Inc has reported improved flow rates at the Barnes and Velin wells in Oklahoma’s Tishomingo field. The 1.5-mile lateral Barnes 6-31-2H well posted a 30-day average of 529 barrels of oil equivalent per day (boepd). The one-mile lateral Barnes 6-4H well averaged 452 boepd in 30 days, Thousand Oaks, California-based Kolibri said in a press release. The company said it owns 100 percent of the wells. “The Barnes wells continue to produce high percentages of oil (~83 percent), much like the Lovina wells the company drilled earlier this year” in the same field, Kolibri said. “On a comparable lateral length basis, these wells are producing at a boepd rate that is 22 percent higher than the Lovina wells were producing at the same time in their production life”, it added. Meanwhile the one-mile lateral wells Velin 12-9H and Velin 12-10H yielded 30-day averages of 257 boepd and 176 boepd respectively. Kolibri said it holds stakes of 97 percent in the wells. “The Velin wells are still improving and continue to act differently than the typical wells in the field”, Kolibri said. “There are some differences between these wells and the company’s offsetting wells. “One is that the Velin wells were shut in longer than our normal time after fracture stimulations were complete. This was due to the close proximity of all four wellbores, and as a result, the wells needed to stay shut-in while the Barnes wells were being fracture-stimulated. While that is standard industry practice, it may be a contributing factor to the lower early production rates and the slower cleanup. “Additionally, while the formation analysis of these wells is comparable to that of the offsetting wells, there is the presence of increased natural healed fractures and small-scale faulting, which appears unique to this location, potentially

Read More »

Veteran Gas Executive Leaving Mercuria

Steve Hill, who was hired by Mercuria Energy Group in 2024 to build out its liquefied natural gas business, is leaving the trading house. Hill was part of the company’s efforts to expand into the fast-growing global LNG market. Before joining, he was responsible for the vast LNG, gas and power marketing and trading business at energy giant Shell Plc. He was one of a trio of heavyweight hires Mercuria made after reaping bumper profits, setting off a renewed push into trading physical commodities, along with Kostas Bintas in metals and Nick O’Kane in gas and power. Known as one of the world’s biggest traders of oil and gas, the firm has been a relative latecomer behind other trading house rivals in building out a large-scale physical trading business for LNG. During Hill’s relatively brief tenure, Mercuria signed deals to offtake LNG from Oman, as well as supply Turkey and China. He also hired several of his former colleagues from Shell, though one — Singapore-based Dong Yuan — recently left the company. A spokesperson for Mercuria confirmed Hill is leaving the company. Hill didn’t immediately respond to a request for comment. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Crude Settles Higher After Volatile Week

Oil edged higher at the end of a volatile week, as traders weighed tensions in Iran and positive sentiment in wider markets. West Texas Intermediate settled near $60 a barrel after plunging 4.6% on Thursday, the most since June. President Donald Trump said in a social media post that he “greatly” respects Iran’s decision to cancel scheduled hangings of protesters. His rhetoric over recent days has reduced expectations of an immediate US response to violent protests in the Islamic Republic, which could have led to disruptions to the country’s roughly 3.3 million barrel-per-day oil production, as well as shipping. Nevertheless, Washington is boosting its military presence in the Middle East. At least one aircraft carrier is moving into the region and other military assets are expected to be shifted there in the coming days and weeks, Fox News reported, citing military sources. Traders have in the past covered bearish wagers ahead of the weekend in periods of heightened geopolitical risks. “While the risk of imminent intervention from the US against Iran has subsided, it’s pretty clear that the risk is still present, which should keep the market on its toes in the short term,” said Warren Patterson, head of commodities strategy at ING Groep NV. “However, the longer this goes on without a US response, the risk premium will continue to evaporate, allowing more bearish fundamentals to take center stage.” Disruption to Kazakh exports from the Black Sea, short-term tightness in the North Sea and a host of financial flows from options markets to commodity index rebalancing have also helped lift an oil market coming off its biggest drop since 2020 on rising supplies. In a sign that lower prices are starting to bite, Harold Hamm, the billionaire wildcatter who helped kick off the US shale revolution, said his firm

Read More »

U.S. Energy Secretary and Slovakia’s Prime Minister Sign Agreement to Advance U.S.-Slovakia Civil Nuclear Program

WASHINGTON—U.S. Secretary of Energy Chris Wright and Slovak Prime Minister Robert Fico today signed an Intergovernmental Agreement (IGA) to advance cooperation on Slovakia’s civil nuclear power program. This landmark agreement includes the development of a new, state-owned American 1,200 MWe nuclear unit at the Jaslovské Bohunice Nuclear Power Plant, deepening the U.S.-Slovakia strategic partnership and strengthening European energy security. The agreement builds on President Trump’s commitment to advancing American energy leadership. A project of this scale is expected to create thousands of American jobs across engineering, advanced manufacturing, construction, nuclear fuel services, and project management, while reinforcing U.S. supply chains and expanding access to global markets for American-made nuclear technology. These efforts lay the foundation for sustained U.S. engagement in Slovakia’s nuclear energy program and support future civil nuclear projects across the region. It also supports Slovakia’s efforts to diversify its energy supply, strengthen long-term energy security, and integrate advanced American nuclear technology into Central Europe’s energy infrastructure. “The United States is proud to partner with Slovakia as a trusted ally as we expand cooperation across the energy sector,” said Energy Secretary Chris Wright. “Today’s civil nuclear agreement reflects our shared commitment to strengthening European energy security and sovereignty for decades to come. By deploying America’s leading nuclear technology, we are creating thousands of good-paying American jobs, expanding global markets for U.S. nuclear companies, and driving economic growth at home”. “I see this moment as a significant milestone in our bilateral relations, but also as a clear signal that Slovakia and the United States are united by a common strategic thinking about the future of energy – about its safety, sustainability, and technological maturity,” said the Prime Minister of the Slovak Republic Robert Fico. The planned nuclear unit represents a multibillion-dollar energy infrastructure investment and one of the largest in

Read More »

Valero to Cut 200+ Jobs as California Refinery Closes

Valero Energy Corp. plans to let go of 237 employees at its Benicia refinery as it winds down operations at one of California’s few remaining fuel-making plants. Valero expects the shutdown to be permanent and 237 jobs will be cut March 15 to July 1, the company said in a letter to California’s employment regulator and local officials. Those losing jobs are not represented by a union and represent the bulk of the plant’s 348-person staff.  “We do not plan to coordinate services with the local workforce development board or any other entity,” refinery manager Lauren Bird, whose position is being eliminated, said in the letter. The Texas-based oil company announced in 2025 plans to close the plant and last-ditch efforts by Governor Gavin Newsom, regulators and local officials to keep the gates open were unsuccessful. Multiple California refineries have closed or converted to making biofuels in recent years, dwindling fuel supply in a state where drivers regularly pay the highest gasoline prices in the nation. Last week, Newsom praised plans by Valero to continue supplying the state with gasoline amid the shutdown, saying the decision to import fuel to the region was a constructive development from an earlier possibility of a full-on exit. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Trump Administration Calls for Emergency Power Auction to Build Big Power Plants Again

WASHINGTON—U.S. Secretary of Energy Chris Wright and Secretary of the Interior Doug Burgum, vice-chair and chair of the National Energy Dominance Council (NEDC) respectively, today joined Mid-Atlantic governors urging PJM Interconnection, L.L.C. (PJM) to temporarily overhaul its market rules to strengthen grid reliability and reduce electricity costs for American families and businesses by building more than $15 billion of reliable baseload power generation.  The initiative calls on PJM to conduct an emergency procurement auction to address escalating electricity prices and growing reliability risks across the mid-Atlantic region of the United States. The action follows a series of PJM policies over the years that have weakened the electric grid, including the premature shutdown of reliable power generation.  President Trump declared a National Energy Emergency on his first day in office, warning that the previous administrations energy subtraction agenda left the country vulnerable to blackouts and soaring electricity prices. During the Biden administration, PJM forced nearly 17 gigawatts of reliable baseload power generation offline. For the first time in history, PJM’s capacity auction failed to secure enough generation resources to meet basic reliability requirements. If not fixed, it will lead to further rising prices and blackouts.  “High electricity prices are a choice,” said Energy Secretary Chris Wright. “The Biden administration’s forceful closures of coal and natural gas plants without reliable replacements left the United States in an energy emergency. Perhaps no region in America is more at risk than in PJM. That’s why President Trump asked governors across the Mid-Atlantic to come together and call upon PJM to allow America to build big reliable power plants again. Our directives will restore affordable and reliable electricity so American families thrive and America’s manufacturing industries once again boom. President Trump promised to unleash American energy and put the American people first. This plan keeps

Read More »

NVIDIA’s Rubin Redefines the AI Factory

The Architecture Shift: From “GPU Server” to “Rack-Scale Supercomputer” NVIDIA’s Rubin architecture is built around a single design thesis: “extreme co-design.” In practice, that means GPUs, CPUs, networking, security, software, power delivery, and cooling are architected together; treating the data center as the compute unit, not the individual server. That logic shows up most clearly in the NVL72 system. NVLink 6 serves as the scale-up spine, designed to let 72 GPUs communicate all-to-all with predictable latency, something NVIDIA argues is essential for mixture-of-experts routing and synchronization-heavy inference paths. NVIDIA is not vague about what this requires. Its technical materials describe the Rubin GPU as delivering 50 PFLOPS of NVFP4 inference and 35 PFLOPS of NVFP4 training, with 22 TB/s of HBM4 bandwidth and 3.6 TB/s of NVLink bandwidth per GPU. The point of that bandwidth is not headline-chasing. It is to prevent a rack from behaving like 72 loosely connected accelerators that stall on communication. NVIDIA wants the rack to function as a single engine because that is what it will take to drive down cost per token at scale. The New Idea NVIDIA Is Elevating: Inference Context Memory as Infrastructure If there is one genuinely new concept in the Rubin announcements, it is the elevation of context memory, and the admission that GPU memory alone will not carry the next wave of inference. NVIDIA describes a new tier called NVIDIA Inference Context Memory Storage, powered by BlueField-4, designed to persist and share inference state (such as KV caches) across requests and nodes for long-context and agentic workloads. NVIDIA says this AI-native context tier can boost tokens per second by up to 5× and improve power efficiency by up to 5× compared with traditional storage approaches. The implication is clear: the path to cheaper inference is not just faster GPUs.

Read More »

Power shortages, carbon capture, and AI automation: What’s ahead for data centers in 2026

“Despite a broader use of AI tools in enterprises and by consumers, that does not mean that AI compute, AI infrastructure in general, will be more evenly spread out,” said Daniel Bizo, research director at Uptime Institute, during the webinar. “The concentration of AI compute infrastructure is only increasing in the coming years.” For enterprises, the infrastructure investment remains relatively modest, Uptime Institute found. Enterprises will limit investment to inference and only some training, and inference workloads don’t require dramatic capacity increases. “Our prediction, our observation, was that the concentration of AI compute infrastructure is only increasing in the coming years by a couple of points. By the end of this year, 2026, we are projecting that around 10 gigawatts of new IT load will have been added to the global data center world, specifically to run generative AI workloads and adjacent workloads, but definitely centered on generative AI,” Bizo said. “This means these 10 gigawatts or so load, we are talking about anywhere between 13 to 15 million GPUs and accelerators deployed globally. We are anticipating that a majority of these are and will be deployed in supercomputing style.” 2. Developers will not outrun the power shortage The most pressing challenge facing the industry, according to Uptime, is that data centers can be built in less than three years, but power generation takes much longer. “It takes three to six years to deploy a solar or wind farm, around six years for a combined-cycle gas turbine plant, and even optimistically, it probably takes more than 10 years to deploy a conventional nuclear power plant,” said Max Smolaks, research analyst at Uptime Institute. This mismatch was manageable when data centers were smaller and growth was predictable, the report notes. But with projects now measured in tens and sometimes hundreds of

Read More »

Google warns transmission delays are now the biggest threat to data center expansion

The delays stem from aging transmission infrastructure unable to handle concentrated power demands. Building regional transmission lines currently takes seven to eleven years just for permitting, Hanna told the gathering. Southwest Power Pool has projected 115 days of potential loss of load if transmission infrastructure isn’t built to match demand growth, he added. These systemic delays are forcing enterprises to reconsider fundamental assumptions about cloud capacity. Regions including Northern Virginia and Santa Clara that were prime locations for hyperscale builds are running out of power capacity. The infrastructure constraints are also reshaping cloud competition around power access rather than technical capabilities. “This is no longer about who gets to market with the most GPU instances,” Gogia said. “It’s about who gets to the grid first.” Co-location emerges as a faster alternative to grid delays Unable to wait years for traditional grid connections, hyperscalers are pursuing co-location arrangements that place data centers directly adjacent to power plants, bypassing the transmission system entirely. Pricing for these arrangements has jumped 20% in power-constrained markets as demand outstrips availability, with costs flowing through to cloud customers via regional pricing differences, Gogia said. Google is exploring such arrangements, though Hanna said the company’s “strong preference is grid-connected load.” “This is a speed to power play for us,” he said, noting Google wants facilities to remain “front of the meter” to serve the broader grid rather than operating as isolated power sources. Other hyperscalers are negotiating directly with utilities, acquiring land near power plants, and exploring ownership stakes in power infrastructure from batteries to small modular nuclear reactors, Hanna said.

Read More »

OpenAI turns to Cerebras in a mega deal to scale AI inference infrastructure

Analysts expect AI workloads to grow more varied and more demanding in the coming years, driving the need for architectures tuned for inference performance and putting added pressure on data center networks. “This is prompting hyperscalers to diversify their computing systems, using Nvidia GPUs for general-purpose AI workloads, in-house AI accelerators for highly optimized tasks, and systems such as Cerebras for specialized low-latency workloads,” said Neil Shah, vice president for research at Counterpoint Research. As a result, AI platforms operating at hyperscale are pushing infrastructure providers away from monolithic, general-purpose clusters toward more tiered and heterogeneous infrastructure strategies. “OpenAI’s move toward Cerebras inference capacity reflects a broader shift in how AI data centers are being designed,” said Prabhu Ram, VP of the industry research group at Cybermedia Research. “This move is less about replacing Nvidia and more about diversification as inference scales.” At this level, infrastructure begins to resemble an AI factory, where city-scale power delivery, dense east–west networking, and low-latency interconnects matter more than peak FLOPS, Ram added. “At this magnitude, conventional rack density, cooling models, and hierarchical networks become impractical,” said Manish Rawat, semiconductor analyst at TechInsights. “Inference workloads generate continuous, latency-sensitive traffic rather than episodic training bursts, pushing architectures toward flatter network topologies, higher-radix switching, and tighter integration of compute, memory, and interconnect.”

Read More »

Cisco’s 2026 agenda prioritizes AI-ready infrastructure, connectivity

While most of the demand for AI data center capacity today comes from hyperscalers and neocloud providers, that will change as enterprise customers delve more into the AI networking world. “The other ecosystem members and enterprises themselves are becoming responsible for an increasing proportion of the AI infrastructure buildout as inferencing and agentic AI, sovereign cloud, and edge AI become more mainstream,” Katz wrote. More enterprises will move to host AI on premises via the introduction of AI agents that are designed to inject intelligent insight into applications and help improve operations. That’s where the AI impact on enterprise network traffic will appear, suggests Nolle. “Enterprises need to host AI to create AI network impact. Just accessing it doesn’t do much to traffic. Having cloud agents access local data center resources (RAG etc.) creates a governance issue for most corporate data, so that won’t go too far either,” Nolle said.  “Enterprises are looking at AI agents, not the way hyperscalers tout agentic AI, but agents running on small models, often open-source, and are locally hosted. This is where real AI traffic will develop, and Cisco could be vulnerable if they don’t understand this point and at least raise it in dialogs where AI hosting comes up,” Nolle said. “I don’t expect they’d go too far, because the real market for enterprise AI networking is probably a couple years out.” Meanwhile, observers expect Cisco to continue bolstering AI networking capabilities for enterprise branch, campus and data centers as well as hyperscalers, including through optical support and other gear.

Read More »

Microsoft tells communities it will ‘pay its way’ as AI data center resource usage sparks backlash

It will work with utilities and public commissions to set the rates it pays high enough to cover data center electricity costs (including build-outs, additions, and active use). “Our goal is straightforward: To ensure that the electricity cost of serving our data centers is not passed on to residential customers,” Smith emphasized. For example, the company is supporting a new rate structure Wisconsin that would charge a class of “very large customers,” including data centers, the true cost of the electricity required to serve them. It will collaborate “early, closely, and transparently” with local utilities to add electricity and supporting infrastructure to existing grids when needed. For instance, Microsoft has contracted with the Midcontinent Independent System Operator (MISO) to add 7.9GW of new electricity generation to the grid, “more than double our current consumption,” Smith noted. It will pursue ways to make data centers more efficient. For example, it is already experimenting with AI to improve planning, extract more electricity from existing infrastructure, improve system resilience, and speed development of new infrastructure and technologies (like nuclear energy). It will advocate for state and national public policies that ensure electricity access that is affordable, reliable, and sustainable in neighboring communities. Microsoft previously established priorities for electricity policy advocacy, Smith noted, but “progress has been uneven. This needs to change.” Microsoft is similarly committed when it comes to data center water use, promising four actions: Reducing the overall amount of water its data centers use, initially improving it by 40% by 2030. The company is exploring innovations in cooling, including closed-loop systems that recirculate cooling liquids. It will collaborate with local utilities to map out water, wastewater, and pressure needs, and will “fully fund” infrastructure required for growth. For instance, in Quincy, Washington, Microsoft helped construct a water reuse utility that recirculates

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »