Stay Ahead, Stay ONMINE

R.E.D.: Scaling Text Classification with Expert Delegation

With the new age of problem-solving augmented by Large Language Models (LLMs), only a handful of problems remain that have subpar solutions. Most classification problems (at a PoC level) can be solved by leveraging LLMs at 70–90% Precision/F1 with just good prompt engineering techniques, as well as adaptive in-context-learning (ICL) examples. What happens when you want to consistently achieve performance higher than that — when prompt engineering no longer suffices? The classification conundrum Text classification is one of the oldest and most well-understood examples of supervised learning. Given this premise, it should really not be hard to build robust, well-performing classifiers that handle a large number of input classes, right…? Welp. It is. It actually has to do a lot more with the ‘constraints’ that the algorithm is generally expected to work under: low amount of training data per class high classification accuracy (that plummets as you add more classes) possible addition of new classes to an existing subset of classes quick training/inference cost-effectiveness (potentially) really large number of training classes (potentially) endless required retraining of some classes due to data drift, etc. Ever tried building a classifier beyond a few dozen classes under these conditions? (I mean, even GPT could probably do a great job up to ~30 text classes with just a few samples…) Considering you take the GPT route — If you have more than a couple dozen classes or a sizeable amount of data to be classified, you are gonna have to reach deep into your pockets with the system prompt, user prompt, few shot example tokens that you will need to classify one sample. That is after making peace with the throughput of the API, even if you are running async queries. In applied ML, problems like these are generally tricky to solve since they don’t fully satisfy the requirements of supervised learning or aren’t cheap/fast enough to be run via an LLM. This particular pain point is what the R.E.D algorithm addresses: semi-supervised learning, when the training data per class is not enough to build (quasi)traditional classifiers. The R.E.D. algorithm R.E.D: Recursive Expert Delegation is a novel framework that changes how we approach text classification. This is an applied ML paradigm — i.e., there is no fundamentally different architecture to what exists, but its a highlight reel of ideas that work best to build something that is practical and scalable. In this post, we will be working through a specific example where we have a large number of text classes (100–1000), each class only has few samples (30–100), and there are a non-trivial number of samples to classify (10,000–100,000). We approach this as a semi-supervised learning problem via R.E.D. Let’s dive in. How it works simple representation of what R.E.D. does Instead of having a single classifier classify between a large number of classes, R.E.D. intelligently: Divides and conquers — Break the label space (large number of input labels) into multiple subsets of labels. This is a greedy label subset formation approach. Learns efficiently — Trains specialized classifiers for each subset. This step focuses on building a classifier that oversamples on noise, where noise is intelligently modeled as data from other subsets. Delegates to an expert — Employes LLMs as expert oracles for specific label validation and correction only, similar to having a team of domain experts. Using an LLM as a proxy, it empirically ‘mimics’ how a human expert validates an output. Recursive retraining — Continuously retrains with fresh samples added back from the expert until there are no more samples to be added/a saturation from information gain is achieved The intuition behind it is not very hard to grasp: Active Learning employs humans as domain experts to consistently ‘correct’ or ‘validate’ the outputs from an ML model, with continuous training. This stops when the model achieves acceptable performance. We intuit and rebrand the same, with a few clever innovations that will be detailed in a research pre-print later. Let’s take a deeper look… Greedy subset selection with least similar elements When the number of input labels (classes) is high, the complexity of learning a linear decision boundary between classes increases. As such, the quality of the classifier deteriorates as the number of classes increases. This is especially true when the classifier does not have enough samples to learn from — i.e. each of the training classes has only a few samples. This is very reflective of a real-world scenario, and the primary motivation behind the creation of R.E.D. Some ways of improving a classifier’s performance under these constraints: Restrict the number of classes a classifier needs to classify between Make the decision boundary between classes clearer, i.e., train the classifier on highly dissimilar classes Greedy Subset Selection does exactly this — since the scope of the problem is Text Classification, we form embeddings of the training labels, reduce their dimensionality via UMAP, then form S subsets from them. Each of the S subsets has elements as n training labels. We pick training labels greedily, ensuring that every label we pick for the subset is the most dissimilar label w.r.t. the other labels that exist in the subset: import numpy as np from sklearn.metrics.pairwise import cosine_similarity def avg_embedding(candidate_embeddings): return np.mean(candidate_embeddings, axis=0) def get_least_similar_embedding(target_embedding, candidate_embeddings): similarities = cosine_similarity(target_embedding, candidate_embeddings) least_similar_index = np.argmin(similarities) # Use argmin to find the index of the minimum least_similar_element = candidate_embeddings[least_similar_index] return least_similar_element def get_embedding_class(embedding, embedding_map): reverse_embedding_map = {value: key for key, value in embedding_map.items()} return reverse_embedding_map.get(embedding) # Use .get() to handle missing keys gracefully def select_subsets(embeddings, n): visited = {cls: False for cls in embeddings.keys()} subsets = [] current_subset = [] while any(not visited[cls] for cls in visited): for cls, average_embedding in embeddings.items(): if not current_subset: current_subset.append(average_embedding) visited[cls] = True elif len(current_subset) >= n: subsets.append(current_subset.copy()) current_subset = [] else: subset_average = avg_embedding(current_subset) remaining_embeddings = [emb for cls_, emb in embeddings.items() if not visited[cls_]] if not remaining_embeddings: break # handle edge case least_similar = get_least_similar_embedding(target_embedding=subset_average, candidate_embeddings=remaining_embeddings) visited_class = get_embedding_class(least_similar, embeddings) if visited_class is not None: visited[visited_class] = True current_subset.append(least_similar) if current_subset: # Add any remaining elements in current_subset subsets.append(current_subset) return subsets the result of this greedy subset sampling is all the training labels clearly boxed into subsets, where each subset has at most only n classes. This inherently makes the job of a classifier easier, compared to the original S classes it would have to classify between otherwise! Semi-supervised classification with noise oversampling Cascade this after the initial label subset formation — i.e., this classifier is only classifying between a given subset of classes. Picture this: when you have low amounts of training data, you absolutely cannot create a hold-out set that is meaningful for evaluation. Should you do it at all? How do you know if your classifier is working well? We approached this problem slightly differently — we defined the fundamental job of a semi-supervised classifier to be pre-emptive classification of a sample. This means that regardless of what a sample gets classified as it will be ‘verified’ and ‘corrected’ at a later stage: this classifier only needs to identify what needs to be verified. As such, we created a design for how it would treat its data: n+1 classes, where the last class is noise noise: data from classes that are NOT in the current classifier’s purview. The noise class is oversampled to be 2x the average size of the data for the classifier’s labels Oversampling on noise is a faux-safety measure, to ensure that adjacent data that belongs to another class is most likely predicted as noise instead of slipping through for verification. How do you check if this classifier is working well — in our experiments, we define this as the number of ‘uncertain’ samples in a classifier’s prediction. Using uncertainty sampling and information gain principles, we were effectively able to gauge if a classifier is ‘learning’ or not, which acts as a pointer towards classification performance. This classifier is consistently retrained unless there is an inflection point in the number of uncertain samples predicted, or there is only a delta of information being added iteratively by new samples. Proxy active learning via an LLM agent This is the heart of the approach — using an LLM as a proxy for a human validator. The human validator approach we are talking about is Active Labelling Let’s get an intuitive understanding of Active Labelling: Use an ML model to learn on a sample input dataset, predict on a large set of datapoints For the predictions given on the datapoints, a subject-matter expert (SME) evaluates ‘validity’ of predictions Recursively, new ‘corrected’ samples are added as training data to the ML model The ML model consistently learns/retrains, and makes predictions until the SME is satisfied by the quality of predictions For Active Labelling to work, there are expectations involved for an SME: when we expect a human expert to ‘validate’ an output sample, the expert understands what the task is a human expert will use judgement to evaluate ‘what else’ definitely belongs to a label L when deciding if a new sample should belong to L Given these expectations and intuitions, we can ‘mimic’ these using an LLM: give the LLM an ‘understanding’ of what each label means. This can be done by using a larger model to critically evaluate the relationship between {label: data mapped to label} for all labels. In our experiments, this was done using a 32B variant of DeepSeek that was self-hosted. Giving an LLM the capability to understand ‘why, what, and how’ Instead of predicting what is the correct label, leverage the LLM to identify if a prediction is ‘valid’ or ‘invalid’ only (i.e., LLM only has to answer a binary query). Reinforce the idea of what other valid samples for the label look like, i.e., for every pre-emptively predicted label for a sample, dynamically source c closest samples in its training (guaranteed valid) set when prompting for validation. The result? A cost-effective framework that relies on a fast, cheap classifier to make pre-emptive classifications, and an LLM that verifies these using (meaning of the label + dynamically sourced training samples that are similar to the current classification): import math def calculate_uncertainty(clf, sample): predicted_probabilities = clf.predict_proba(sample.reshape(1, -1))[0] # Reshape sample for predict_proba uncertainty = -sum(p * math.log(p, 2) for p in predicted_probabilities) return uncertainty def select_informative_samples(clf, data, k): informative_samples = [] uncertainties = [calculate_uncertainty(clf, sample) for sample in data] # Sort data by descending order of uncertainty sorted_data = sorted(zip(data, uncertainties), key=lambda x: x[1], reverse=True) # Get top k samples with highest uncertainty for sample, uncertainty in sorted_data[:k]: informative_samples.append(sample) return informative_samples def proxy_label(clf, llm_judge, k, testing_data): #llm_judge – any LLM with a system prompt tuned for verifying if a sample belongs to a class. Expected output is a bool : True or False. True verifies the original classification, False refutes it predicted_classes = clf.predict(testing_data) # Select k most informative samples using uncertainty sampling informative_samples = select_informative_samples(clf, testing_data, k) # List to store correct samples voted_data = [] # Evaluate informative samples with the LLM judge for sample in informative_samples: sample_index = testing_data.tolist().index(sample.tolist()) # changed from testing_data.index(sample) because of numpy array type issue predicted_class = predicted_classes[sample_index] # Check if LLM judge agrees with the prediction if llm_judge(sample, predicted_class): # If correct, add the sample to voted data voted_data.append(sample) # Return the list of correct samples with proxy labels return voted_data By feeding the valid samples (voted_data) to our classifier under controlled parameters, we achieve the ‘recursive’ part of our algorithm: Recursive Expert Delegation: R.E.D. By doing this, we were able to achieve close-to-human-expert validation numbers on controlled multi-class datasets. Experimentally, R.E.D. scales up to 1,000 classes while maintaining a competent degree of accuracy almost on par with human experts (90%+ agreement). I believe this is a significant achievement in applied ML, and has real-world uses for production-grade expectations of cost, speed, scale, and adaptability. The technical report, publishing later this year, highlights relevant code samples as well as experimental setups used to achieve given results. All images, unless otherwise noted, are by the author Interested in more details? Reach out to me over Medium or email for a chat!

With the new age of problem-solving augmented by Large Language Models (LLMs), only a handful of problems remain that have subpar solutions. Most classification problems (at a PoC level) can be solved by leveraging LLMs at 70–90% Precision/F1 with just good prompt engineering techniques, as well as adaptive in-context-learning (ICL) examples.

What happens when you want to consistently achieve performance higher than that — when prompt engineering no longer suffices?

The classification conundrum

Text classification is one of the oldest and most well-understood examples of supervised learning. Given this premise, it should really not be hard to build robust, well-performing classifiers that handle a large number of input classes, right…?

Welp. It is.

It actually has to do a lot more with the ‘constraints’ that the algorithm is generally expected to work under:

  • low amount of training data per class
  • high classification accuracy (that plummets as you add more classes)
  • possible addition of new classes to an existing subset of classes
  • quick training/inference
  • cost-effectiveness
  • (potentially) really large number of training classes
  • (potentially) endless required retraining of some classes due to data drift, etc.

Ever tried building a classifier beyond a few dozen classes under these conditions? (I mean, even GPT could probably do a great job up to ~30 text classes with just a few samples…)

Considering you take the GPT route — If you have more than a couple dozen classes or a sizeable amount of data to be classified, you are gonna have to reach deep into your pockets with the system prompt, user prompt, few shot example tokens that you will need to classify one sample. That is after making peace with the throughput of the API, even if you are running async queries.

In applied ML, problems like these are generally tricky to solve since they don’t fully satisfy the requirements of supervised learning or aren’t cheap/fast enough to be run via an LLM. This particular pain point is what the R.E.D algorithm addresses: semi-supervised learning, when the training data per class is not enough to build (quasi)traditional classifiers.

The R.E.D. algorithm

R.E.D: Recursive Expert Delegation is a novel framework that changes how we approach text classification. This is an applied ML paradigm — i.e., there is no fundamentally different architecture to what exists, but its a highlight reel of ideas that work best to build something that is practical and scalable.

In this post, we will be working through a specific example where we have a large number of text classes (100–1000), each class only has few samples (30–100), and there are a non-trivial number of samples to classify (10,000–100,000). We approach this as a semi-supervised learning problem via R.E.D.

Let’s dive in.

How it works

simple representation of what R.E.D. does

Instead of having a single classifier classify between a large number of classes, R.E.D. intelligently:

  1. Divides and conquers — Break the label space (large number of input labels) into multiple subsets of labels. This is a greedy label subset formation approach.
  2. Learns efficiently — Trains specialized classifiers for each subset. This step focuses on building a classifier that oversamples on noise, where noise is intelligently modeled as data from other subsets.
  3. Delegates to an expert — Employes LLMs as expert oracles for specific label validation and correction only, similar to having a team of domain experts. Using an LLM as a proxy, it empirically ‘mimics’ how a human expert validates an output.
  4. Recursive retraining — Continuously retrains with fresh samples added back from the expert until there are no more samples to be added/a saturation from information gain is achieved

The intuition behind it is not very hard to grasp: Active Learning employs humans as domain experts to consistently ‘correct’ or ‘validate’ the outputs from an ML model, with continuous training. This stops when the model achieves acceptable performance. We intuit and rebrand the same, with a few clever innovations that will be detailed in a research pre-print later.

Let’s take a deeper look…

Greedy subset selection with least similar elements

When the number of input labels (classes) is high, the complexity of learning a linear decision boundary between classes increases. As such, the quality of the classifier deteriorates as the number of classes increases. This is especially true when the classifier does not have enough samples to learn from — i.e. each of the training classes has only a few samples.

This is very reflective of a real-world scenario, and the primary motivation behind the creation of R.E.D.

Some ways of improving a classifier’s performance under these constraints:

  • Restrict the number of classes a classifier needs to classify between
  • Make the decision boundary between classes clearer, i.e., train the classifier on highly dissimilar classes

Greedy Subset Selection does exactly this — since the scope of the problem is Text Classification, we form embeddings of the training labels, reduce their dimensionality via UMAP, then form S subsets from them. Each of the subsets has elements as training labels. We pick training labels greedily, ensuring that every label we pick for the subset is the most dissimilar label w.r.t. the other labels that exist in the subset:

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity


def avg_embedding(candidate_embeddings):
    return np.mean(candidate_embeddings, axis=0)

def get_least_similar_embedding(target_embedding, candidate_embeddings):
    similarities = cosine_similarity(target_embedding, candidate_embeddings)
    least_similar_index = np.argmin(similarities)  # Use argmin to find the index of the minimum
    least_similar_element = candidate_embeddings[least_similar_index]
    return least_similar_element


def get_embedding_class(embedding, embedding_map):
    reverse_embedding_map = {value: key for key, value in embedding_map.items()}
    return reverse_embedding_map.get(embedding)  # Use .get() to handle missing keys gracefully


def select_subsets(embeddings, n):
    visited = {cls: False for cls in embeddings.keys()}
    subsets = []
    current_subset = []

    while any(not visited[cls] for cls in visited):
        for cls, average_embedding in embeddings.items():
            if not current_subset:
                current_subset.append(average_embedding)
                visited[cls] = True
            elif len(current_subset) >= n:
                subsets.append(current_subset.copy())
                current_subset = []
            else:
                subset_average = avg_embedding(current_subset)
                remaining_embeddings = [emb for cls_, emb in embeddings.items() if not visited[cls_]]
                if not remaining_embeddings:
                    break # handle edge case
                
                least_similar = get_least_similar_embedding(target_embedding=subset_average, candidate_embeddings=remaining_embeddings)

                visited_class = get_embedding_class(least_similar, embeddings)

                
                if visited_class is not None:
                  visited[visited_class] = True


                current_subset.append(least_similar)
    
    if current_subset:  # Add any remaining elements in current_subset
        subsets.append(current_subset)
        

    return subsets

the result of this greedy subset sampling is all the training labels clearly boxed into subsets, where each subset has at most only classes. This inherently makes the job of a classifier easier, compared to the original classes it would have to classify between otherwise!

Semi-supervised classification with noise oversampling

Cascade this after the initial label subset formation — i.e., this classifier is only classifying between a given subset of classes.

Picture this: when you have low amounts of training data, you absolutely cannot create a hold-out set that is meaningful for evaluation. Should you do it at all? How do you know if your classifier is working well?

We approached this problem slightly differently — we defined the fundamental job of a semi-supervised classifier to be pre-emptive classification of a sample. This means that regardless of what a sample gets classified as it will be ‘verified’ and ‘corrected’ at a later stage: this classifier only needs to identify what needs to be verified.

As such, we created a design for how it would treat its data:

  • n+1 classes, where the last class is noise
  • noise: data from classes that are NOT in the current classifier’s purview. The noise class is oversampled to be 2x the average size of the data for the classifier’s labels

Oversampling on noise is a faux-safety measure, to ensure that adjacent data that belongs to another class is most likely predicted as noise instead of slipping through for verification.

How do you check if this classifier is working well — in our experiments, we define this as the number of ‘uncertain’ samples in a classifier’s prediction. Using uncertainty sampling and information gain principles, we were effectively able to gauge if a classifier is ‘learning’ or not, which acts as a pointer towards classification performance. This classifier is consistently retrained unless there is an inflection point in the number of uncertain samples predicted, or there is only a delta of information being added iteratively by new samples.

Proxy active learning via an LLM agent

This is the heart of the approach — using an LLM as a proxy for a human validator. The human validator approach we are talking about is Active Labelling

Let’s get an intuitive understanding of Active Labelling:

  • Use an ML model to learn on a sample input dataset, predict on a large set of datapoints
  • For the predictions given on the datapoints, a subject-matter expert (SME) evaluates ‘validity’ of predictions
  • Recursively, new ‘corrected’ samples are added as training data to the ML model
  • The ML model consistently learns/retrains, and makes predictions until the SME is satisfied by the quality of predictions

For Active Labelling to work, there are expectations involved for an SME:

  • when we expect a human expert to ‘validate’ an output sample, the expert understands what the task is
  • a human expert will use judgement to evaluate ‘what else’ definitely belongs to a label L when deciding if a new sample should belong to L

Given these expectations and intuitions, we can ‘mimic’ these using an LLM:

  • give the LLM an ‘understanding’ of what each label means. This can be done by using a larger model to critically evaluate the relationship between {label: data mapped to label} for all labels. In our experiments, this was done using a 32B variant of DeepSeek that was self-hosted.
Giving an LLM the capability to understand ‘why, what, and how’
  • Instead of predicting what is the correct label, leverage the LLM to identify if a prediction is ‘valid’ or ‘invalid’ only (i.e., LLM only has to answer a binary query).
  • Reinforce the idea of what other valid samples for the label look like, i.e., for every pre-emptively predicted label for a sample, dynamically source c closest samples in its training (guaranteed valid) set when prompting for validation.

The result? A cost-effective framework that relies on a fast, cheap classifier to make pre-emptive classifications, and an LLM that verifies these using (meaning of the label + dynamically sourced training samples that are similar to the current classification):

import math

def calculate_uncertainty(clf, sample):
    predicted_probabilities = clf.predict_proba(sample.reshape(1, -1))[0]  # Reshape sample for predict_proba
    uncertainty = -sum(p * math.log(p, 2) for p in predicted_probabilities)
    return uncertainty


def select_informative_samples(clf, data, k):
    informative_samples = []
    uncertainties = [calculate_uncertainty(clf, sample) for sample in data]

    # Sort data by descending order of uncertainty
    sorted_data = sorted(zip(data, uncertainties), key=lambda x: x[1], reverse=True)

    # Get top k samples with highest uncertainty
    for sample, uncertainty in sorted_data[:k]:
        informative_samples.append(sample)

    return informative_samples


def proxy_label(clf, llm_judge, k, testing_data):
    #llm_judge - any LLM with a system prompt tuned for verifying if a sample belongs to a class. Expected output is a bool : True or False. True verifies the original classification, False refutes it
    predicted_classes = clf.predict(testing_data)

    # Select k most informative samples using uncertainty sampling
    informative_samples = select_informative_samples(clf, testing_data, k)

    # List to store correct samples
    voted_data = []

    # Evaluate informative samples with the LLM judge
    for sample in informative_samples:
        sample_index = testing_data.tolist().index(sample.tolist()) # changed from testing_data.index(sample) because of numpy array type issue
        predicted_class = predicted_classes[sample_index]

        # Check if LLM judge agrees with the prediction
        if llm_judge(sample, predicted_class):
            # If correct, add the sample to voted data
            voted_data.append(sample)

    # Return the list of correct samples with proxy labels
    return voted_data

By feeding the valid samples (voted_data) to our classifier under controlled parameters, we achieve the ‘recursive’ part of our algorithm:

Recursive Expert Delegation: R.E.D.

By doing this, we were able to achieve close-to-human-expert validation numbers on controlled multi-class datasets. Experimentally, R.E.D. scales up to 1,000 classes while maintaining a competent degree of accuracy almost on par with human experts (90%+ agreement).

I believe this is a significant achievement in applied ML, and has real-world uses for production-grade expectations of cost, speed, scale, and adaptability. The technical report, publishing later this year, highlights relevant code samples as well as experimental setups used to achieve given results.

All images, unless otherwise noted, are by the author

Interested in more details? Reach out to me over Medium or email for a chat!

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Cisco strengthens integrated IT/OT network and security controls

Another significant move that will help IT/OT integration is the planned integration of the management console for Cisco’s Catalyst and Meraki networks. That combination will allow IT and OT teams to see the same dashboard for industrial OT and IT enterprise/campus networks. Cyber Vision will feeds into the dashboard along

Read More »

MOL’s Tiszaújváros steam cracker processes first circular feedstock

MOL Group has completed its first certified production trial using circular feedstock at subsidiary MOL Petrochemicals Co. Ltd. complex in Tiszaújváros, Hungary, advancing the company’s strategic push toward circular economy integration in petrochemical production. Confirmed completed as of Sept. 15, the pilot marked MOL Group’s first use of post-consumer plastic

Read More »

Network jobs watch: Hiring, skills and certification trends

Desire for higher compensation Improve career prospects Want more interesting work “A robust and engaged tech workforce is essential to keeping enterprises operating at the highest level,” said Julia Kanouse, Chief Membership Officer at ISACA, in a statement. “In better understanding IT professionals’ motivations and pain points, including how these

Read More »

WTI Falls on Stockpile, Fed Moves

Oil eased after a three-session advance as traders assessed fresh US stockpile data and a Federal Reserve interest-rate cut. West Texas Intermediate fell 0.7% to settle above $64 a barrel after the Federal Reserve lowered its benchmark interest rate by a quarter percentage point and penciled in two more reductions this year. Although lower rates typically boost energy demand, investors focused on policymakers’ warnings of mounting labor market weakness. Traders had also mostly priced in a 25 basis-point cut ahead of the decision, leading some to unwind hedges against a bigger-than-expected reduction. The dollar strengthened, making commodities priced in the currency less attractive. “There is a somewhat counterintuitive reaction to the Fed’s cut, but the dovish pivot cements their shift to protect the labor side of their mandate,” said Frank Monkam, head of macro trading at Buffalo Bayou Commodities. The shift suggests “an admission that growth risks to the economy are becoming more apparent and concerning.” The Fed move compounded an earlier slide as traders discounted the most recent US stockpile data, which showed crude inventories fell 9.29 million barrels amid a sizable increase in exports. However, the adjustment factor ballooned and distillate inventories rose to the highest since January, adding a bearish tilt to the report. “Traders like to see domestic demand pulling the inventories,” as opposed to exports, said Dennis Kissler, senior vice president for trading at BOK Financial Securities. The distillate buildup also stunted a rally following Ukraine’s attack on the Saratov refinery in its latest strike on Russian energy facilities — which have helped cut the OPEC+ member’s production to its lowest post-pandemic level, according to Goldman Sachs Group Inc. Still, the strikes haven’t been enough to push oil out of the $5 band it has been in for most of the past month-and-a-half, buffeted between

Read More »

XRG Walks Away From $19B Santos Takeover

Abu Dhabi National Oil Co. dropped its planned $19 billion takeover of Australian natural gas producer Santos Ltd., walking away from an ambitious effort to expand overseas after failing to agree on key terms. A “combination of factors” discouraged the company’s XRG unit from making a final bid, it said Wednesday. The decision was strictly commercial and reflected disagreement over issues including valuation and tax, people familiar with the matter said, asking not to be identified discussing private information. It’s a notable retreat for XRG, the Adnoc spinoff launched to great fanfare last year and tasked with deploying Abu Dhabi’s billions into international dealmaking. The firm has been looking to build a global portfolio, particularly in chemicals and liquefied natural gas, and nixing the Santos transaction may slow an M&A drive aimed at diversifying the Middle Eastern emirate away from crude. The company made its indicative offer in June with a consortium that included Abu Dhabi Development Holding Co. and Carlyle Group Inc. The board of Santos, Australia’s second-largest fossil-fuel producer, recommended the $5.76-a-share proposal, which represented a 28% premium to the stock price at the time. But although the shares surged that day, they have remained well below the offer price, potentially indicating investors were skeptical the consortium could land the deal. Santos extended an exclusivity period for a second time last month, saying the group had sought more time to complete due diligence and obtain approvals. “The market will ask questions about Santos’ valuation after this,” Saul Kavonic, an energy analyst at MST Marquee, said by email. Investors may be wary about “any skeletons that may be lurking there, all the more so because XRG was a less price-sensitive buyer than most, yet still couldn’t make it work.” Santos’ American depositary receipts slumped as much as 9.5% to $4.69 on Wednesday. Covestro Hurdles Following agreements for

Read More »

Slovakia and Hungary Resist Trump Bid to Halt Russian Energy

Slovakia and Hungary signaled they would resist pressure from US President Donald Trump to cut Russian oil and gas imports until the European Union member states find sufficient alternative supplies.  “Before we can fully commit, we need to have the right conditions in place — otherwise we risk seriously damaging our industry and economy,” Slovak Economy Minister Denisa Sakova told reporters in Bratislava on Wednesday.  The minister said sufficient infrastructure must first be in place to support alternative routes. The comments amount to a pushback against fresh pressure from Trump for all EU states to end Russian energy imports, a move that would hit Slovakia and Hungary.  Hungarian Cabinet Minister Gergely Gulyas reiterated that his country would rebuff EU initiatives that threatened the security of its energy supplies. Sakova said she made clear Slovakia’s position during talks with US Energy Secretary Chris Wright in Vienna this week. She said the Trump official expressed understanding, while acknowledging that the US must boost energy projects in Europe.  Trump said over the weekend that he’s prepared to move ahead with “major” sanctions on Russian oil if European nations do the same. The government in Bratislava is prepared to shut its Russian energy links if it has sufficient infrastructure to transport volumes, Sakova said.  “As long as we have an alternative route, and the transmission capacity is sufficient, Slovakia has no problem diversifying,” the minister said. A complete cutoff of Russian supplies would pose a risk, she said, because Slovakia is located at the very end of alternative supply routes coming from the West.  Slovakia and Hungary, landlocked nations bordering Ukraine, have historically depended on Russian oil and gas. After Russia’s full-scale invasion of Ukraine in 2022, both launched several diversification initiatives. Slovakia imports around third of its oil from non-Russian sources via the Adria pipeline

Read More »

Slovakia Resists Pressure to Quickly Halt Russian Energy

Slovakia and Hungary signaled they would resist pressure from US President Donald Trump to cut Russian oil and gas imports until the European Union member states find sufficient alternative supplies.  “Before we can fully commit, we need to have the right conditions in place — otherwise we risk seriously damaging our industry and economy,” Slovak Economy Minister Denisa Sakova told reporters in Bratislava on Wednesday.  The minister said sufficient infrastructure must first be in place to support alternative routes. The comments amount to a pushback against fresh pressure from Trump for all EU states to end Russian energy imports, a move that would hit Slovakia and Hungary.  Hungarian Cabinet Minister Gergely Gulyas reiterated that his country would rebuff EU initiatives that threatened the security of its energy supplies. Sakova said she made clear Slovakia’s position during talks with US Energy Secretary Chris Wright in Vienna this week. She said the Trump official expressed understanding, while acknowledging that the US must boost energy projects in Europe.  Trump said over the weekend that he’s prepared to move ahead with “major” sanctions on Russian oil if European nations do the same. The government in Bratislava is prepared to shut its Russian energy links if it has sufficient infrastructure to transport volumes, Sakova said.  “As long as we have an alternative route, and the transmission capacity is sufficient, Slovakia has no problem diversifying,” the minister said. A complete cutoff of Russian supplies would pose a risk, she said, because Slovakia is located at the very end of alternative supply routes coming from the West.  Slovakia and Hungary, landlocked nations bordering Ukraine, have historically depended on Russian oil and gas. After Russia’s full-scale invasion of Ukraine in 2022, both launched several diversification initiatives. Slovakia imports around third of its oil from non-Russian sources via the Adria pipeline

Read More »

Energy-related US CO2 emissions down 20% since 2005: EIA

Listen to the article 2 min This audio is auto-generated. Please let us know if you have feedback. Per capita carbon dioxide emissions from energy consumption fell in every state from 2005 to 2023, primarily due to less coal being burned, the U.S. Energy Information Administration said in a Monday report.  In total, CO2 emissions fell by 20% in those years. The U.S. population increased by 14% during that period, so per capita, emissions fell by 30%, according to EIA. “Increased electricity generation from natural gas, which releases about half as many CO2 emissions per unit of energy when combusted as coal, and from non-CO2-emitting wind and solar generation offset the decrease in coal generation,” EIA said. Emissions decreased in every state, falling the most in Maryland and the District of Columbia, which saw per capita drops of 49% and 48%, respectively. Emissions fell the least in Idaho, where they dropped by 3%, and Mississippi, where they dropped by 1%. Optional Caption Courtesy of Energy Information Administration “In 2023, Maryland had the lowest per capita CO2 emissions of any state, at 7.8 metric tons of CO2 (mtCO2), which is the second lowest in recorded data beginning in 1960,” EIA said. “The District of Columbia has lower per capita CO2 emissions than any state and tied its record low of 3.6 mtCO2 in 2023.” EIA forecasts a 1% increase in total U.S. emissions from energy consumption this year, “in part because of more recent increased fossil fuel consumption for crude oil production and electricity generation growth.” In 2023, the transportation sector was responsible for the largest share of emissions from energy consumption across 28 states, EIA said. In 2005, the electric power sector had “accounted for the largest share of emissions in 31 states, while the transportation sector made up the

Read More »

Chord Announces ‘Strategic Acquisition of Williston Basin Assets’

Chord Energy Corporation announced a “strategic acquisition of Williston Basin assets” in a statement posted on its website recently. In the statement, Chord said a wholly owned subsidiary of the company has entered into a definitive agreement to acquire assets in the Williston Basin from XTO Energy Inc. and affiliates for a total cash consideration of $550 million, subject to customary purchase price adjustments. The consideration is expected to be funded through a combination of cash on hand and borrowings, Chord noted in the statement, which highlighted that the effective date for the transaction is September 1, 2025, and that the deal is expected to close by year-end. Chord outlined in the statement that the deal includes 48,000 net acres in the Williston core, noting that “90 net 10,000 foot equivalent locations (72 net operated) extend Chord’s inventory life”. Pointing out “inventory quality” in the statement, Chord highlighted that “low average NYMEX WTI breakeven economics ($40s) compete at the front-end of Chord’s program and lower the weighted-average breakeven of Chord’s portfolio”. The company outlined that the deal is “expected to be accretive to all key metrics including cash flow, free cash flow and NAV in both near and long-term”. “We are excited to announce the acquisition of these high-quality assets,” Danny Brown, Chord Energy’s President and Chief Executive Officer, said in the statement. “The acquired assets are in one of the best areas of the Williston Basin and have significant overlap with Chord’s existing footprint, setting the stage for long-lateral development. The assets have a low average NYMEX WTI breakeven and are immediately competitive for capital,” he added. “We expect that the transaction will create significant accretion for shareholders across all key metrics, while maintaining pro forma leverage below the peer group and supporting sustainable FCF generation and return of capital,” he continued.

Read More »

Land and Expand: CleanArc Data Centers, Google, Duke Energy, Aligned’s ODATA, Fermi America

Land and Expand is a monthly feature at Data Center Frontier highlighting the latest data center development news, including new sites, land acquisitions and campus expansions. Here are some of the new and notable developments from hyperscale and colocation data center operators about which we’ve been reading lately. Caroline County, VA, Approves 650-Acre Data Center Campus from CleanArc Caroline County, Virginia, has approved redevelopment of the former Virginia Bazaar property in Ruther Glen into a 650-acre data center campus in partnership with CleanArc Data Centers Operating, LLC. On September 9, 2025, the Caroline County Board of Supervisors unanimously approved an economic development performance agreement with CleanArc to transform the long-vacant flea market site just off I-95. The agreement allows for the phased construction of three initial data center buildings, each measuring roughly 500,000 square feet, which CleanArc plans to lease to major operators. The project represents one of the county’s largest-ever private investments. While CleanArc has not released a final capital cost, county filings suggest the development could reach into the multi-billion-dollar range over its full buildout. Key provisions include: Local hiring: At least 50 permanent jobs at no less than 150% of the prevailing county wage. Revenue sharing: Caroline County will provide annual incentive grants equal to 25% of incremental tax revenue generated by the campus. Water stewardship: CleanArc is prohibited from using potable county water for data center cooling, requiring the developer to pursue alternative technologies such as non-potable sources, recycled water, or advanced liquid cooling systems. Local officials have emphasized the deal’s importance for diversifying the county’s tax base, while community observers will be watching closely to see which cooling strategies CleanArc adopts in order to comply with the water-use restrictions. Google to Build $10 Billion Data Center Campus in Arkansas Moses Tucker Partners, one of Arkansas’

Read More »

Hyperion and Alice & Bob Call on HPC Centers to Prepare Now for Early Fault-Tolerant Quantum Computing

As the data center industry continues to chase greater performance for AI and scientific workloads, a new joint report from Hyperion Research and Alice & Bob is urging high performance computing (HPC) centers to take immediate steps toward integrating early fault-tolerant quantum computing (eFTQC) into their infrastructure. The report, “Seizing Quantum’s Edge: Why and How HPC Should Prepare for eFTQC,” paints a clear picture: the next five years will demand hybrid HPC-quantum workflows if institutions want to stay at the forefront of computational science. According to the analysis, up to half of current HPC workloads at U.S. government research labs—Los Alamos National Laboratory, the National Energy Research Scientific Computing Center, and Department of Energy leadership computing facilities among them—could benefit from the speedups and efficiency gains of eFTQC. “Quantum technologies are a pivotal opportunity for the HPC community, offering the potential to significantly accelerate a wide range of critical science and engineering applications in the near-term,” said Bob Sorensen, Senior VP and Chief Analyst for Quantum Computing at Hyperion Research. “However, these machines won’t be plug-and-play, so HPC centers should begin preparing for integration now, ensuring they can influence system design and gain early operational expertise.” The HPC Bottleneck: Why Quantum is Urgent The report underscores a familiar challenge for the HPC community: classical performance gains have slowed as transistor sizes approach physical limits and energy efficiency becomes increasingly difficult to scale. Meanwhile, the threshold for useful quantum applications is drawing nearer. Advances in qubit stability and error correction, particularly Alice & Bob’s cat qubit technology, have compressed the resource requirements for algorithms like Shor’s by an estimated factor of 1,000. Within the next five years, the report projects that quantum computers with 100–1,000 logical qubits and logical error rates between 10⁻⁶ and 10⁻¹⁰ will accelerate applications across materials science, quantum

Read More »

Google Partners With Utilities to Ease AI Data Center Grid Strain

Transmission and Power Strategy These agreements build on Google’s growing set of strategies to manage electricity needs. In June of 2025, Google announced a deal with CTC Global to upgrade transmission lines with high-capacity composite conductors that increase throughput without requiring new towers. In July 2025, Google and Brookfield Asset Management unveiled a hydropower framework agreement worth up to $3 billion, designed to secure firm clean energy for data centers in PJM and Eastern markets. Alongside renewable deals, Google has signed nuclear supply agreements as well, most notably a landmark contract with Kairos Power for small modular reactor capacity. Each of these moves reflects Google’s effort to create more headroom on the grid while securing firm, carbon-free power. Workload Flexibility and Grid Innovation The demand-response strategy is uniquely suited to AI data centers because of workload diversity. Machine learning training runs can sometimes be paused or rescheduled, unlike latency-sensitive workloads. This flexibility allows Google to throttle certain compute-heavy processes in coordination with utilities. In practice, Google can preemptively pause or shift workloads when notified of peak events, ensuring critical services remain uninterrupted while still creating significant grid relief. Local Utility Impact For utilities like I&M and TVA, partnering with hyperscale customers has a dual benefit: stabilizing the grid while keeping large customers satisfied and growing within their service territories. It also signals to regulators and ratepayers that data centers, often criticized for their heavy energy footprint, can actively contribute to reliability. These agreements may help avoid contentious rate cases or delays in permitting new power plants. Policy, Interconnection Queues, and the Economics of Speed One of the biggest hurdles for data center development today is the long wait in interconnection queues. In regions like PJM Interconnection, developers often face waits of three to five years before new projects can connect

Read More »

Generators, Gas, and Grid Strategy: Inside Generac’s Data Center Play

A Strategic Leap Generac’s entry represents a strategic leap. Long established as a leader in residential, commercial, and industrial generation—particularly in the sub-2 megawatt range—the company has now expanded into mission-critical applications with new products spanning 2.2 to 3.5 megawatts. Navarro said the timing was deliberate, citing market constraints that have slowed hyperscale and colocation growth. “The current OEMs serving this market are actually limiting the ability to produce and to grow the data center market,” he noted. “Having another player … with enough capacity to compensate those shortfalls has been received very, very well.” While Generac isn’t seeking to reinvent the wheel, it is intent on differentiation. Customers, Navarro explained, want a good quality product, uneventful deployment, and a responsive support network. On top of those essentials, Generac is leveraging its ongoing transformation from generator manufacturer to energy technology company, a shift accelerated by a series of acquisitions in areas like telemetry, monitoring, and energy management. “We’ve made several acquisitions to move away from being just a generator manufacturer to actually being an energy technology company,” Navarro said. “So we are entering this space of energy efficiency, energy management—monitoring, telemetrics, everything that improves the experience and improves the usage of those generators and the energy management at sites.” That foundation positions Generac to meet the newest challenge reshaping backup generation: the rise of AI-centric workloads. Natural Gas Interest—and the Race to Shorter Lead Times As the industry looks beyond diesel, customer interest in natural gas generation is rising. Navarro acknowledged the shift, but noted that diesel still retains an edge. “We’ve seen an increase on gas requests,” he said. “But the power density of diesel is more convenient than gas today.” That tradeoff, however, could narrow. Navarro pointed to innovations such as industrial storage paired with gas units, which

Read More »

Executive Roundtable: Cooling, Costs, and Integration in the AI Data Center Era

Becky Wacker, Trane:  As AI workloads increasingly dominate new data center builds, operators face significant challenges in managing thermal loads and water resources. These challenges include significantly higher heat density, large, aggregated load spikes, uneven distribution of cooling needs, and substantial water requirements if using traditional evaporative cooling methods. The most critical risks include overheating, inefficient cooling systems, and water scarcity. These issues can lead to reduced hardware lifespan, hardware throttling, sudden shutdowns, failure to meet PUE targets, higher operational costs, and limitations on where AI data centers can be built due to water constraints. At Trane, we are evolving our solutions to meet these challenges through advanced cooling technologies such as liquid cooling and immersion cooling, which offer higher efficiency and lower thermal resistance compared to traditional air-cooling methods. Flexibility and scalability are central to our design philosophy. We believe a total system solution is crucial, integrating components such as CDUs, Fan Walls, CRAHs, and Chillers to anticipate demand and respond effectively. In addition, we are developing smart monitoring and control systems that leverage AI to predict and manage thermal loads in real-time, ensuring optimal performance and preventing overheating through Building Management Systems and integration with DCIM platforms. Our water management solutions are also being enhanced to recycle and reuse water, minimizing consumption and addressing scarcity concerns.

Read More »

Power shortages are the only thing slowing the data center market

Another major shortage – which should not be news to anyone – is power. Lynch said that it is the primary reason many data centers are moving out of the heavily congested areas, like Northern Virginia and Santa Clara, and into secondary markets. Power is more available in smaller markets than larger ones. “If our client needs multi-megawatt capacity in Silicon Valley, we’re being told by the utility providers that that capacity will not be available for up to 10 years from now,” so out of necessity, many have moved to secondary markets, such as Hillsborough, Oregon, Reno, Nevada, and Columbus, Ohio. The growth of hyperscalers as well as AI is driving up the power requirements of facilities further into the multi-megawatt range. The power industry moves at a very different pace than the IT world, much slower and more deliberate. Lynch said the lead time for equipment makes it difficult to predict when some large scale, ambitious data centers can be completed. A multi-megawatt facility may even require new transmission lines to be built out as well. This translates into longer build times for new data centers. CBRE found that the average data center now takes about three years to complete, up from 2 years just a short time ago. Intel, AMD, and Nvidia haven’t even laid out a road map for three years, but with new architectures coming every year, a data center risks being obsolete by the time it’s completed. However, what’s the alternative? To wait? Customers will never catch up at that rate, Lynch said.   That is simply not a viable option, so development and construction must go on even with short supplies of everything from concrete and steel to servers and power transformers.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »