Stay Ahead, Stay ONMINE

Nine Rules for SIMD Acceleration of Your Rust Code (Part 1)

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD. SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities. Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier. The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes! See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet. On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.) Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations. The rules are: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. CCC: Check, Control, and Choose your computer’s SIMD capabilities. Learn core::simd, but selectively. Brainstorm candidate algorithms. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. See Part 2 for these rules: 7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64. 8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking. 9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature. Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions. Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module. Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them: core::arch core::simd Nightly Delightfully easy and portable. Limits downstream users to nightly. I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile. In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps: First, create a project called simd_hello: cargo new simd_hello cd simd_hello Edit src/main.rs to contain (Rust playground): // Tell nightly Rust to enable ‘portable_simd’ #![feature(portable_simd)] use core::simd::prelude::*; // constant Simd structs const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); fn main() { // create a Simd struct from a slice of LANES bytes let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; // add 13 to each byte // compare each byte to ‘Z’, where the byte is greater than ‘Z’, subtract 26 let mask = data.simd_gt(ZEES); // compare each byte to ‘Z’ data = mask.select(data – TWENTYSIXS, data); let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); } Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly). You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously. Let’s look at each section of the program to see how it works. It starts with: #![feature(portable_simd)] use core::simd::prelude::*; Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits. In the code’s next section, we define useful constants: const LANES: usize = 32; const THIRTEENS: Simd = Simd::::from_array([13; LANES]); const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]); const ZEES: Simd = Simd::::from_array([b’Z’; LANES]); The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const. The next two lines copy our encrypted text into data and then adds 13 to each letter. let mut data = Simd::::from_slice(b”URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY”); data += THIRTEENS; What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility. The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255. Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’. let mask = data.simd_gt(ZEES); data = mask.select(data – TWENTYSIXS, data); This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common. The program ends like so: let output = String::from_utf8_lossy(data.as_array()); assert_eq!(output, “HELLOWORLDIDOHOPEITSALLGOINGWELL”); println!(“{}”, output); Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying. Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power. Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities. To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command. Run with: rustup override set nightly cargo install cargo-simd-detect –force cargo simd-detect On my machine, it outputs: extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true false avx512f 512-bit/64-bytes true false This says that my machine supports the sse2, avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension. The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions. Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable: # For Windows Command Prompt set RUSTFLAGS=-C target-feature=+avx2 # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-feature=+avx2″ “Force install” and run simd-detect again and you should see that avx2 is enabled. # Force install every time to see changes to ‘enabled’ cargo install cargo-simd-detect –force cargo simd-detect extension width available enabled sse2 128-bit/16-bytes true true avx2 256-bit/32-bytes true true avx512f 512-bit/64-bytes true false Alternatively, you can turn on every SIMD extension that your machine supports: # For Windows Command Prompt set RUSTFLAGS=-C target-cpu=native # For Unix-like shells (like Bash) export RUSTFLAGS=”-C target-cpu=native” On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers. You can set SIMD extensions back to their default (sse2 on Intel/AMD) with: # For Windows Command Prompt set RUSTFLAGS= # For Unix-like shells (like Bash) unset RUSTFLAGS You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming. Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust. Rule 3: Learn core::simd, but selectively. To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation. Structs Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them. Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis. SimdElements Floating-Point Types: f32, f64 Integer Types: i8, u8, i16, u16, i32, u32, i64, u64, isize, usize — but not i128, u128 Simd constructors Simd::from_array – creates a Simd struct by copying a fixed-length array. Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice. Simd::splat – replicates a single value across all lanes of a Simd struct. slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers). Simd conversion Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference. Simd methods and operators simd[i] – extract a value from a lane of a Simd. simd + simd – performs element-wise addition of two Simd structs. Also, supported -, *, /, %, remainder, bitwise-and, -or, xor, -not, -shift. simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too. Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_lt, simd_le, simd_ge, simd_lt, simd_eq, simd_ne. Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right. simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes. simd == simd – checks for equality between two Simd structs, returning a regular bool result. Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_or, reduce_xor, reduce_max, reduce_min, reduce_sum (but noreduce_eq). Mask methods and operators Mask::select – selects elements from two Simd struct based on a mask. Mask::all – tells if the mask is all true. Mask::any – tells if the mask contains any true. All about lanes Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct. SupportedLaneCount – tells the allowed values of LANES. Use by generics. simd.lanes – const method that tells a Simd struct’s number of lanes. Low-level alignment, offsets, etc. When possible, use to_simd instead. More, perhaps of interest With these building blocks at hand, it’s time to build something. Rule 4: Brainstorm candidate algorithms. What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7). I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful. Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers 100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0 Ultimately become three Rust ranges: 0..=0, 100..=499, 501..=999. (Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.) Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges 100..=499, 501..=999, 100..=100, 0..=0. with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges. I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges: 100..=499, 501..=999, 999..=999, 100..=100, 0..=0. If so, from_iter could then quickly finish the processing. Let’s start by writing is_consecutive with regular Rust: pub const LANES: usize = 16; pub fn is_consecutive_regular(chunk: &[u32; LANES]) – > bool { for i in 1..LANES { if chunk[i – 1].checked_add(1) != Some(chunk[i]) { return false; } } true } The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow. Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt: Splat0 use std::simd::prelude::*; const COMPARISON_VALUE_SPLAT0: Simd = Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]); pub fn is_consecutive_splat0(chunk: Simd) – > bool { if chunk[0].overflowing_add(LANES as u32 – 1) != (chunk[LANES – 1], false) { return false; } let added = chunk + COMPARISON_VALUE_SPLAT0; Simd::splat(added[0]) == added } Here is an outline of its calculations: Source: This and all following images by author. It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value. Splat1 & Splat2 When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1: const COMPARISON_VALUE_SPLAT1: Simd = Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); pub fn is_consecutive_splat1(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; Simd::splat(chunk[0]) == subtracted } Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted. He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access. I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates. Swizzle Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes. pub fn is_consecutive_sizzle(chunk: Simd) – > bool { let subtracted = chunk – COMPARISON_VALUE_SPLAT1; simd_swizzle!(subtracted, [0; LANES]) == subtracted } Rotate This one is different. I had high hopes for it. const COMPARISON_VALUE_ROTATE: Simd = Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]); pub fn is_consecutive_rotate(chunk: Simd) – > bool { let rotated = chunk.rotate_elements_right::(); chunk – rotated == COMPARISON_VALUE_ROTATE } The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.) Now that we have candidates, let’s start to evaluate them. Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language. We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed. Don’t worry if you don’t know assembly language, you can still get something out of looking at it. The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this: Referring to the numbers in the figure above, follow these steps to use Godbolt: Open godbolt.org with your web browser. Add a new source editor. Select Rust as your language. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates. Add a new compiler. Set the compiler version to nightly. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f. If there are errors, look at the output. If you want to share or save the state of the tool, click “Share” From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check. In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2: Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off. Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same. You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use. The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code. Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits. Let’s first generalize Splat1 with generics. #[inline] pub fn is_consecutive_splat1_gen( chunk: Simd, comparison_value: Simd, ) – > bool where T: SimdElement + PartialEq, Simd: Sub, LaneCount: SupportedLaneCount, { let subtracted = chunk – comparison_value; Simd::splat(chunk[0]) == subtracted } First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions. The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define. If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you. We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work: // DOESN’T WORK BECAUSE From is not const pub const fn comparison_value_splat_gen() – > Simd where T: SimdElement + Default + From + AddAssign, LaneCount: SupportedLaneCount, { let mut arr: [T; N] = [T::from(0usize); N]; let mut i_usize = 0; while i_usize { #[inline] pub fn $function(chunk: Simd) – > bool where LaneCount: SupportedLaneCount, { define_comparison_value_splat!(comparison_value_splat, $type); let subtracted = chunk – comparison_value_splat(); Simd::splat(chunk[0]) == subtracted } }; } #[macro_export] macro_rules! define_comparison_value_splat { ($function:ident, $type:ty) = > { pub const fn $function() – > Simd where LaneCount: SupportedLaneCount, { let mut arr: [$type; N] = [0; N]; let mut i = 0; while i bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount; } macro_rules! impl_is_consecutive { ($type:ty) = > { impl IsConsecutive for $type { #[inline] // very important fn is_consecutive(chunk: Simd) – > bool where Self: SimdElement, Simd: Sub, LaneCount: SupportedLaneCount, { define_is_consecutive_splat1!(is_consecutive_splat1, $type); is_consecutive_splat1(chunk) } } }; } impl_is_consecutive!(i8); impl_is_consecutive!(i16); impl_is_consecutive!(i32); impl_is_consecutive!(i64); impl_is_consecutive!(isize); impl_is_consecutive!(u8); impl_is_consecutive!(u16); impl_is_consecutive!(u32); impl_is_consecutive!(u64); impl_is_consecutive!(usize); We can now call fully generic code (Rust Playground): // Works on i32 and 16 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32))); let ninety_nines: Simd = black_box(Simd::from_array([99; 16])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); // Works on i8 and 64 lanes let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8))); let ninety_nines: Simd = black_box(Simd::from_array([99; 64])); assert!(IsConsecutive::is_consecutive(a)); assert!(!IsConsecutive::is_consecutive(ninety_nines)); With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest. Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there. Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Thanks to Ben Lichtman (B3NNY) at the Seattle Rust Meetup for pointing me in the right direction on SIMD.

SIMD (Single Instruction, Multiple Data) operations have been a feature of Intel/AMD and ARM CPUs since the early 2000s. These operations enable you to, for example, add an array of eight i32 to another array of eight i32 with just one CPU operation on a single core. Using SIMD operations greatly speeds up certain tasks. If you’re not using SIMD, you may not be fully using your CPU’s capabilities.

Is this “Yet Another Rust and SIMD” article? Yes and no. Yes, I did apply SIMD to a programming problem and then feel compelled to write an article about it. No, I hope that this article also goes into enough depth that it can guide you through your project. It explains the newly available SIMD capabilities and settings in Rust nightly. It includes a Rust SIMD cheatsheet. It shows how to make your SIMD code generic without leaving safe Rust. It gets you started with tools such as Godbolt and Criterion. Finally, it introduces new cargo commands that make the process easier.


The range-set-blaze crate uses its RangeSetBlaze::from_iter method to ingest potentially long sequences of integers. When the integers are “clumpy”, it can do this 30 times faster than Rust’s standard HashSet::from_iter. Can we do even better if we use Simd operations? Yes!

See this documentation for the definition of “clumpy”. Also, what happens if the integers are not clumpy? RangeSetBlaze is 2 to 3 times slower than HashSet.

On clumpy integers, RangeSetBlaze::from_slice — a new method based on SIMD operations — is 7 times faster than RangeSetBlaze::from_iter. That makes it more than 200 times faster than HashSet::from_iter. (When the integers are not clumpy, it is still 2 to 3 times slower than HashSet.)

Over the course of implementing this speed up, I learned nine rules that can help you accelerate your projects with SIMD operations.

The rules are:

  1. Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.
  2. CCC: Check, Control, and Choose your computer’s SIMD capabilities.
  3. Learn core::simd, but selectively.
  4. Brainstorm candidate algorithms.
  5. Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.
  6. Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

See Part 2 for these rules:

7. Use Criterion benchmarking to pick an algorithm and to discover that LANES should (almost) always be 32 or 64.

8. Integrate your best SIMD algorithm into your project with as_simd, special code for i128/u128, and additional in-context benchmarking.

9. Extricate your best SIMD algorithm from your project (for now) with an optional cargo feature.

Aside: To avoid wishy-washiness, I call these “rules”, but they are, of course, just suggestions.

Rule 1: Use nightly Rust and core::simd, Rust’s experimental standard SIMD module.

Rust can access SIMD operations either via the stable core::arch module or via nighty’s core::simd module. Let’s compare them:

core::arch

core::simd

  • Nightly
  • Delightfully easy and portable.
  • Limits downstream users to nightly.

I decided to go with “easy”. If you decide to take the harder road, starting first with the easier path may still be worthwhile.


In either case, before we try to use SIMD operations in a larger project, let’s make sure we can get them working at all. Here are the steps:

First, create a project called simd_hello:

cargo new simd_hello
cd simd_hello

Edit src/main.rs to contain (Rust playground):

// Tell nightly Rust to enable 'portable_simd'
#![feature(portable_simd)]
use core::simd::prelude::*;

// constant Simd structs
const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

fn main() {
    // create a Simd struct from a slice of LANES bytes
    let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");

    data += THIRTEENS; // add 13 to each byte

    // compare each byte to 'Z', where the byte is greater than 'Z', subtract 26
    let mask = data.simd_gt(ZEES); // compare each byte to 'Z'
    data = mask.select(data - TWENTYSIXS, data);

    let output = String::from_utf8_lossy(data.as_array());
    assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
    println!("{}", output);
}

Next — full SIMD capabilities require the nightly version of Rust. Assuming you have Rust installed, install nightly (rustup install nightly). Make sure you have the latest nightly version (rustup update nightly). Finally, set this project to use nightly (rustup override set nightly).

You can now run the program with cargo run. The program applies ROT13 decryption to 32 bytes of upper-case letters. With SIMD, the program can decrypt all 32 bytes simultaneously.

Let’s look at each section of the program to see how it works. It starts with:

#![feature(portable_simd)]
use core::simd::prelude::*;

Rust nightly offers its extra capabilities (or “features”) only on request. The #![feature(portable_simd)] statement requests that Rust nightly make available the new experimental core::simd module. The use statement then imports the module’s most important types and traits.

In the code’s next section, we define useful constants:

const LANES: usize = 32;
const THIRTEENS: Simd = Simd::::from_array([13; LANES]);
const TWENTYSIXS: Simd = Simd::::from_array([26; LANES]);
const ZEES: Simd = Simd::::from_array([b'Z'; LANES]);

The Simd struct is a special kind of Rust array. (It is, for example, always memory aligned.) The constant LANES tells the length of the Simd array. The from_array constructor copies a regular Rust array to create a Simd. In this case, because we want const Simd’s, the arrays we construct from must also be const.

The next two lines copy our encrypted text into data and then adds 13 to each letter.

let mut data = Simd::::from_slice(b"URYYBJBEYQVQBUBCRVGFNYYTBVATJRYY");
data += THIRTEENS;

What if you make an error and your encrypted text isn’t exactly length LANES (32)? Sadly, the compiler won’t tell you. Instead, when you run the program, from_slice will panic. What if the encrypted text contains non-upper-case letters? In this example program, we’ll ignore that possibility.

The += operator does element-wise addition between the Simd data and Simd THIRTEENS. It puts the result in data. Recall that debug builds of regular Rust addition check for overflows. Not so with SIMD. Rust defines SIMD arithmetic operators to always wrap. Values of type u8 wrap after 255.

Coincidentally, Rot13 decryption also requires wrapping, but after ‘Z’ rather than after 255. Here is one approach to coding the needed Rot13 wrapping. It subtracts 26 from any values on beyond ‘Z’.

let mask = data.simd_gt(ZEES);
data = mask.select(data - TWENTYSIXS, data);

This says to find the element-wise places beyond ‘Z’. Then, subtract 26 from all values. At the places of interest, use the subtracted values. At the other places, use the original values. Does subtracting from all values and then using only some seem wasteful? With SIMD, this takes no extra computer time and avoids jumps. This strategy is, thus, efficient and common.

The program ends like so:

let output = String::from_utf8_lossy(data.as_array());
assert_eq!(output, "HELLOWORLDIDOHOPEITSALLGOINGWELL");
println!("{}", output);

Notice the .as_array() method. It safely transmutes a Simd struct into a regular Rust array without copying.

Surprisingly to me, this program runs fine on computers without SIMD extensions. Rust nightly compiles the code to regular (non-SIMD) instructions. But we don’t just want to run “fine”, we want to run faster. That requires us to turn on our computer’s SIMD power.

Rule 2: CCC: Check, Control, and Choose your computer’s SIMD capabilities.

To make SIMD programs run faster on your machine, you must first discover which SIMD extensions your machine supports. If you have an Intel/AMD machine, you can use my simd-detect cargo command.

Run with:

rustup override set nightly
cargo install cargo-simd-detect --force
cargo simd-detect

On my machine, it outputs:

extension       width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            false
avx512f         512-bit/64-bytes        true            false

This says that my machine supports the sse2avx2, and avx512f SIMD extensions. Of those, by default, Rust enables the ubiquitous twenty-year-old sse2 extension.

The SIMD extensions form a hierarchy with avx512f above avx2 above sse2. Enabling a higher-level extension also enables the lower-level extensions.

Most Intel/AMD computers also support the ten-year-old avx2 extension. You enable it by setting an environment variable:

# For Windows Command Prompt
set RUSTFLAGS=-C target-feature=+avx2

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-feature=+avx2"

“Force install” and run simd-detect again and you should see that avx2 is enabled.

# Force install every time to see changes to 'enabled'
cargo install cargo-simd-detect --force
cargo simd-detect
extension         width                   available       enabled
sse2            128-bit/16-bytes        true            true
avx2            256-bit/32-bytes        true            true
avx512f         512-bit/64-bytes        true            false

Alternatively, you can turn on every SIMD extension that your machine supports:

# For Windows Command Prompt
set RUSTFLAGS=-C target-cpu=native

# For Unix-like shells (like Bash)
export RUSTFLAGS="-C target-cpu=native"

On my machine this enables avx512f, a newer SIMD extension supported by some Intel computers and a few AMD computers.

You can set SIMD extensions back to their default (sse2 on Intel/AMD) with:

# For Windows Command Prompt
set RUSTFLAGS=

# For Unix-like shells (like Bash)
unset RUSTFLAGS

You may wonder why target-cpu=native isn’t Rust’s default. The problem is that binaries created using avx2 or avx512f won’t run on computers missing those SIMD extensions. So, if you are compiling only for your own use, use target-cpu=native. If, however, you are compiling for others, choose your SIMD extensions thoughtfully and let people know which SIMD extension level you are assuming.

Happily, whatever level of SIMD extension you pick, Rust’s SIMD support is so flexible you can easily change your decision later. Let’s next learn details of programming with SIMD in Rust.

Rule 3: Learn core::simd, but selectively.

To build with Rust’s new core::simd module you should learn selected building blocks. Here is a cheatsheet with the structs, methods, etc., that I’ve found most useful. Each item includes a link to its documentation.

Structs

  • Simd – a special, aligned, fixed-length array of SimdElement. We refer to a position in the array and the element stored at that position as a “lane”. By default, we copy Simd structs rather than reference them.
  • Mask – a special Boolean array showing inclusion/exclusion on a per-lane basis.

SimdElements

  • Floating-Point Types: f32f64
  • Integer Types: i8u8i16u16i32u32i64u64isizeusize
  • — but not i128u128

Simd constructors

  • Simd::from_array – creates a Simd struct by copying a fixed-length array.
  • Simd::from_slice – creates a Simd struct by copying the first LANE elements of a slice.
  • Simd::splat – replicates a single value across all lanes of a Simd struct.
  • slice::as_simd – without copying, safely transmutes a regular slice into an aligned slice of Simd (plus unaligned leftovers).

Simd conversion

  • Simd::as_array – without copying, safely transmutes an Simd struct into a regular array reference.

Simd methods and operators

  • simd[i] – extract a value from a lane of a Simd.
  • simd + simd – performs element-wise addition of two Simd structs. Also, supported -*/%, remainder, bitwise-and, -or, xor, -not, -shift.
  • simd += simd – adds another Simd struct to the current one, in place. Other operators supported, too.
  • Simd::simd_gt – compares two Simd structs, returning a Mask indicating which elements of the first are greater than those of the second. Also, supported simd_ltsimd_lesimd_gesimd_ltsimd_eqsimd_ne.
  • Simd::rotate_elements_left – rotates the elements of a Simd struct to the left by a specified amount. Also, rotate_elements_right.
  • simd_swizzle!(simd, indexes) – rearranges the elements of a Simd struct based on the specified const indexes.
  • simd == simd – checks for equality between two Simd structs, returning a regular bool result.
  • Simd::reduce_and – performs a bitwise AND reduction across all lanes of a Simd struct. Also, supported: reduce_orreduce_xorreduce_maxreduce_minreduce_sum (but noreduce_eq).

Mask methods and operators

  • Mask::select – selects elements from two Simd struct based on a mask.
  • Mask::all – tells if the mask is all true.
  • Mask::any – tells if the mask contains any true.

All about lanes

  • Simd::LANES – a constant indicating the number of elements (lanes) in a Simd struct.
  • SupportedLaneCount – tells the allowed values of LANES. Use by generics.
  • simd.lanes – const method that tells a Simd struct’s number of lanes.

Low-level alignment, offsets, etc.

When possible, use to_simd instead.

More, perhaps of interest

With these building blocks at hand, it’s time to build something.

Rule 4: Brainstorm candidate algorithms.

What do you want to speed up? You won’t know ahead of time which SIMD approach (of any) will work best. You should, therefore, create many algorithms that you can then analyze (Rule 5) and benchmark (Rule 7).

I wanted to speed up range-set-blaze, a crate for manipulating sets of “clumpy” integers. I hoped that creating is_consecutive, a function to detect blocks of consecutive integers, would be useful.

Background: Crate range-set-blaze works on “clumpy” integers. “Clumpy”, here, means that the number of ranges needed to represent the data is small compared to the number of input integers. For example, these 1002 input integers

100, 101, …, 489, 499, 501, 502, …, 998, 999, 999, 100, 0

Ultimately become three Rust ranges:

0..=0, 100..=499, 501..=999.

(Internally, the RangeSetBlaze struct represents a set of integers as a sorted list of disjoint ranges stored in a cache efficient BTreeMap.)

Although the input integers are allowed to be unsorted and redundant, we expect them to often be “nice”. RangeSetBlaze’s from_iter constructor already exploits this expectation by grouping up adjacent integers. For example, from_iter first turns the 1002 input integers into four ranges

100..=499, 501..=999, 100..=100, 0..=0.

with minimal, constant memory usage, independent of input size. It then sorts and merges these reduced ranges.

I wondered if a new from_slice method could speed construction from array-like inputs by quickly finding (some) consecutive integers. For example, could it— with minimal, constant memory — turn the 1002 inputs integers into five Rust ranges:

100..=499, 501..=999, 999..=999, 100..=100, 0..=0.

If so, from_iter could then quickly finish the processing.

Let’s start by writing is_consecutive with regular Rust:

pub const LANES: usize = 16;
pub fn is_consecutive_regular(chunk: &[u32; LANES]) -> bool {
    for i in 1..LANES {
        if chunk[i - 1].checked_add(1) != Some(chunk[i]) {
            return false;
        }
    }
    true
}

The algorithm just loops through the array sequentially, checking that each value is one more than its predecessor. It also avoids overflow.

Looping over the items seemed so easy, I wasn’t sure if SIMD could do any better. Here was my first attempt:

Splat0

use std::simd::prelude::*;

const COMPARISON_VALUE_SPLAT0: Simd =
    Simd::from_array([15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]);

pub fn is_consecutive_splat0(chunk: Simd) -> bool {
    if chunk[0].overflowing_add(LANES as u32 - 1) != (chunk[LANES - 1], false) {
        return false;
    }
    let added = chunk + COMPARISON_VALUE_SPLAT0;
    Simd::splat(added[0]) == added
}

Here is an outline of its calculations:

Source: This and all following images by author.

It first (needlessly) checks that the first and last items are 15 apart. It then creates added by adding 15 to the 0th item, 14 to the next, etc. Finally, to see if all items in added are the same, it creates a new Simd based on added’s 0th item and then compares. Recall that splat creates a Simd struct from one value.

Splat1 & Splat2

When I mentioned the is_consecutive problem to Ben Lichtman, he independently came up with this, Splat1:

const COMPARISON_VALUE_SPLAT1: Simd =
    Simd::from_array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]);

pub fn is_consecutive_splat1(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    Simd::splat(chunk[0]) == subtracted
}

Splat1 subtracts the comparison value from chunk and checks if the result is the same as the first element of chunk, splatted.

He also came up with a variation called Splat2 that splats the first element of subtracted rather than chunk. That would seemingly avoid one memory access.

I’m sure you are wondering which of these is best, but before we discuss that let’s look at two more candidates.

Swizzle

Swizzle is like Splat2 but uses simd_swizzle! instead of splat. Macro simd_swizzle! creates a new Simd by rearranging the lanes of an old Simd according to an array of indexes.

pub fn is_consecutive_sizzle(chunk: Simd) -> bool {
    let subtracted = chunk - COMPARISON_VALUE_SPLAT1;
    simd_swizzle!(subtracted, [0; LANES]) == subtracted
}

Rotate

This one is different. I had high hopes for it.

const COMPARISON_VALUE_ROTATE: Simd =
    Simd::from_array([4294967281, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]);

pub fn is_consecutive_rotate(chunk: Simd) -> bool {
    let rotated = chunk.rotate_elements_right::();
    chunk - rotated == COMPARISON_VALUE_ROTATE
}

The idea is to rotate all the elements one to the right. We then subtract the original chunk from rotated. If the input is consecutive, the result should be “-15” followed by all 1’s. (Using wrapped subtraction, -15 is 4294967281u32.)

Now that we have candidates, let’s start to evaluate them.

Rule 5: Use Godbolt and AI to understand your code’s assembly, even if you don’t know assembly language.

We’ll evaluate the candidates in two ways. First, in this rule, we’ll look at the assembly language generated from our code. Second, in Rule 7, we’ll benchmark the code’s speed.

Don’t worry if you don’t know assembly language, you can still get something out of looking at it.

The easiest way to see the generated assembly language is with the Compiler Explorer, AKA Godbolt. It works best on short bits of code that don’t use outside crates. It looks like this:

Referring to the numbers in the figure above, follow these steps to use Godbolt:

  1. Open godbolt.org with your web browser.
  2. Add a new source editor.
  3. Select Rust as your language.
  4. Paste in the code of interest. Make the functions of interest public (pub fn). Do not include a main or unneeded functions. The tool doesn’t support external crates.
  5. Add a new compiler.
  6. Set the compiler version to nightly.
  7. Set options (for now) to -C opt-level=3 -C target-feature=+avx512f.
  8. If there are errors, look at the output.
  9. If you want to share or save the state of the tool, click “Share”

From the image above, you can see that Splat2 and Sizzle are exactly the same, so we can remove Sizzle from consideration. If you open up a copy of my Godbolt session, you’ll also see that most of the functions compile to about the same number of assembly operations. The exceptions are Regular — which is much longer — and Splat0 — which includes the early check.

In the assembly, 512-bit registers start with ZMM. 256-bit registers start YMM. 128-bit registers start with XMM. If you want to better understand the generated assembly, use AI tools to generate annotations. For example, here I ask Bing Chat about Splat2:

Try different compiler settings, including -C target-feature=+avx2 and then leaving target-feature completely off.

Fewer assembly operations don’t necessarily mean faster speed. Looking at the assembly does, however, give us a sanity check that the compiler is at least trying to use SIMD operations, inlining const references, etc. Also, as with Splat1 and Swizzle, it can sometimes let us know when two candidates are the same.

You may need disassembly features beyond what Godbolt offers, for example, the ability to work with code the uses external crates. B3NNY recommended the cargo tool cargo-show-asm to me. I tried it and found it reasonably easy to use.

The range-set-blaze crate must handle integer types beyond u32. Moreover, we must pick a number of LANES, but we have no reason to think that 16 LANES is always best. To address these needs, in the next rule we’ll generalize the code.

Rule 6: Generalize to all types and LANES with in-lined generics, (and when that doesn’t work) macros, and (when that doesn’t work) traits.

Let’s first generalize Splat1 with generics.

#[inline]
pub fn is_consecutive_splat1_gen(
    chunk: Simd,
    comparison_value: Simd,
) -> bool
where
    T: SimdElement + PartialEq,
    Simd: Sub, Output = Simd>,
    LaneCount: SupportedLaneCount,
{
    let subtracted = chunk - comparison_value;
    Simd::splat(chunk[0]) == subtracted
}

First, note the #[inline] attribute. It’s important for efficiency and we’ll use it on pretty much every one of these small functions.

The function defined above, is_consecutive_splat1_gen, looks great except that it needs a second input, called comparison_value, that we have yet to define.

If you don’t need a generic const comparison_value, I envy you. You can skip to the next rule if you like. Likewise, if you are reading this in the future and creating a generic const comparison_value is as effortless as having your personal robot do your household chores, then I doubly envy you.

We can try to create a comparison_value_splat_gen that is generic and const. Sadly, neither From nor alternative T::One are const, so this doesn’t work:

// DOESN'T WORK BECAUSE From is not const
pub const fn comparison_value_splat_gen() -> Simd
where
    T: SimdElement + Default + From + AddAssign,
    LaneCount: SupportedLaneCount,
{
    let mut arr: [T; N] = [T::from(0usize); N];
    let mut i_usize = 0;
    while i_usize < N {
        arr[i_usize] = T::from(i_usize);
        i_usize += 1;
    }
    Simd::from_array(arr)
}

Macros are the last refuge of scoundrels. So, let’s use macros:

#[macro_export]
macro_rules! define_is_consecutive_splat1 {
    ($function:ident, $type:ty) => {
        #[inline]
        pub fn $function(chunk: Simd) -> bool
        where
            LaneCount: SupportedLaneCount,
        {
            define_comparison_value_splat!(comparison_value_splat, $type);

            let subtracted = chunk - comparison_value_splat();
            Simd::splat(chunk[0]) == subtracted
        }
    };
}
#[macro_export]
macro_rules! define_comparison_value_splat {
    ($function:ident, $type:ty) => {
        pub const fn $function() -> Simd
        where
            LaneCount: SupportedLaneCount,
        {
            let mut arr: [$type; N] = [0; N];
            let mut i = 0;
            while i < N {
                arr[i] = i as $type;
                i += 1;
            }
            Simd::from_array(arr)
        }
    };
}

This lets us run on any particular element type and all number of LANES (Rust Playground):

define_is_consecutive_splat1!(is_consecutive_splat1_i32, i32);

let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));
assert!(is_consecutive_splat1_i32(a));
assert!(!is_consecutive_splat1_i32(ninety_nines));

Sadly, this still isn’t enough for range-set-blaze. It needs to run on all element types (not just one) and (ideally) all LANES (not just one).

Happily, there’s a workaround, that again depends on macros. It also exploits the fact that we only need to support a finite list of types, namely: i8i16i32i64isizeu8u16u32u64, and usize. If you need to also (or instead) support f32 and f64, that’s fine.

If, on the other hand, you need to support i128 and u128, you may be out of luck. The core::simd module doesn’t support them. We’ll see in Rule 8 how range-set-blaze gets around that at a performance cost.

The workaround defines a new trait, here called IsConsecutive. We then use a macro (that calls a macro, that calls a macro) to implement the trait on the 10 types of interest.

pub trait IsConsecutive {
    fn is_consecutive(chunk: Simd) -> bool
    where
        Self: SimdElement,
        Simd: Sub, Output = Simd>,
        LaneCount: SupportedLaneCount;
}

macro_rules! impl_is_consecutive {
    ($type:ty) => {
        impl IsConsecutive for $type {
            #[inline] // very important
            fn is_consecutive(chunk: Simd) -> bool
            where
                Self: SimdElement,
                Simd: Sub, Output = Simd>,
                LaneCount: SupportedLaneCount,
            {
                define_is_consecutive_splat1!(is_consecutive_splat1, $type);
                is_consecutive_splat1(chunk)
            }
        }
    };
}

impl_is_consecutive!(i8);
impl_is_consecutive!(i16);
impl_is_consecutive!(i32);
impl_is_consecutive!(i64);
impl_is_consecutive!(isize);
impl_is_consecutive!(u8);
impl_is_consecutive!(u16);
impl_is_consecutive!(u32);
impl_is_consecutive!(u64);
impl_is_consecutive!(usize);

We can now call fully generic code (Rust Playground):

// Works on i32 and 16 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 100 + i as i32)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 16]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

// Works on i8 and 64 lanes
let a: Simd = black_box(Simd::from_array(array::from_fn(|i| 10 + i as i8)));
let ninety_nines: Simd = black_box(Simd::from_array([99; 64]));

assert!(IsConsecutive::is_consecutive(a));
assert!(!IsConsecutive::is_consecutive(ninety_nines));

With this technique, we can create multiple candidate algorithms that are fully generic over type and LANES. Next, it is time to benchmark and see which algorithms are fastest.


Those are the first six rules for adding SIMD code to Rust. In Part 2, we look at rules 7 to 9. These rules will cover how to pick an algorithm and set LANES. Also, how to integrate SIMD operations into your existing code and (importantly) how to make it optional. Part 2 concludes with a discussion of when/if you should use SIMD and ideas for improving Rust’s SIMD experience. I hope to see you there.

Please follow Carl on Medium. I write on scientific programming in Rust and Python, machine learning, and statistics. I tend to write about one article per month.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Extreme plots enterprise marketplace for AI agents, tools, apps

Extreme Networks this week previewed an AI marketplace where it plans to offer a curated catalog of AI tools, agents and applications. Called Extreme Exchange, it’s designed to give enterprise customers a way to discover, deploy, and create AI agents, microapps, and workflows in minutes rather than developing such components

Read More »

Top quantum breakthroughs of 2025

The Helios quantum computing platform is available to customers through Quantinuum’s cloud service and on-premises offering. HSBC is using IBM’s Heron quantum computer to improve their bond trading predictions by 34% compared to classical computing. Caltech physicists create 6,100-qubit array. Kon H. Leung is seen working on the apparatus used

Read More »

How enterprises are rethinking online AI tools

A second path enterprises like had only about 35% buy-in, but generated the most enthusiasm. It is to use an online AI tool that offers more than a simple answer to a question, something more like an “interactive AI agent” than a chatbot. Two that got all the attention are

Read More »

Meren Bumps Up Production Guidance

Meren Energy Inc on Thursday raised its projected entitlement output for 2025 from 32,000-37,000 barrels of oil equivalent per day (boepd) to 34,500-37,500 boepd. The Vancouver, Canada-based company, which explores and develops oil and gas in Africa, also revised up its forecast for working-interest production from 28,000-33,000 boepd to 30,000-33,000 boepd. Meren, which currently derives its production offshore Nigeria, defines entitlement production as “calculated using the economic interest methodology and includes cost recovery oil, royalty oil and profit oil”. Working-interest production, according to Meren, is derived by multiplying project volumes by the company’s effective working interest in each license. In the third quarter, Meren, which this year rebranded from Africa Oil Corp, produced 35,600 boepd, down from 41,200 boepd in Q3 2024. Meren derives its production from Akpo and Egina, both operated by TotalEnergies SE, and Chevron Corp-operated Agbami. Production enhancement and exploration activities are progressing in the fields. “Following the break to the Akpo/Egina (PPL 2/3) drilling campaign in Q3 2025, efforts are underway to recommence the campaign”, Meren said. “As previously communicated, this break will allow for the interpretation of 4D seismic data to enhance the maturation of future infill well opportunities. Accordingly, the aim is to secure a deepwater drilling rig within the gap and start with the drilling of the Akpo Far East near-field prospect, followed by the drilling of further development wells on Akpo and Egina fields. “Akpo Far East is an infrastructure-led exploration opportunity that in case of commercial exploration success, presents an attractive short cycle, high-return investment opportunity that would utilize the existing Akpo facilities. Akpo Far East prospect has an unrisked, best estimate, gross field prospective resource volume of 143.6 MMboe. The targeted hydrocarbons are predicted to be light, high gas-oil-ratio oil equivalent to those found in the Akpo field. If successful,

Read More »

Jade Secures Preliminary Funding Deal for Mongolian CBM-to-LNG Project

Zhengzhou Langrun Intelligent Equipment Co Ltd has signed a non-binding letter of intent to provide up to $46 million (AUD 70 million) in financing for a coal bed methane (CBM)-to-liquefied natural gas (LNG) project by Jade Gas Holdings Ltd in Mongolia. The agreement is for the Red Lake gas field, part of the Australian company’s flagship project with the Mongolian government’s Erdenes Methane LLC to develop the Tavantolgoi XXXIII unconventional oil basin (TTCBM Project). Red Lake has 246 billion cubic feet of 2C gross unrisked contingent resources, according to Jade. The Chinese CBM-focused gas equipment manufacturer would fund drilling and production for the next 18 wells in the field, Jade said in a stock filing. Jade has already drilled seven Red Lake wells according to the company. The “non-dilutive financing” would also cover surface facilities for gathering, processing and liquefying gas produced from the field into LNG. The deal also includes “a low upfront capital outlay option, to be funded by future Jade revenue”, Jade said. The parties agreed to consider expanding the terms to accommodate all 175 gas production wells in Red Lake’s first-phase development. Phase 1 involves 20 production wells, including two that came online June, according to Jade. “Langrun’s expertise in the gas industry in China and in particular in CBM offers a great fit for Jade as the company seeks options to fast-track development of the Red Lake gas field and to optimize gas production for faster access to customer markets and ultimately early revenue”, Jade said. “Subject to agreement of definitive documentation, and government and regulator cooperation and other approvals, the Red Lake gas field could potentially be developed to cover purification, pipeline and other transport, compression (for potential production of CNG), liquefaction (for production of LNG), refueling station construction, enabling gas sales for vehicle,

Read More »

Var Energi Confirms Oil Discovery Near Goliat

Var Energi ASA on Thursday confirmed oil in the Zagato North appraisal well, located 10 kilometers (6.21 miles) north of its operated Goliat field on Norway’s side of the Barents Sea. Zagato North, or well 7122/8-4 S, yielded estimated gross recoverable resources of up to three million barrels of oil equivalent (MMboe) in the Klappmyss and Realgrunnen formations, according to a press release by the Stavanger, Norway-based oil and gas explorer and producer. The discovery is part of Production License 229, operated by Var Energi with a 65 percent stake with Equinor as partner holding 35 percent. It is the13th well drilled in the production license, awarded under the Barents Sea Project in 1997, the Norwegian Offshore Directorate (NOD) said separately. The partners are considering tying the discovery to existing Goliat infrastructure. The discovery had been proven February. The well aimed to delineate the 7122/8-3 S (Zagato) discovery in Lower Jurassic-Upper Triassic and Middle Triassic reservoir rocks in the Realgrunnen Subgroup and the Kobbe Formation respectively. “Well 7122/8-4 S encountered an 11-meter [36.09 feet] oil column in the Tubaen Formation in the Realgrunnen Subgroup in reservoir rocks totaling 8.5 meters with good reservoir quality”, the NOD said. “The oil/water contact was encountered 1,523 meters below sea level. “Additional reservoir rocks were encountered in the Kobbe Formation totaling 48 meters with moderate reservoir quality, but the reservoirs were aquiferous. “An 80-meter oil column was also proven in the Klappmyss Fomation in sandstone layers totaling one meter with poor reservoir quality. The oil/water contact was not encountered. “The well was not formation-tested, but extensive data acquisition and sampling were carried out. “Appraisal well 7122/8-4 S was drilled to respective measured/vertical depths of 2986/2793 meters below sea level, and was terminated in the Klappmyss Formation in the Lower Triassic”. Zagato North, which has a

Read More »

A new kind of self-service: empowering utilities to shape their own tech

When utilities are empowered to meet their own tech needs, the whole system benefits. Across the energy industry, the idea of self-service has long been aimed at end-customers, helping them check their usage, change a tariff, or resolve an issue without calling a support team. But in an era of rapid digital transformation, a new kind of self-service is emerging: one aimed at utilities themselves.Today, it’s becoming increasingly critical that utilities must be able to serve their own tech needs, configuring their tech systems to build new products, refine processes, and connect systems without complicated, lengthy coding and other outside help. Independently configurable tech is about giving teams direct control of their tools so they can respond to challenges and innovate at speed. As grids decentralize and customer expectations rise, utilities can’t afford to get caught up in coding request tickets. Many utilities still struggle with cumbersome, disconnected and inflexible systems.  Now, fortunately, a new generation of integrated, configurable tech is here, laying the groundwork for utilities to champion their changing industry. Rigid tech is holding utilities back Clunky tech remains one of the biggest barriers to utility innovation. Many utilities still rely on a patchwork of disconnected legacy systems – for billing, metering, customer care, and field operations, to name a few. These systems are often siloed, with data held in a range of different forms and formats. Even relatively small updates – building a new rate, or tweaking a debt collection process – often demands weeks of specialist work across several siloed platforms, followed by more effort to stitch those updates together without breaking everything. This isn’t just slow and costly, it wears people down. Talented teams lose faith when they can’t fix what’s broken or move ideas forward. Empowering utilities to serve their own tech needs Bringing

Read More »

Crude Settles Higher

Oil eked out gains, rebounding slightly from the previous trading day’s sharp slump as traders weighed the outlook for a record surplus against supply risks from US sanctions. West Texas Intermediate rose 0.3% to settle under $59 a barrel after losing almost 4.2% on Wednesday, its biggest drop since June. Expectations for a long-awaited surplus were bolstered when the International Energy Agency flagged a deteriorating outlook for a sixth consecutive month, saying in a report on Thursday that supply will exceed demand by just over four million barrels a day next year.  Hours later, a US government report showed crude inventories rose 6.4 million barrels last week, the biggest increase since July and markedly higher than expected.  Both announcements came a day after producer group OPEC — which has been restoring idled capacity this year — said that global supply had topped demand in the third quarter, flipping its earlier estimate for the period from a shortfall. The bearish outlook for next year has weighed on oil prices afresh in recent days, with a key indicator — WTI’s prompt spread — sinking into contango. That pricing pattern, with the nearest contracts trading at discounts to further-out ones, signals ample short-term supplies, though it also clawed back into bearish territory on Thursday. At the same time, the Trump administration has moved to raise the pressure on Russia to end the war in Ukraine, including sanctions on Rosneft PJSC and Lukoil PJSC. With days to go until sanctions fully kick in, The Carlyle Group Inc. is exploring its options to buy Lukoil’s foreign assets, Reuters reported.  And bearish momentum on the news of rising US crude inventories was in part undercut by indications that product inventories fell across the board while exports picked up, a sign of resilient consumption at home and

Read More »

South Sudan Asks Crude Producers for $2.5B Pre-Payment

South Sudan is asking crude producers for a total pre-payment of $2.5 billion, which it intends to refund through future production that would have been entitled to Petroliam Nasional Bhd. In separate letters sent in October to ONGC Nile Ganga BV and a unit of China National Petroleum Corp. and seen by Bloomberg, the petroleum ministry asked for $1 billion and $1.5 billion respectively to be repaid in 54 months. The two companies were in consortia with Petronas before the Malaysian multinational abandoned its assets in South Sudan, which were subsequently confiscated by the state-owned Nile Petroleum Corp. “We hope the agreement will be worked within one month from the date of receipt of this letter,” according to both leaked documents, which the ministry confirmed as authentic.  Both companies were not readily available to comment. The ministry said the leak “constitutes a gross violation of government confidentiality, ethics, and national security protocols.” State coffers in South Sudan — which relies on crude exports for more than 90% of government revenue — have run dry as a war in neighboring Sudan froze nearly the nation’s entire export. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

AMD outlines ambitious plan for AI-driven data centers

“There are very beefy workloads that you must have that performance for to run the enterprise,” he said. “The Fortune 500 mainstream enterprise customers are now … adopting Epyc faster than anyone. We’ve seen a 3x adoption this year. And what that does is drives back to the on-prem enterprise adoption, so that the hybrid multi-cloud is end-to-end on Epyc.” One of the key focus areas for AMD’s Epyc strategy has been our ecosystem build out. It has almost 180 platforms, from racks to blades to towers to edge devices, and 3,000 solutions in the market on top of those platforms. One of the areas where AMD pushes into the enterprise is what it calls industry or vertical workloads. “These are the workloads that drive the end business. So in semiconductors, that’s telco, it’s the network, and the goal there is to accelerate those workloads and either driving more throughput or drive faster time to market or faster time to results. And we almost double our competition in terms of faster time to results,” said McNamara. And it’s paying off. McNamara noted that over 60% of the Fortune 100 are using AMD, and that’s growing quarterly. “We track that very, very closely,” he said. The other question is are they getting new customer acquisitions, customers with Epyc for the first time? “We’ve doubled that year on year.” AMD didn’t just brag, it laid out a road map for the next two years, and 2026 is going to be a very busy year. That will be the year that new CPUs, both client and server, built on the Zen 6 architecture begin to appear. On the server side, that means the Venice generation of Epyc server processors. Zen 6 processors will be built on 2 nanometer design generated by (you guessed

Read More »

Building the Regional Edge: DartPoints CEO Scott Willis on High-Density AI Workloads in Non-Tier-One Markets

When DartPoints CEO Scott Willis took the stage on “the Distributed Edge” panel at the 2025 Data Center Frontier Trends Summit, his message resonated across a room full of developers, operators, and hyperscale strategists: the future of AI infrastructure will be built far beyond the nation’s tier-one metros. On the latest episode of the Data Center Frontier Show, Willis expands on that thesis, mapping out how DartPoints has positioned itself for a moment when digital infrastructure inevitably becomes more distributed, and why that moment has now arrived. DartPoints’ strategy centers on what Willis calls the “regional edge”—markets in the Midwest, Southeast, and South Central regions that sit outside traditional cloud hubs but are increasingly essential to the evolving AI economy. These are not tower-edge micro-nodes, nor hyperscale mega-campuses. Instead, they are regional data centers designed to serve enterprises with colocation, cloud, hybrid cloud, multi-tenant cloud, DRaaS, and backup workloads, while increasingly accommodating the AI-driven use cases shaping the next phase of digital infrastructure. As inference expands and latency-sensitive applications proliferate, Willis sees the industry’s momentum bending toward the very markets DartPoints has spent years cultivating. Interconnection as Foundation for Regional AI Growth A key part of the company’s differentiation is its interconnection strategy. Every DartPoints facility is built to operate as a deeply interconnected environment, drawing in all available carriers within a market and stitching sites together through a regional fiber fabric. Willis describes fiber as the “nervous system” of the modern data center, and for DartPoints that means creating an interconnection model robust enough to support a mix of enterprise cloud, multi-site disaster recovery, and emerging AI inference workloads. The company is already hosting latency-sensitive deployments in select facilities—particularly inference AI and specialized healthcare applications—and Willis expects such deployments to expand significantly as regional AI architectures become more widely

Read More »

Key takeaways from Cisco Partner Summit

Brian Ortbals, senior vice president from World Wide Technology, which is one of Cisco’s biggest and most important partners stated: “Cisco engaged partners early in the process and took our feedback along the way. We believe now is the right time for these changes as it will enable us to capitalize on the changes in the market.” The reality is, the more successful its more-than-half-a-million partners are, the more successful Cisco will be. Platform approach is coming together When Jeetu Patel took the reigns as chief product officer, one of his goals was to make the Cisco portfolio a “force multiple.” Patel has stated repeatedly that, historically, Cisco acted more as a technology holding company with good products in networking, security, collaboration, data center and other areas. In this case, product breadth was not an advantage, as everything must be sold as “best of breed,” which is a tough ask of the salesforce and partner community. Since then, there have been many examples of the coming together of the portfolio to create products that leverage the breadth of the platform. The latest is the Unified Edge appliance, an all-in-one solution that brings together compute, networking, storage and security. Cisco has been aggressive with AI products in the data center, and Cisco Unified Edge compliments that work with a device designed to bring AI to edge locations. This is ideally suited for retail, manufacturing, healthcare, factories and other industries where it’s more cost effecting and performative to run AI where the data lives.

Read More »

AI networking demand fueled Cisco’s upbeat Q1 financials

Customers are very focused on modernizing their network infrastructure in the enterprise in preparation for inferencing and AI workloads, Robbins said. “These things are always multi-year efforts,” and this is only the beginning, Robbins said. The AI opportunity “As we look at the AI opportunity, we see customer use cases growing across training, inferencing, and connectivity, with secure networking increasingly critical as workloads move from the data center to end users, devices, and agents at the edge,” Robbins said. “Agents are transforming network traffic from predictable bursts to persistent high-intensity loads, with agentic AI queries generating up to 25 times more network traffic than chatbots.” “Instead of pulling data to and from the data center, AI workloads require models and infrastructure to be closer to where data is created and decisions are made, particularly in industries such as retail, healthcare, and manufacturing.” Robbins pointed to last week’s introduction of Cisco Unified Edge, a converged platform that integrates networking, compute and storage to help enterprise customers more efficiently handle data from AI and other workloads at the edge. “Unified Edge enables real-time inferencing for agentic and physical AI workloads, so enterprises can confidently deploy and manage AI at scale,” Robbins said. On the hyperscaler front, “we see a lot of solid pipeline throughout the rest of the year. The use cases, we see it expanding,” Robbins said. “Obviously, we’ve been selling networking infrastructure under the training models. We’ve been selling scale-out. We launched the P200-based router that will begin to address some of the scale-across opportunities.” Cisco has also seen great success with its pluggable optics, Robbins said. “All of the hyperscalers now are officially customers of our pluggable optics, so we feel like that’s a great opportunity. They not only plug into our products, but they can be used with other companies’

Read More »

When the Cloud Leaves Earth: Google and NVIDIA Test Space Data Centers for the Orbital AI Era

On November 4, 2025, Google unveiled Project Suncatcher, a moonshot research initiative exploring the feasibility of AI data centers in space. The concept envisions constellations of solar-powered satellites in Low Earth Orbit (LEO), each equipped with Tensor Processing Units (TPUs) and interconnected via free-space optical laser links. Google’s stated objective is to launch prototype satellites by early 2027 to test the idea and evaluate scaling paths if the technology proves viable. Rather than a commitment to move production AI workloads off-planet, Suncatcher represents a time-bound research program designed to validate whether solar-powered, laser-linked LEO constellations can augment terrestrial AI factories, particularly for power-intensive, latency-tolerant tasks. The 2025–2027 window effectively serves as a go/no-go phase to assess key technical hurdles including thermal management, radiation resilience, launch economics, and optical-link reliability. If these milestones are met, Suncatcher could signal the emergence of a new cloud tier: one that scales AI with solar energy rather than substations. Inside Google’s Suncatcher Vision Google has released a detailed technical paper titled “Towards a Future Space-Based, Highly Scalable AI Infrastructure Design.” The accompanying Google Research blog describes Project Suncatcher as “a moonshot exploring a new frontier” – an early-stage effort to test whether AI compute clusters in orbit can become a viable complement to terrestrial data centers. The paper outlines several foundational design concepts: Orbit and Power Project Suncatcher targets Low Earth Orbit (LEO), where solar irradiance is significantly higher and can remain continuous in specific orbital paths. Google emphasizes that space-based solar generation will serve as the primary power source for the TPU-equipped satellites. Compute and Interconnect Each satellite would host Tensor Processing Unit (TPU) accelerators, forming a constellation connected through free-space optical inter-satellite links (ISLs). Together, these would function as a disaggregated orbital AI cluster, capable of executing large-scale batch and training workloads. Downlink

Read More »

Cloud-based GPU savings are real – for the nimble

The pattern points to an evolving GPU ecosystem: while top-tier chips like Nvidia’s new GB200 Blackwell processors remain in extremely short supply, older models such as the A100 and H100 are becoming cheaper and more available. Yet, customer behavior may not match practical needs. “Many are buying the newest GPUs because of FOMO—the fear of missing out,” he added. “ChatGPT itself was built on older architecture, and no one complained about its performance.” Gil emphasized that managing cloud GPU resources now requires agility, both operationally and geographically. Spot capacity fluctuates hourly or even by the minute, and availability varies across data center regions. Enterprises willing to move workloads dynamically between regions—often with the help of AI-driven automation—can achieve cost reductions of up to 80%. “If you can move your workloads where the GPUs are cheap and available, you pay five times less than a company that can’t move,” he said. “Human operators can’t respond that fast automation is essential.” Conveniently, Cast sells an AI automation solution. But it is not the only one and the argument is valid. If spot pricing can be found cheaper at another location, you want to take it to keep the cloud bill down/ Gil concluded by urging engineers and CTOs to embrace flexibility and automation rather than lock themselves into fixed regions or infrastructure providers. “If you want to win this game, you have to let your systems self-adjust and find capacity where it exists. That’s how you make AI infrastructure sustainable.”

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »