Stay Ahead, Stay ONMINE

Nine Rules for SIMD Acceleration of Your Rust Code (Part 1)

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD. SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities. Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier. The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes! See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet. On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.) Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations. The rules are: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. CCC: Check, Control, and Choose your computer’s SIMD capabilities. Learn core::simd, but selectively. Brainstorm candidate algorithms. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. See Part 2 for these rules: 7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64. 8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking. 9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature. Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions. Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them: core::arch core::simd Nightly Delightfully easy and portable. Limits downstream users to nightly. I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile. In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps: First, create a project called simd_hello: cargo new simd_hello cd simd_hello Edit src/main.rs to contain (Rust playground): // Tell nightly Rust to enable ‘portable_simd’ #![feature(portable_simd)] use core::simd::prelude::*; // constant Simd structs const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); fn main() { // create a Simd struct from a slice of LANES bytes let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; // add 13 to each byte // compare each byte to ‘Z’, where the byte is greater than ‘Z’, subtract 26 let mask = data.simd_gt(ZEES); // compare each byte to ‘Z’ data = mask.select(data – TWENTYSIXS, data); let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); } Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly). You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously. Let’s look at each section of the program to see how it works. It starts with: #![feature(portable_simd)] use core::simd::prelude::*; Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits. In the code’s next section, we define useful constants: const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const. The next two lines copy our encrypted text into data and then adds 13 to each letter. let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility. The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255. Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’. let mask = data.simd_gt(ZEES); data = mask.select(data – TWENTYSIXS, data); This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common. The program ends like so: let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying. Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power. Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities. To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command. Run with: rustup override set nightly cargo install cargo-simd-detect –force cargo simd-detect On my machine, it outputs: extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true false avx512f 512-bit/64-bytes true false This says that my machine supports the sse2, avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension. The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions. Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable: # For Windows Command Prompt set RUSTFLAGS=-C target-feature=+avx2 # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-feature=+avx2″ “Force install” and run simd-detect again and you should see that avx2 is enabled. # Force install every time to see changes to ‘enabled’ cargo install cargo-simd-detect –force cargo simd-detect extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true true avx512f 512-bit/64-bytes true false Alternatively, you can turn on every SIMD extension that your machine supports: # For Windows Command Prompt set RUSTFLAGS=-C target-cpu=native # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-cpu=native” On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers. You can set SIMD extensions back to their default (sse2 on Intel/AMD) with: # For Windows Command Prompt set RUSTFLAGS= # For Unix-like shells (like Bash) unset RUSTFLAGS You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming. Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust. Rule 3: Learn core::simd, but selectively. To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation. Structs Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them. Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis. SimdElements Floating-Point Types: f32, f64 Integer Types: i8, u8, i16, u16, i32, u32, i64, u64, isize, usize — but not i128, u128 Simd constructors Simd::from_array – creates a Simd struct by copying a fixed-length array. Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice. Simd::splat – replicates a single value across all lanes of a Simd struct. slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers). Simd conversion Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference. Simd methods and operators simd[i] – extract a value from a lane of a Simd. simd + simd – performs element-wise addition of two Simd structs. Also, supported -, *, /, %, remainder, bitwise-and, -or, xor, -not, -shift. simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too. Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_lt, simd_le, simd_ge, simd_lt, simd_eq, simd_ne. Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right. simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes. simd == simd – checks for equality between two Simd structs, returning a regular bool result. Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_or, reduce_xor, reduce_max, reduce_min, reduce_sum (but noreduce_eq). Mask methods and operators Mask::select – selects elements from two Simd struct based on a mask. Mask::all – tells if the mask is all true. Mask::any – tells if the mask contains any true. All about lanes Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct. SupportedLaneCount – tells the allowed values of LANES. Use by generics. simd.lanes – const method that tells a Simd struct’s number of lanes. Low-level alignment, offsets, etc. When possible, use to_simd instead. More, perhaps of interest With these building blocks at hand, it’s time to build something. Rule 4: Brainstorm candidate algorithms. What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7). I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful. Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers 100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0 Ultimately become three Rust ranges: 0..=0, 100..=499, 501..=999. (Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.) Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges 100..=499, 501..=999, 100..=100, 0..=0. with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges. I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges: 100..=499, 501..=999, 999..=999, 100..=100, 0..=0. If so, from_iter could then quickly finish the processing. Let’s start by writing is_consecutive with regular Rust: pub const LANES: usize = 16; pub fn is_consecutive_regular(chunk: &[u32; LANES]) – > bool { for i in 1..LANES { if chunk[i – 1].checked_add(1) != Some(chunk[i]) { return false; } } true } The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow. Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt: Splat0 use std::simd::prelude::*; const COMPARISON_VALUE_SPLAT0: Simd = Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]); pub fn is_consecutive_splat0(chunk: Simd) – > bool { if chunk[0].overflowing_add(LANES as u32 – 1) != (chunk[LANES – 1], false) { return false; } let added = chunk + COMPARISON_VALUE_SPLAT0; Simd::splat(added[0]) == added } Here is an outline of its calculations: Source: This and all following images by author. It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value. Splat1 & Splat2 When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1: const COMPARISON_VALUE_SPLAT1: Simd = Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); pub fn is_consecutive_splat1(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; Simd::splat(chunk[0]) == subtracted } Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted. He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access. I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates. Swizzle Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes. pub fn is_consecutive_sizzle(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; simd_swizzle!(subtracted, [0; LANES]) == subtracted } Rotate This one is different. I had high hopes for it. const COMPARISON_VALUE_ROTATE: Simd = Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]); pub fn is_consecutive_rotate(chunk: Simd) – > bool { let rotated = chunk.rotate_elements_right::(); chunk – rotated == COMPARISON_VALUE_ROTATE } The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.) Now that we have candidates, let’s start to evaluate them. Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed. Don’t worry if you don’t know assembly language, you can still get something out of looking at it. The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this: Referring to the numbers in the figure above, follow these steps to use Godbolt: Open godbolt.org with your web browser. Add a new source editor. Select Rust as your language. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates. Add a new compiler. Set the compiler version to nightly. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f. If there are errors, look at the output. If you want to share or save the state of the tool, click “Share” From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check. In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2: Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off. Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same. You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use. The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code. Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. Let’s first generalize Splat1 with generics. #[inline] pub fn is_consecutive_splat1_gen( chunk: Simd, comparison_value: Simd, ) – > bool where T: SimdElement + PartialEq, Simd: Sub, LaneCount: SupportedLaneCount, { let subtracted = chunk – comparison_value; Simd::splat(chunk[0]) == subtracted } First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions. The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define. If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you. We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work: // DOESN’T WORK BECAUSE From is not const pub const fn comparison_value_splat_gen() – > Simd where T: SimdElement + Default + From + AddAssign, LaneCount: SupportedLaneCount, { let mut arr: [T; N] = [T::from(0usize); N]; let mut i_usize = 0; while i_usize { #[inline] pub fn $function(chunk: Simd) – > bool where LaneCount: SupportedLaneCount, { define_comparison_value_splat!(comparison_value_splat, $type); let subtracted = chunk – comparison_value_splat(); Simd::splat(chunk[0]) == subtracted } }; } #[macro_export] macro_rules! define_comparison_value_splat { ($function:ident, $type:ty) = > { pub const fn $function() – > Simd where LaneCount: SupportedLaneCount, { let mut arr: [$type; N] = [0; N]; let mut i = 0; while i bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount; } macro_rules! impl_is_consecutive { ($type:ty) = > { impl IsConsecutive for $type { #[inline] // very important fn is_consecutive(chunk: Simd) – > bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount, { define_is_consecutive_splat1!(is_consecutive_splat1, $type); is_consecutive_splat1(chunk) } } }; } impl_is_consecutive!(i8); impl_is_consecutive!(i16); impl_is_consecutive!(i32); impl_is_consecutive!(i64); impl_is_consecutive!(isize); impl_is_consecutive!(u8); impl_is_consecutive!(u16); impl_is_consecutive!(u32); impl_is_consecutive!(u64); impl_is_consecutive!(usize); We can now call fully generic code (Rust Playground): // Works on i32 and 16 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32))); let ninety_nines: Simd = black_box(Simd::from_array([99; 16])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); // Works on i8 and 64 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8))); let ninety_nines: Simd = black_box(Simd::from_array([99; 64])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest. Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there. Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD.

SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities.

Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier.


The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes!

See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet.

On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.)

Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations.

The rules are:

  1. Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.
  2. CCC: Check, Control, and Choose your computer’s SIMD capabilities.
  3. Learn core::simd, but selectively.
  4. Brainstorm candidate algorithms.
  5. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.
  6. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

See Part 2 for these rules:

7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64.

8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking.

9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature.

Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions.

Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.

Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them:

core::arch

core::simd

  • Nightly
  • Delightfully easy and portable.
  • Limits downstream users to nightly.

I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile.


In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps:

First, create a project called simd_hello:

cargo new simd_hello
cd simd_hello

Edit src/main.rs to contain (Rust playground):

// Tell nightly Rust to enable 'portable_simd'
#![feature(portable_simd)]
use core::simd::prelude::*;

// constant Simd structs
const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

fn main() {
    // create a Simd struct from a slice of LANES bytes
    let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");

    data += THIRTEENS; // add 13 to each byte

    // compare each byte to 'Z', where the byte is greater than 'Z', subtract 26
    let mask = data.simd_gt(ZEES); // compare each byte to 'Z'
    data = mask.select(data - TWENTYSIXS, data);

    let output = String::from_utf8_lossy(data.as_array());
    assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
    println!("{}", output);
}

Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly).

You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously.

Let’s look at each section of the program to see how it works. It starts with:

#![feature(portable_simd)]
use core::simd::prelude::*;

Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits.

In the code’s next section, we define useful constants:

const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const.

The next two lines copy our encrypted text into data and then adds 13 to each letter.

let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");
data += THIRTEENS;

What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility.

The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255.

Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’.

let mask = data.simd_gt(ZEES);
data = mask.select(data - TWENTYSIXS, data);

This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common.

The program ends like so:

let output = String::from_utf8_lossy(data.as_array());
assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
println!("{}", output);

Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying.

Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power.

Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities.

To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command.

Run with:

rustup override set nightly
cargo install cargo-simd-detect --force
cargo simd-detect

On my machine, it outputs:

extension       width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            false
avx512f         512-bit/64-bytes        true            false

This says that my machine supports the sse2avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension.

The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions.

Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable:

# For Windows Command Prompt
set RUSTFLAGS=-C target-feature=+avx2

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-feature=+avx2"

“Force install” and run simd-detect again and you should see that avx2 is enabled.

# Force install every time to see changes to 'enabled'
cargo install cargo-simd-detect --force
cargo simd-detect
extension         width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            true
avx512f         512-bit/64-bytes        true            false

Alternatively, you can turn on every SIMD extension that your machine supports:

# For Windows Command Prompt
set RUSTFLAGS=-C target-cpu=native

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-cpu=native"

On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers.

You can set SIMD extensions back to their default (sse2 on Intel/AMD) with:

# For Windows Command Prompt
set RUSTFLAGS=

# For Unix-like shells (like Bash)
unset RUSTFLAGS

You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming.

Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust.

Rule 3: Learn core::simd, but selectively.

To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation.

Structs

  • Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them.
  • Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis.

SimdElements

  • Floating-Point Types: f32f64
  • Integer Types: i8u8i16u16i32u32i64u64isizeusize
  • — but not i128u128

Simd constructors

  • Simd::from_array – creates a Simd struct by copying a fixed-length array.
  • Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice.
  • Simd::splat – replicates a single value across all lanes of a Simd struct.
  • slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers).

Simd conversion

  • Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference.

Simd methods and operators

  • simd[i] – extract a value from a lane of a Simd.
  • simd + simd – performs element-wise addition of two Simd structs. Also, supported -*/%, remainder, bitwise-and, -or, xor, -not, -shift.
  • simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too.
  • Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_ltsimd_lesimd_gesimd_ltsimd_eqsimd_ne.
  • Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right.
  • simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes.
  • simd == simd – checks for equality between two Simd structs, returning a regular bool result.
  • Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_orreduce_xorreduce_maxreduce_minreduce_sum (but noreduce_eq).

Mask methods and operators

  • Mask::select – selects elements from two Simd struct based on a mask.
  • Mask::all – tells if the mask is all true.
  • Mask::any – tells if the mask contains any true.

All about lanes

  • Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct.
  • SupportedLaneCount – tells the allowed values of LANES. Use by generics.
  • simd.lanes – const method that tells a Simd struct’s number of lanes.

Low-level alignment, offsets, etc.

When possible, use to_simd instead.

More, perhaps of interest

With these building blocks at hand, it’s time to build something.

Rule 4: Brainstorm candidate algorithms.

What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7).

I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful.

Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers

100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0

Ultimately become three Rust ranges:

0..=0, 100..=499, 501..=999.

(Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.)

Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges

100..=499, 501..=999, 100..=100, 0..=0.

with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges.

I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges:

100..=499, 501..=999, 999..=999, 100..=100, 0..=0.

If so, from_iter could then quickly finish the processing.

Let’s start by writing is_consecutive with regular Rust:

pub const LANES: usize = 16;
pub fn is_consecutive_regular(chunk: &[u32; LANES]) -> bool {
    for i in 1..LANES {
        if chunk[i - 1].checked_add(1) != Some(chunk[i]) {
            return false;
        }
    }
    true
}

The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow.

Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt:

Splat0

use std::simd::prelude::*;

const COMPARISON_VALUE_SPLAT0: Simd =
    Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);

pub fn is_consecutive_splat0(chunk: Simd) -> bool {
    if chunk[0].overflowing_add(LANES as u32 - 1) != (chunk[LANES - 1], false) {
        return false;
    }
    let added = chunk + COMPARISON_VALUE_SPLAT0;
    Simd::splat(added[0]) == added
}

Here is an outline of its calculations:

Source: This and all following images by author.

It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value.

Splat1 & Splat2

When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1:

const COMPARISON_VALUE_SPLAT1: Simd =
    Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);

pub fn is_consecutive_splat1(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    Simd::splat(chunk[0]) == subtracted
}

Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted.

He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access.

I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates.

Swizzle

Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes.

pub fn is_consecutive_sizzle(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    simd_swizzle!(subtracted, [0; LANES]) == subtracted
}

Rotate

This one is different. I had high hopes for it.

const COMPARISON_VALUE_ROTATE: Simd =
    Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]);

pub fn is_consecutive_rotate(chunk: Simd) -> bool {
    let rotated = chunk.rotate_elements_right::();
    chunk - rotated == COMPARISON_VALUE_ROTATE
}

The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.)

Now that we have candidates, let’s start to evaluate them.

Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.

We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed.

Don’t worry if you don’t know assembly language, you can still get something out of looking at it.

The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this:

Referring to the numbers in the figure above, follow these steps to use Godbolt:

  1. Open godbolt.org with your web browser.
  2. Add a new source editor.
  3. Select Rust as your language.
  4. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates.
  5. Add a new compiler.
  6. Set the compiler version to nightly.
  7. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f.
  8. If there are errors, look at the output.
  9. If you want to share or save the state of the tool, click “Share”

From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check.

In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2:

Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off.

Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same.

You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use.

The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code.

Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

Let’s first generalize Splat1 with generics.

#[inline]
pub fn is_consecutive_splat1_gen(
    chunk: Simd,
    comparison_value: Simd,
) -> bool
where
    T: SimdElement + PartialEq,
    Simd: Sub, Output = Simd>,
    LaneCount: SupportedLaneCount,
{
    let subtracted = chunk - comparison_value;
    Simd::splat(chunk[0]) == subtracted
}

First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions.

The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define.

If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you.

We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work:

// DOESN'T WORK BECAUSE From is not const
pub const fn comparison_value_splat_gen() -> Simd
where
    T: SimdElement + Default + From + AddAssign,
    LaneCount: SupportedLaneCount,
{
    let mut arr: [T; N] = [T::from(0usize); N];
    let mut i_usize = 0;
    while i_usize < N {
        arr[i_usize] = T::from(i_usize);
        i_usize += 1;
    }
    Simd::from_array(arr)
}

Macros are the last refuge of scoundrels. So, let’s use macros:

#[macro_export]
macro_rules! define_is_consecutive_splat1 {
    ($function:ident, $type:ty) => {
        #[inline]
        pub fn $function(chunk: Simd) -> bool
        where
            LaneCount: SupportedLaneCount,
        {
            define_comparison_value_splat!(comparison_value_splat, $type);

            let subtracted = chunk - comparison_value_splat();
            Simd::splat(chunk[0]) == subtracted
        }
    };
}
#[macro_export]
macro_rules! define_comparison_value_splat {
    ($function:ident, $type:ty) => {
        pub const fn $function() -> Simd
        where
            LaneCount: SupportedLaneCount,
        {
            let mut arr: [$type; N] = [0; N];
            let mut i = 0;
            while i < N {
                arr[i] = i as $type;
                i += 1;
            }
            Simd::from_array(arr)
        }
    };
}

This lets us run on any particular element type and all number of LANES (Rust Playground):

define_is_consecutive_splat1!(is_consecutive_splat1_i32, i32);

let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));
assert!(is_consecutive_splat1_i32(a));
assert!(!is_consecutive_splat1_i32(ninety_nines));

Sadly, this still isn’t enough for range-set-blaze. It needs to run on all element types (not just one) and (ideally) all LANES (not just one).

Happily, there’s a workaround, that again depends on macros. It also exploits the fact that we only need to support a finite list of types, namely: i8i16i32i64isizeu8u16u32u64, and usize. If you need to also (or instead) support f32 and f64, that’s fine.

If, on the other hand, you need to support i128 and u128, you may be out of luck. The core::simd module doesn’t support them. We’ll see in Rule 8 how range-set-blaze gets around that at a performance cost.

The workaround defines a new trait, here called IsConsecutive. We then use a macro (that calls a macro, that calls a macro) to implement the trait on the 10 types of interest.

pub trait IsConsecutive {
    fn is_consecutive(chunk: Simd) -> bool
    where
        Self: SimdElement,
        Simd: Sub, Output = Simd>,
        LaneCount: SupportedLaneCount;
}

macro_rules! impl_is_consecutive {
    ($type:ty) => {
        impl IsConsecutive for $type {
            #[inline] // very important
            fn is_consecutive(chunk: Simd) -> bool
            where
                Self: SimdElement,
                Simd: Sub, Output = Simd>,
                LaneCount: SupportedLaneCount,
            {
                define_is_consecutive_splat1!(is_consecutive_splat1, $type);
                is_consecutive_splat1(chunk)
            }
        }
    };
}

impl_is_consecutive!(i8);
impl_is_consecutive!(i16);
impl_is_consecutive!(i32);
impl_is_consecutive!(i64);
impl_is_consecutive!(isize);
impl_is_consecutive!(u8);
impl_is_consecutive!(u16);
impl_is_consecutive!(u32);
impl_is_consecutive!(u64);
impl_is_consecutive!(usize);

We can now call fully generic code (Rust Playground):

// Works on i32 and 16 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

// Works on i8 and 64 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 64]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest.


Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there.

Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Cisco routers knocked out due to Cloudflare DNS change

Exposes architectural fragility Networking consultant Yvette Schmitter, CEO of the Fusion Collective consulting firm, said the Cloudflare change “exposed Cisco’s architectural fragility when [some Cisco] switches worldwide entered fatal reboot loops every 10-30 minutes.” What happened? “Cloudflare changed record ordering. Cisco’s firmware, instead of handling unexpected DNS responses gracefully, treated

Read More »

Uniper Gets Tolling Rights for 30 MW Arneburg Battery

Neoen has signed a deal granting Uniper SE the full tolling rights for the 30-megawatt/78-megawatt-hour Arneburg Battery in Saxony-Anhalt, Germany. The seven-year contract will start 2027, the companies said Thursday. The battery energy storage project is under construction. Neoen, a Paris-based renewables company under New York City-based Brookfield Asset Management, expects Arneburg Battery to become operational this year. “Uniper will have full control of the charging and discharging of the battery while Neoen will continue to manage the asset’s operation and maintenance”, Neoen said in a statement on its website. “Uniper intends to optimize the asset across all revenue market channels from ancillary grid services to the wholesale market”. Neoen said separately, “The company intends to become a major player in the country’s [Germany] storage market, leveraging its extensive expertise in developing and operating large-scale batteries around the globe”. Globally Neoen’s portfolio of battery energy storage systems in operation or under construction totals 2.7 gigawatts or 8.1 gigawatt hours, Neoen said. “With a substantial pipeline of projects in Germany, I am confident this marks the beginning of a strong collaboration between our two companies”, said Neoen energy management director Christophe de Branche. Uniper chief commercial officer Carsten Poppinga said, “Agreeing battery tolls like this offers a way for us to further diversify our portfolio and support the energy transition”. Last month Uniper said it had received full approval for the construction and operation of a 50-MW battery energy storage facility at the site of its former Wilhelmshaven power plant. The site, which produced coal electricity until December 2021, already has a solar plant under construction. Targeted to start operation July, the plant is designed to product up to 17.5 gigawatt hours a year, according to Uniper. “With the battery storage system, we are creating a link between security of supply and

Read More »

Venezuela Oil Being Held at Sea Swells

The volume of Venezuelan crude floating at sea has spiked to the highest level in more than three years after the US seized the country’s leader, Nicolas Maduro, and asserted control over its energy resources. More than 29 million barrels of Venezuelan oil are now on vessels stationary at sea, up from about 20 million barrels earlier this week, according to data from Kpler. Most of the increase has been seen in waters in Asia, where China has long been the largest importer of the South American nation’s output. “Chinese teapots are already bracing for the possibility that the barrels now in transit will be their last,” said Muyu Xu, a senior crude analyst at Kpler, referring to independent Chinese processors. The oil market has been rocked this week by the US intervention into OPEC member Venezuela, which sits on the world’s largest proven crude reserves. The Trump administration has said it plans to control future sales of Venezuelan oil and hold the proceeds, with the new arrangement to last “indefinitely,” according to Energy Secretary Chris Wright. It has also maintained a naval blockade on flows, although US-bound cargoes have been allowed. The upheaval has cast doubt on where the Venezuelan oil that’s now in transit or floating storage will end up. Still, Wright also said Washington would not prevent China from accessing Venezuelan oil, according to comments to Fox News. “We’re not going to cut off China,” he said. “The illicit trade in oil with Iran and Russia, the illegal gun-running stuff, that’s going to be cut off.” WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Iran Turmoil Pushes Oil to Weekly Gain Streak

Oil notched its longest streak of weekly gains since June as Iran intensified a crackdown on protests across the country and US President Donald Trump threatened repercussions if demonstrators were targeted. West Texas Intermediate futures settled near $59 a barrel after rising more than 5% over the prior two sessions. Tehran said that “rioters” who damage public property or clash with security forces will face the death penalty, just a day after the US president warned the country’s regime would “pay hell” if protesters were killed. The unrest is the most significant challenge to Supreme Leader Ayatollah Ali Khamenei since a nationwide uprising in 2022. Protests are disrupting air travel in and out of the country, which produces more than 3 million barrels a day of crude. The scale of risk shows up clearest in options markets, where the skew toward bullish calls is the biggest for US crude futures since July. The Iranian turmoil shifted the focus away from Venezuela, where Trump said further attacks were canceled, citing improved cooperation from the country, leading to a brief dip in oil prices earlier. An energy quarantine is still in effect, though, and the US continues to have its military in position for further action in the region after the capture of Venezuelan President Nicolas Maduro last week. Trump met with oil executives at the White House on Friday and said the US intends to decide which companies will be allowed to go into Venezuela. “We’re dealing with the country, so we’re empowered to make that deal,” he said, adding that “giant” oil companies will spend $100 billion of their own money in investment. Venezuela’s acting President Delcy Rodriguez, for her part, issued a statement Friday saying the country is a victim of an “illegitimate and illegal criminal aggression” by the

Read More »

Russia’s Crude Output in December Made Deep Plunge

Russia’s crude oil production plunged by the most in 18 months in December, pincered by western sanctions that are causing the nation’s barrels to pile up at sea and a surge of Ukrainian drone attacks on its energy infrastructure. The nation pumped an average 9.326 million barrels a day of crude oil last month, according to people with knowledge of government data, who asked not to be identified discussing classified information. The figure — which doesn’t include output of condensate — is more than 100,000 barrels a day below November, and almost 250,000 barrels a day lower than Russia is allowed to pump under agreement with the Organization of the Petroleum Exporting Countries and allies. The slump comes at a time when Ukraine has been carrying out wide ranging drone attacks on Russian oil infrastructure — directly curbing output and affecting refineries that consume the barrels. At the same time, Russian cargoes are amassing at sea amid signs of reticence among some buyers to take them following sweeping US sanctions targeting the nation’s two largest producers, Rosneft PJSC and Lukoil PJSC. Russia’s Energy Ministry didn’t immediately respond to a Bloomberg request for comment on the December crude production figures. It’s a public holiday in Russia. The December decline was also the deepest since June 2024 — a period when Russia was supposed to be cutting its production anyway under an agreement with OPEC+. The producer group agreed to return barrels to the market between April and December 2025, and then hold output steady in the first quarter of 2026.  Until December, Russia’s output had been rising, even if growth had been petering out before year end. Russia’s required level of production for the final month of 2025 was 9.574 million barrels a day, according to OPEC data. Historically, Russia had been a laggard in complying with

Read More »

Burgum Says VEN Oil Revival Won’t Rely on Funding From USA

The Trump administration is unlikely to provide financial support to help US oil companies revitalize Venezuela’s oil sector, Interior Secretary Doug Burgum said Friday, throwing cold water on hopes the multibillion-dollar effort would be subsidized by the US government.  “The capital is going to come from the capital markets and come from the energy companies,” Burgum, who also leads the White House’s National Energy Dominance Council, told Bloomberg Television. “I don’t see that these companies are going to need support from the US, other than things around security. If we can provide a secure, stable environment, the resource here is so significant and so large that it’s going to be attractive for people to go in and develop.”  Burgum’s remarks come after President Donald Trump previously suggested the effort, estimated to cost upwards of $100 billion over the next decade, could be reimbursed by the US. The president on Monday told NBC News “a tremendous amount of money will have to be spent and the oil companies will spend it, and then they’ll get reimbursed by us or through revenue.” Oil companies, which are set to meet with Trump, Burgum and other administration officials at the White House later Friday, have been wary of committing tens of billions of dollars to Venezuela over the next decade. Executives have sought assurances on physical and financial security amid concerns about the stability of a post-Nicolás Maduro government.  Energy Secretary Chris Wright said on Fox News Friday the US Export-Import Bank could be used to provide credit support.  “I have been deluged with companies interested to go to Venezuela, and so far, no one’s asked for money,” Wright said in response to a question about providing direct grants to oil firms. “What they want is the US to use our leverage to make

Read More »

Texas Oil, Gas Industry Employed Nearly 500K Texans in 2025

The Texas oil and natural gas industry employed 495,501 Texans last year, according to the Texas Oil & Gas Association’s (TXOGA) 2025 Energy and Economic Impact report, which was released this week. The sector that employed the most workers in 2025 was ‘support activities for oil and gas operations’, with 110,612 employees, followed by ‘gasoline stations with convenience stores’, with 81,268 employees, and ‘oil and gas pipeline and related structures construction’, with 50,667 employees, the report showed. ‘Crude petroleum extraction’ ranked as the oil and gas sector with the fourth most employees in 2025, with 49,187, and ‘oil and gas field machinery and equipment’ ranked fifth, with 29,280, the report revealed. TXOGA stated in the report that “every direct job in the Texas oil and natural gas industry creates approximately two additional jobs”, outlining that “1.4 million total jobs [were] supported across the Texas economy” in 2025. Texas oil and natural gas employers paid an average of $133,095 per job in 2025, according to the report, which noted that this was 68 percent more than the average paid by the rest of Texas’ private sector. The report showed that oil and gas taxes came in at $54,481 per employee last year, while “all other sector taxes” were $7,225 per employee. “Based on the combined state and local taxes and state royalties attributable to the industry, the oil and natural gas industry pays far more per employee than the average across all other Texas private-sector industries,” TXOGA stated in its report. According to TXOGA’s latest report, in 2025, the Texas oil and natural gas industry paid state and local taxes and state royalties totaling $27.0 billion. TXOGA pointed out in the report that this equates to nearly $74 million every day. A statement sent to Rigzone by the TXOGA team this

Read More »

AI, edge, and security: Shaping the need for modern infrastructure management

The rapidly evolving IT landscape, driven by artificial intelligence (AI), edge computing, and rising security threats, presents unprecedented challenges in managing compute infrastructure. Traditional management tools struggle to provide the necessary scalability, visibility, and automation to keep up with business demand, leading to inefficiencies and increased business risk. Yet organizations need their IT departments to be strategic business partners that enable innovation and drive growth. To realize that goal, IT leaders should rethink the status quo and free up their teams’ time by adopting a unified approach to managing infrastructure that supports both traditional and AI workloads. It’s a strategy that enables companies to simplify IT operations and improve IT job satisfaction. 5 IT management challenges of the AI era Cisco recently commissioned Forrester Consulting to conduct a Total Economic Impact™ analysis of Cisco Intersight. This IT operations platform provides visibility, control, and automation capabilities for the Cisco Unified Computing System (Cisco UCS), including Cisco converged, hyperconverged, and AI-ready infrastructure solutions across data centers, colocation facilities, and edge environments. Intersight uses a unified policy-driven approach to infrastructure management and integrates with leading operating systems, storage providers, hypervisors, and third-party IT service management and security tools. The Forrester study first uncovered the issues IT groups are facing: Difficulty scaling: Manual, repetitive processes cause lengthy IT compute infrastructure build and deployment times. This challenge is particularly acute for organizations that need to evolve infrastructure to support traditional and AI workloads across data centers and distributed edge environments. Architectural specialization and AI workloads: AI is altering infrastructure requirements, Forrester found.  Companies design systems to support specific AI workloads — such as data preparation, model training, and inferencing — and each demands specialized compute, storage, and networking capabilities. Some require custom chip sets and purpose-built infrastructure, such as for edge computing and low-latency applications.

Read More »

DCF Poll: Analyzing AI Data Center Growth

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #1796c1 !important; border-color: #1796c1 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #1796c1 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #1796c1 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #1796c1 !important; border-color: #1796c1 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #1796c1 !important; border-color: #1796c1 !important; } Coming out of 2025, AI data center development remains defined by momentum. But momentum is not the same as certainty. Behind the headlines, operators, investors, utilities, and policymakers are all testing the assumptions that carried projects forward over the past two years, from power availability and capital conditions to architecture choices and community response. Some will hold. Others may not. To open our 2026 industry polling, we’re taking a closer look at which pillars of AI data center growth are under the most pressure. What assumption about AI data center growth feels most fragile right now?

Read More »

JLL’s 2026 Global Data Center Outlook: Navigating the AI Supercycle, Power Scarcity and Structural Market Transformation

Sovereign AI and National Infrastructure Policy JLL frames artificial intelligence infrastructure as an emerging national strategic asset, with sovereign AI initiatives representing an estimated $8 billion in cumulative capital expenditure by 2030. While modest relative to hyperscale investment totals, this segment carries outsized strategic importance. Data localization mandates, evolving AI regulation, and national security considerations are increasingly driving governments to prioritize domestic compute capacity, often with pricing premiums reaching as high as 60%. Examples cited across Europe, the Middle East, North America, and Asia underscore a consistent pattern: digital sovereignty is no longer an abstract policy goal, but a concrete driver of data center siting, ownership structures, and financing models. In practice, sovereign AI initiatives are accelerating demand for locally controlled infrastructure, influencing where capital is deployed and how assets are underwritten. For developers and investors, this shift introduces a distinct set of considerations. Sovereign projects tend to favor jurisdictional alignment, long-term tenancy, and enhanced security requirements, while also benefiting from regulatory tailwinds and, in some cases, direct state involvement. As AI capabilities become more tightly linked to economic competitiveness and national resilience, policy-driven demand is likely to remain a durable (if specialized) component of global data center growth. Energy and Sustainability as the Central Constraint Energy availability emerges as the report’s dominant structural constraint. In many major markets, average grid interconnection timelines now extend beyond four years, effectively decoupling data center development schedules from traditional utility planning cycles. As a result, operators are increasingly pursuing alternative energy strategies to maintain project momentum, including: Behind-the-meter generation Expanded use of natural gas, particularly in the United States Private-wire renewable energy projects Battery energy storage systems (BESS) JLL points to declining battery costs, seen falling below $90 per kilowatt-hour in select deployments, as a meaningful enabler of grid flexibility, renewable firming, and

Read More »

SoftBank, DigitalBridge, and Stargate: The Next Phase of OpenAI’s Infrastructure Strategy

OpenAI framed Stargate as an AI infrastructure platform; a mechanism to secure long-duration, frontier-scale compute across both training and inference by coordinating capital, land, power, and supply chain with major partners. When OpenAI announced Stargate in January 2025, the headline commitment was explicit: an intention to invest up to $500 billion over four to five years to build new AI infrastructure in the U.S., with $100 billion targeted for near-term deployment. The strategic backdrop in 2025 was straightforward. OpenAI’s model roadmap—larger models, more agents, expanded multimodality, and rising enterprise workloads—was driving a compute curve increasingly difficult to satisfy through conventional cloud procurement alone. Stargate emerged as a form of “control plane” for: Capacity ownership and priority access, rather than simply renting GPUs. Power-first site selection, encompassing grid interconnects, generation, water access, and permitting. A broader partner ecosystem beyond Microsoft, while still maintaining a working relationship with Microsoft for cloud capacity where appropriate. 2025 Progress: From Launch to Portfolio Buildout January 2025: Stargate Launches as a National-Scale Initiative OpenAI publicly launched Project Stargate on Jan. 21, 2025, positioning it as a national-scale AI infrastructure initiative. At this early stage, the work was less about construction and more about establishing governance, aligning partners, and shaping a public narrative in which compute was framed as “industrial policy meets real estate meets energy,” rather than simply an exercise in buying more GPUs. July 2025: Oracle Partnership Anchors a 4.5-GW Capacity Step On July 22, 2025, OpenAI announced that Stargate had advanced through a partnership with Oracle to develop 4.5 gigawatts of additional U.S. data center capacity. The scale of the commitment marked a clear transition from conceptual ambition to site- and megawatt-level planning. A figure of this magnitude reshaped the narrative. At 4.5 GW, Stargate forced alignment across transformers, transmission upgrades, switchgear, long-lead cooling

Read More »

Lenovo unveils purpose-built AI inferencing servers

There is also the Lenovo ThinkSystem SR650i, which offers high-density GPU computing power for faster AI inference and is intended for easy installation in existing data centers to work with existing systems. Finally, there is the Lenovo ThinkEdge SE455i for smaller, edge locations such as retail outlets, telecom sites, and industrial facilities. Its compact design allows for low-latency AI inference close to where data is generated and is rugged enough to operate in temperatures ranging from -5°C to 55°C. All of the servers include Lenovo’s Neptune air- and liquid-cooling technology and are available through the TruScale pay-as-you-go pricing model. In addition to the new hardware, Lenovo introduced new AI Advisory Services with AI Factory Integration. This service gives access to professionals for identifying, deploying, and managing best-fit AI Inferencing servers. It also launched Premier Support Plus, a service that gives professional assistance in data center management, freeing up IT resources for more important projects.

Read More »

Samsung warns of memory shortages driving industry-wide price surge in 2026

SK Hynix reported during its October earnings call that its HBM, DRAM, and NAND capacity is “essentially sold out” for 2026, while Micron recently exited the consumer memory market entirely to focus on enterprise and AI customers. Enterprise hardware costs surge The supply constraints have translated directly into sharp price increases across enterprise hardware. Samsung raised prices for 32GB DDR5 modules to $239 from $149 in September, a 60% increase, while contract pricing for DDR5 has surged more than 100%, reaching $19.50 per unit compared to around $7 earlier in 2025. DRAM prices have already risen approximately 50% year to date and are expected to climb another 30% in Q4 2025, followed by an additional 20% in early 2026, according to Counterpoint Research. The firm projected that DDR5 64GB RDIMM modules, widely used in enterprise data centers, could cost twice as much by the end of 2026 as they did in early 2025. Gartner forecast DRAM prices to increase by 47% in 2026 due to significant undersupply in both traditional and legacy DRAM markets, Chauhan said. Procurement leverage shifts to hyperscalers The pricing pressures and supply constraints are reshaping the power dynamics in enterprise procurement. For enterprise procurement, supplier size no longer guarantees stability. “As supply becomes more contested in 2026, procurement leverage will hinge less on volume and more on strategic alignment,” Rawat said. Hyperscale cloud providers secure supply through long-term commitments, capacity reservations, and direct fab investments, obtaining lower costs and assured availability. Mid-market firms rely on shorter contracts and spot sourcing, competing for residual capacity after large buyers claim priority supply.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »