Stay Ahead, Stay ONMINE

Supercharge Your RAG with Multi-Agent Self-RAG

Introduction Many of us might have tried to build a RAG application and noticed it falls significantly short of addressing real-life needs. Why is that? It’s because many real-world problems require multiple steps of information retrieval and reasoning. We need our agent to perform those as humans normally do, yet most RAG applications fall short […]

Introduction

Many of us might have tried to build a RAG application and noticed it falls significantly short of addressing real-life needs. Why is that? It’s because many real-world problems require multiple steps of information retrieval and reasoning. We need our agent to perform those as humans normally do, yet most RAG applications fall short of this.

This article explores how to supercharge your RAG application by making its data retrieval and reasoning process similar to how a human would, under a multi-agent framework. The framework presented here is based on the Self-RAG strategy but has been significantly modified to enhance its capabilities. Prior knowledge of the original strategy is not necessary for reading this article.

Real-life Case

Consider this: I was going to fly from Delhi to Munich (let’s assume I am taking the flight from an EU airline), but I was denied boarding somehow. Now I want to know what the compensation should be.

These two webpages contain relevant information, I go ahead adding them to my vector store, trying to have my agent answer this for me by retrieving the right information.

Now, I pass this question to the vector store: “how much can I receive if I am denied boarding, for flights from Delhi to Munich?”.

– – – – – – – – – – – – – – – – – – – – – – – – –
Overview of US Flight Compensation Policies To get compensation for delayed flights, you should contact your airline via their customer service or go to the customer service desk. At the same time, you should bear in mind that you will only receive compensation if the delay is not weather-related and is within the carrier`s control. According to the US Department of Transportation, US airlines are not required to compensate you if a flight is cancelled or delayed. You can be compensated if you are bumped or moved from an overbooked flight. If your provider cancels your flight less than two weeks before departure and you decide to cancel your trip entirely, you can receive a refund of both pre-paid baggage fees and your plane ticket. There will be no refund if you choose to continue your journey. In the case of a delayed flight, the airline will rebook you on a different flight. According to federal law, you will not be provided with money or other compensation. Comparative Analysis of EU vs. US Flight Compensation Policies
– – – – – – – – – – – – – – – – – – – – – – – – –
(AUTHOR-ADDED NOTE: IMPORTANT, PAY ATTENTION TO THIS)
Short-distance flight delays – if it is up to 1,500 km, you are due 250 Euro compensation.
Medium distance flight delays – for all the flights between 1,500 and 3,500 km, the compensation should be 400 Euro.
Long-distance flight delays – if it is over 3,500 km, you are due 600 Euro compensation. To receive this kind of compensation, the following conditions must be met; Your flight starts in a non-EU member state or in an EU member state and finishes in an EU member state and is organised by an EU airline. Your flight reaches the final destination with a delay that exceeds three hours. There is no force majeure.
– – – – – – – – – – – – – – – – – – – – – – – – –
Compensation policies in the EU and US are not the same, which implies that it is worth knowing more about them. While you can always count on Skycop flight cancellation compensation, you should still get acquainted with the information below.
– – – – – – – – – – – – – – – – – – – – – – – – –
Compensation for flight regulations EU: The EU does regulate flight delay compensation, which is known as EU261. US: According to the US Department of Transportation, every airline has its own policies about what should be done for delayed passengers. Compensation for flight delays EU: Just like in the United States, compensation is not provided when the flight is delayed due to uncontrollable reasons. However, there is a clear approach to compensation calculation based on distance. For example, if your flight was up to 1,500 km, you can receive 250 euros. US: There are no federal requirements. That is why every airline sets its own limits for compensation in terms of length. However, it is usually set at three hours. Overbooking EU: In the EU, they call for volunteers if the flight is overbooked. These people are entitled to a choice of: Re-routing to their final destination at the earliest opportunity. Refund of their ticket cost within a week if not travelling. Re-routing at a later date at the person`s convenience.

Unfortunately, they contain only generic flight compensation policies, without telling me how much I can expect when denied boarding from Delhi to Munich specifically. If the RAG agent takes these as the sole context, it can only provide a generic answer about flight compensation policy, without giving the answer we want.

However, while the documents are not immediately useful, there is an important insight contained in the 2nd piece of context: compensation varies according to flight distance. If the RAG agent thinks more like human, it should follow these steps to provide an answer:

  1. Based on the retrieved context, reason that compensation varies with flight distance
  2. Next, retrieve the flight distance between Delhi and Munich
  3. Given the distance (which is around 5900km), classify the flight as a long-distance one
  4. Combined with the previously retrieved context, figure out I am due 600 EUR, assuming other conditions are fulfilled

This example demonstrates how a simple RAG, in which a single retrieval is made, fall short for several reasons:

  1. Complex Queries: Users often have questions that a simple search can’t fully address. For example, “What’s the best smartphone for gaming under $500?” requires consideration of multiple factors like performance, price, and features, which a single retrieval step might miss.
  2. Deep Information: Some information lies across documents. For example, research papers, medical records, or legal documents often include references that need to be made sense of, before one can fully understand the content of a given article. Multiple retrieval steps help dig deeper into the content.

Multiple retrievals supplemented with human-like reasoning allow for a more nuanced, comprehensive, and accurate response, adapting to the complexity and depth of user queries.

Multi-Agent Self-RAG

Here I explain the reasoning process behind this strategy, afterwards I will provide the code to show you how to achieve this!

Note: For readers interested in knowing how my approach differs from the original Self-RAG, I will describe the discrepancies in quotation boxes like this. But general readers who are unfamiliar with the original Self-RAG can skip them.

In the below graphs, each circle represents a step (aka Node), which is performed by a dedicated agent working on the specific problem. We orchestrate them to form a multi-agent RAG application.

1st iteration: Simple RAG

A simple RAG chain

This is just the vanilla RAG approach I described in “Real-life Case”, represented as a graph. After Retrieve documents, the new_documents will be used as input for Generate Answer. Nothing special, but it serves as our starting point.

2nd iteration: Digest documents with “Grade documents”

Reasoning like human do

Remember I said in the “Real-life Case” section, that as a next step, the agent should “reason that compensation varies with flight distance”? The Grade documents step is exactly for this purpose.

Given the new_documents, the agent will try to output two items:

  1. useful_documents: Comparing the question asked, it determines if the documents are useful, and retain a memory for those deemed useful for future reference. As an example, since our question does not concern compensation policies for US, documents describing those are discarded, leaving only those for EU
  2. hypothesis: Based on the documents, the agent forms a hypothesis about how the question can be answered, that is, flight distance needs to be identified

Notice how the above reasoning resembles human thinking! But still, while these outputs are useful, we need to instruct the agent to use them as input for performing the next document retrieval. Without this, the answer provided in Generate answer is still not useful.

useful_documents are appended for each document retrieval loop, instead of being overwritten, to keep a memory of documents that are previously deemed useful. hypothesis is formed from useful_documents and new_documents to provide an “abstract reasoning” to inform how query is to be transformed subsequently.

The hypothesis is especially useful when no useful documents can be identified initially, as the agent can still form hypothesis from documents not immediately deemed as useful / only bearing indirect relationship to the question at hand, for informing what questions to ask next

3rd iteration: Brainstorm new questions to ask

Suggest questions for additional information retrieval

We have the agent reflect upon whether the answer is useful and grounded in context. If not, it should proceed to Transform query to ask further questions.

The output new_queries will be a list of new questions that the agent consider useful for obtaining extra information. Given the useful_documents (compensation policies for EU), and hypothesis (need to identify flight distance between Delhi and Munich), it asks questions like “What is the distance between Delhi and Munich?”

Now we are ready to use the new_queries for further retrieval!

The transform_query node will use useful_documents (which are accumulated per iteration, instead of being overwritten) and hypothesis as input for providing the agent directions to ask new questions.

The new questions will be a list of questions (instead of a single question) separated from the original question, so that the original question is kept in state, otherwise the agent could lose track of the original question after multiple iterations.

Final iteration: Further retrieval with new questions

Issuing new queries to retrieve extra documents

The output new_queries from Transform query will be passed to the Retrieve documents step, forming a retrieval loop.

Since the question “What is the distance between Delhi and Munich?” is asked, we can expect the flight distance is then retrieved as new_documents, and subsequently graded as useful_documents, further used as an input for Generate answer.

The grade_documents node will compare the documents against both the original question and new_questions list, so that documents that are considered useful for new_questions, even if not so for the original question, are kept.

This is because those documents might help answer the original question indirectly, by being relevant to new_questions (like “What is the distance between Delhi and Munich?”)

Final answer!

Equipped with this new context about flight distance, the agent is now ready to provide the right answer: 600 EUR!

Next, let us now dive into the code to see how this multi-agent RAG application is created.

Implementation

The source code can be found here. Our multi-agent RAG application involves iterations and loops, and LangGraph is a great library for building such complex multi-agent application. If you are not familiar with LangGraph, you are strongly suggested to have a look at LangGraph’s Quickstart guide to understand more about it!

To keep this article concise, I will focus on the key code snippets only.

Important note: I am using OpenRouter as the Llm interface, but the code can be easily adapted for other LLM interfaces. Also, while in my code I am using Claude 3.5 Sonnet as model, you can use any LLM as long as it support tools as parameter (check this list here), so you can also run this with other models, like DeepSeek V3 and OpenAI o1!

State definition

In the previous section, I have defined various elements e.g. new_documentshypothesis that are to be passed to each step (aka Nodes), in LangGraph’s terminology these elements are called State.

We define the State formally with the following snippet.

from typing import List, Annotated
from typing_extensions import TypedDict

def append_to_list(original: list, new: list) -> list:
original.append(new)
return original

def combine_list(original: list, new: list) -> list:
return original + new

class GraphState(TypedDict):
"""
Represents the state of our graph.

Attributes:
question: question
generation: LLM generation
new_documents: newly retrieved documents for the current iteration
useful_documents: documents that are considered useful
graded_documents: documents that have been graded
new_queries: newly generated questions
hypothesis: hypothesis
"""

question: str
generation: str
new_documents: List[str]
useful_documents: Annotated[List[str], combine_list]
graded_documents: List[str]
new_queries: Annotated[List[str], append_to_list]
hypothesis: str

Graph definition

This is where we combine the different steps to form a “Graph”, which is a representation of our multi-agent application. The definitions of various steps (e.g. grade_documents) are represented by their respective functions.

from langgraph.graph import END, StateGraph, START
from langgraph.checkpoint.memory import MemorySaver
from IPython.display import Image, display

workflow = StateGraph(GraphState)

# Define the nodes
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("transform_query", transform_query) # transform_query

# Build graph
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"useful": END,
"not supported": "transform_query",
"not useful": "transform_query",
},
)

# Compile
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)
display(Image(app.get_graph(xray=True).draw_mermaid_png()))

Running the above code, you should see this graphical representation of our RAG application. Notice how it is essentially equivalent to the graph I have shown in the final iteration of “Enhanced Self-RAG Strategy”!

Visualizing the multi-agent RAG graph

After generate, if the answer is considered “not supported”, the agent will proceed to transform_query intead of to generate again, so that the agent will look for additional information rather than trying to regenerate answers based on existing context, which might not suffice for providing a “supported” answer

Now we are ready to put the multi-agent application to test! With the below code snippet, we ask this question how much can I receive if I am denied boarding, for flights from Delhi to Munich?

from pprint import pprint
config = {"configurable": {"thread_id": str(uuid4())}}

# Run
inputs = {
"question": "how much can I receive if I am denied boarding, for flights from Delhi to Munich?",
}
for output in app.stream(inputs, config):
for key, value in output.items():
# Node
pprint(f"Node '{key}':")
# Optional: print full state at each node
# print(app.get_state(config).values)
pprint("n---n")

# Final generation
pprint(value["generation"])

While output might vary (sometimes the application provides the answer without any iterations, because it “guessed” the distance between Delhi and Munich), it should look something like this, which shows the application went through multiple rounds of data retrieval for RAG.

---RETRIEVE---
"Node 'retrieve':"
'n---n'
---CHECK DOCUMENT RELEVANCE TO QUESTION---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---ASSESS GRADED DOCUMENTS---
---DECISION: GENERATE---
"Node 'grade_documents':"
'n---n'
---GENERATE---
---CHECK HALLUCINATIONS---
'---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---'
"Node 'generate':"
'n---n'
---TRANSFORM QUERY---
"Node 'transform_query':"
'n---n'
---RETRIEVE---
"Node 'retrieve':"
'n---n'
---CHECK DOCUMENT RELEVANCE TO QUESTION---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---ASSESS GRADED DOCUMENTS---
---DECISION: GENERATE---
"Node 'grade_documents':"
'n---n'
---GENERATE---
---CHECK HALLUCINATIONS---
---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---
---GRADE GENERATION vs QUESTION---
---DECISION: GENERATION ADDRESSES QUESTION---
"Node 'generate':"
'n---n'
('Based on the context provided, the flight distance from Munich to Delhi is '
'5,931 km, which falls into the long-distance category (over 3,500 km). '
'Therefore, if you are denied boarding on a flight from Delhi to Munich '
'operated by an EU airline, you would be eligible for 600 Euro compensation, '
'provided that:n'
'1. The flight is operated by an EU airlinen'
'2. There is no force majeuren'
'3. Other applicable conditions are metn'
'n'
"However, it's important to note that this compensation amount is only valid "
'if all the required conditions are met as specified in the regulations.')

And the final answer is what we aimed for!

Based on the context provided, the flight distance from Munich to Delhi is
5,931 km, which falls into the long-distance category (over 3,500 km).
Therefore, if you are denied boarding on a flight from Delhi to Munich
operated by an EU airline, you would be eligible for 600 Euro compensation,
provided that:
1. The flight is operated by an EU airline
2. There is no force majeure
3. Other applicable conditions are met

However, it's important to note that this compensation amount is only valid
if all the required conditions are met as specified in the regulations.

Inspecting the State, we see how the hypothesis and new_queries enhance the effectiveness of our multi-agent RAG application by mimicking human thinking process.

Hypothesis

print(app.get_state(config).values.get('hypothesis',""))
--- Output ---
To answer this question accurately, I need to determine:

1. Is this flight operated by an EU airline? (Since Delhi is non-EU and Munich is EU)
2. What is the flight distance between Delhi and Munich? (To determine compensation amount)
3. Are we dealing with a denied boarding situation due to overbooking? (As opposed to delay/cancellation)

From the context, I can find information about compensation amounts based on distance, but I need to verify:
- If the flight meets EU compensation eligibility criteria
- The exact distance between Delhi and Munich to determine which compensation tier applies (250€, 400€, or 600€)
- If denied boarding compensation follows the same amounts as delay compensation

The context doesn't explicitly state compensation amounts specifically for denied boarding, though it mentions overbooking situations in the EU require offering volunteers re-routing or refund options.

Would you like me to proceed with the information available, or would you need additional context about denied boarding compensation specifically?

New Queries

for questions_batch in app.get_state(config).values.get('new_queries',""):
for q in questions_batch:
print(q)
--- Output ---
What is the flight distance between Delhi and Munich?
Does EU denied boarding compensation follow the same amounts as flight delay compensation?
Are there specific compensation rules for denied boarding versus flight delays for flights from non-EU to EU destinations?
What are the compensation rules when flying with non-EU airlines from Delhi to Munich?
What are the specific conditions that qualify as denied boarding under EU regulations?

Conclusion

Simple RAG, while easy to build, might fall short in tackling real-life questions. By incorporating human thinking process into a multi-agent RAG framework, we are making RAG applications much more practical.

*Unless otherwise noted, all images are by the author


Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

AI-driven network management gains enterprise trust

The way the full process works is that the raw data feed comes in, and machine learning is used to identify an anomaly that could be a possible incident. That’s where the generative AI agents step up. In addition to the history of similar issues, the agents also look for

Read More »

Chinese cyberspies target VMware vSphere for long-term persistence

Designed to work in virtualized environments The CISA, NSA, and Canadian Cyber Center analysts note that some of the BRICKSTORM samples are virtualization-aware and they create a virtual socket (VSOCK) interface that enables inter-VM communication and data exfiltration. The malware also checks the environment upon execution to ensure it’s running

Read More »

IBM boosts DNS protection for multicloud operations

“In addition to this DNS synchronization, you can publish DNS configurations to your Amazon Simple Storage Service (S3) bucket. As you implement DNS changes, the S3 bucket will automatically update. The ability to store multiple configurations in your S3 bucket allows you to choose the most appropriate restore point if

Read More »

Noble to Sell 6 Jackups, Become Pureplay Deepwater Driller

Noble Corp said Monday it had signed separate deals to sell five jackup rigs to Borr Drilling Ltd for $360 million and one jackup to Ocean Oilfield Drilling for $64 million. After the completion of the transactions, expected next year, “Noble will be a pureplay deepwater and ultra-harsh environment jackup operator”, the offshore driller said in an online statement. Borr will acquire Noble Resilient (built 2009), Noble Resolute (built 2009), Noble Mick O’Brien (built 2013), Noble Regina Allen (built 2013) and Noble Tom Prosser (built 2014). The purchase price consists of $210 million in cash and $150 million in seller notes. “The $150 million in proposed seller notes to Borr are expected to have a six-year maturity and be secured by a first lien on three jackups (Noble Tom Prosser, Noble Regina Allen and Noble Resilient)”, Noble said. “Additionally, Noble intends to operate two rigs – Noble Mick O’Brien and Noble Resolute – under a bareboat charter agreement with Borr for one year from signing of the definitive agreement”, it said. Meanwhile Ocean Oilfield Drilling will buy Noble Resolve, built 2009, after the rig’s ongoing contract ends. Noble Resolve will be freed in the first quarter of 2026, Nobel says on its online fleet inventory. The rig is currently deployed in Spain for an unnamed operator, according to Noble’s latest fleet status report, published October 27. Ocean Oilfield Drilling will pay in cash. “These transactions are expected to be immediately accretive to our shareholders based on both trailing 2025 and anticipated 2026 EBITDA and free cash flow, while also bolstering our balance sheet and sharpening the focus on our established positions in the deepwater and ultra-harsh jackup segments”, said president and chief executive Robert W. Eifler. In its quarterly report October 27, Noble said the Noble Globetrotter II drillship, built 2013, was also being sold. During the third

Read More »

Equinor Scores 2 Gas, Condensate Discoveries in Sleipner

Equinor ASA and its partners have achieved two new natural gas and condensate discoveries in the Sleipner area on Norway’s side of the North Sea. Preliminary estimates for Lofn (well 15/5-8 S) and Langemann (15/5-8 A), in production license 1140, indicate 5-18 million standard cubic meters oil-equivalent recoverable resources, or 30-110 million barrels, according to the Norwegian majority state-owned company. “These are Equinor’s largest discoveries so far this year and can be developed for the European market through existing infrastructure”, it said in an online statement. The discoveries sit between the Gudrun and Eirin fields and about 40 kilometers (24.85 miles) northwest of the Sleipner A processing, drilling and living quarters platform, according to Equinor. The platform is one of several installations serving the Sleipner gas and condensate fields Sleipner East (which started production 1993), Gungne (started up 1996) and Sleipner West (also put onstream 1996). Sleipner infrastructure also serves tie-in fields Sigyn (online since 2002), Volve (started up 2008), Gudrun (started up 2014) and Gina Krog (started up 2017). Lofn and Langemann encountered gas and condensate in the Hugin Formation, which consists of sandstones with “good reservoir properties”, Equinor said. “The discoveries reduce uncertainty in several nearby prospects, which will now be further evaluated”, it said. Kjetil Hove, executive vice president for Norwegian exploration and production at Equinor, said, “This demonstrates the importance of maintaining exploration activity on the Norwegian continental shelf. There are still significant energy resources on the shelf, and Europe needs stable oil and gas deliveries”. “Discoveries near existing fields can be developed quickly through subsea facilities, with limited environmental impact, very low CO2 emissions from production and strong profitability”, Hove said. “Equinor plans to accelerate such developments on the Norwegian continental shelf”. Karl Johnny Hersvik, chief executive of license co-owner Aker BP ASA, said separately the

Read More »

Crude Settles Lower

Oil eased by the most in almost three weeks as traders monitored India’s buying of Russian crude and refined products markets slumped, leading the energy complex lower. West Texas Intermediate futures fell 2% to settle near $59 a barrel, weighed down by losses in US equities, and have now been trading in a range of less than $4 since the start of November. Russian President Vladimir Putin last week promised “uninterrupted shipments” of fuel to India even as Moscow faces steeper sanctions over its war in Ukraine. The shipments will likely be a key point for discussions as US negotiators arrive in the South Asian nation for trade talks. “Oversupply concerns will eventually be realized, especially as Russian oil and refined product flows eventually circumvent existing sanctions,” said Vivek Dhar, an analyst with Commonwealth Bank of Australia. That will see Brent futures fall toward $60 a barrel through 2026, he said. Among products, gasoline futures dropped 2% in New York, after hitting the lowest level since May 2021 last week. Diesel prices also weakened in a drag on energy commodities across the board. The focus on Moscow’s flows comes as a potential peace deal between Ukraine and Russia also remained in focus. US President Donald Trump said he was disappointed in Ukrainian President Volodymyr Zelenskiy’s handling of a US proposal to end the nearly four-year-old war. Those tensions will be weighed against glut concerns, with higher supply from OPEC+ and producers outside the group — including the US, Brazil and Guyana — set to overwhelm tepid demand growth. The US’s Energy Information Administration, the International Energy Agency and the Organization of the Petroleum Exporting Countries will publish monthly market outlooks this week that may provide further insights. Both WTI and Brent remain on their longest runs below their 100-day moving

Read More »

Energy Department Announces $11 Million in Awards to Develop HALEU Transportation Packages

IDAHO FALLS, ID. —The U.S. Department of Energy (DOE) today announced $11 million in awards to five U.S. companies to develop and license new or modified transportation packages for high-assay low-enriched uranium (HALEU). The announcement was made during U.S. Secretary of Energy Chris Wright’s visit to Idaho National Laboratory (INL), marking the final stop in his ongoing tour of all 17 DOE National Laboratories. These selections advance President Trump’s recent executive orders and commitment to rebuild the Nation’s nuclear fuel cycle, strengthen domestic enrichment and fabrication capabilities, and accelerate the deployment of advanced reactors to usher in a new American nuclear renaissance. “From critical minerals to nuclear fuel, the Trump administration is fully committed to restoring the supply chains needed to secure America’s future,” said Secretary Wright. “Thanks to President Trump, the Energy Department is operating at record speeds to unleash the next American Nuclear Renaissance and to deliver more affordable, reliable, and secure energy for American families and businesses.” DOE’s $11 million in awards will support industry-led efforts to design, modify, and license transportation packages through the U.S. Nuclear Regulatory Commission (NRC). These investments will help establish long-term, economical HALEU transport capabilities that better serve domestic reactor developers and strengthen the U.S. nuclear supply chain. The following companies were selected to develop long-term economic solutions for the safe transport of HALEU through two topic areas: Topic Area 1: Develop new package designs that can be licensed by the NRC NAC International Westinghouse Electric Company Container Technologies Industries, LLC American Centrifuge Operating Paragon D&E Topic Area 2: Modify existing design packages for NRC certification NAC International Projects under Topic Area 1 will have performance periods of up to three years; the Topic Area 2 project will have a performance period of up to two years. Funding is provided through DOE’s

Read More »

Newsom Sparks Rebellion in Bay Area Town

A small city perched on San Francisco Bay poses a big obstacle to California Governor Gavin Newsom’s plans to prevent gasoline price spikes in a state that already pays more at the pump than any other.  Valero Energy Corp. plans to shut its refinery in Benicia in April, part of a wave of refinery closures across California as the state shifts away from fossil fuels. Newsom is counting on increased imports to ensure gas prices don’t soar, and his administration is exploring the Valero site — which is connected to a marine port — as a potential storage hub, said Benicia Mayor Steve Young.  The idea, however, doesn’t sit well with Young or other leaders in this community of 27,000, which relies on the refinery for jobs and taxes. If Valero can’t be persuaded to keep the refinery open, he would rather redevelop the site to attract a new industry, or fill it with retail and housing.   “We’re going to put up whatever resistance we can,” Young said in an interview. Making the site a fuel storage hub “is a terrible situation, because there are no jobs, there are no taxes and you have continuous emissions from tankers.”  Young and the governor’s staff discussed the idea in meetings last month, he said, with state officials asking if the city would accept a storage facility for up to 20 years. No formal proposal has been submitted to the city, he said. Young also warned that Benicia could push forward a ballot measure to tax gasoline imports, if necessary. The governor’s office said they “remain engaged with all interested and impacted stakeholders,” declining to comment further. Valero, based in San Antonio, Texas, didn’t respond to requests for comment. California has seen its fleet of refineries shrink as the state moves to renewable

Read More »

Sanctioned Russian LNG Plant Ships to China

A Russian liquefied natural gas export facility delivered its first shipment to China since being sanctioned by the US in January, the latest sign of increased energy cooperation between Beijing and Moscow. The Valera vessel, which loaded a shipment from Gazprom PJSC’s Portovaya facility on the Baltic Sea in October, arrived at the Beihai import terminal in southern China on Monday, ship data compiled by Bloomberg shows. Both Valera and Portovaya were sanctioned by Joe Biden’s administration to thwart Russia’s plans to boost LNG exports. China, which doesn’t recognize the unilateral sanctions, has increasingly bought blacklisted Russian gas over the last few months, ratcheting up energy ties between the two countries. Beijing has also ignored a broader push by US President Donald Trump to halt sales of Russian oil, which will likely be a key part of trade negotiations between Washington and New Delhi this week. Russia has two relatively small LNG export facilities on the Baltic Sea, with the Novatek PJSC-led Vysotsk plant also blacklisted by the US. Another sanctioned Russian plant, the Arctic LNG 2 site in Siberia, started delivering fuel to Beihai in late August. Total Russian LNG shipments to China, including from unsanctioned plants, rose about 14 percent from September through November from the same period a year earlier, ship data shows. If unloaded, Valera would be the 19th shipment of LNG into China from a blacklisted Russian plant since August, the data shows. In mid-October, satellite images showed a tanker that loaded at Portovaya transferring fuel into another vessel registered to a Hong Kong-based company near Malaysia. That ship, known as CCH Gas, has been sending out false location signals, and was spotted by satellites near China last month. It isn’t clear where it is currently located. What do you think? We’d love to hear from

Read More »

What does Arm need to do to gain enterprise acceptance?

But in 2017, AMD released the Zen architecture, which was equal if not superior to the Intel architecture. Zen made AMD competitive, and it fueled an explosive rebirth for a company that was near death a few years prior. AMD now has about 30% market share, while Intel suffers from a loss of technology as well as corporate leadership. Now, customers have a choice of Intel or AMD, and they don’t have to worry about porting their applications to a new platform like they would have to do if they switched to Arm. Analysts weigh in on Arm Tim Crawford sees no demand for Arm in the data center. Crawford is president of AVOA, a CIO consultancy. In his role, he talks to IT professionals all the time, but he’s not hearing much interest in Arm. “I don’t see Arm really making a dent, ever, into the general-purpose processor space,” Crawford said. “I think the opportunity for Arm is special applications and special silicon. If you look at the major cloud providers, their custom silicon is specifically built to do training or optimized to do inference. Arm is kind of in the same situation in the sense that it has to be optimized.” “The problem [for Arm] is that there’s not necessarily a need to fulfill at this point in time,” said Rob Enderle, principal analyst with The Enderle Group. “Obviously, there’s always room for other solutions, but Arm is still going to face the challenge of software compatibility.” And therein lies what may be Arm’s greatest challenge: software compatibility. Software doesn’t care (usually) if it’s on Intel or AMD, because both use the x86 architecture, with some differences in extensions. But Arm is a whole new platform, and that requires porting and testing. Enterprises generally don’t like disruption —

Read More »

Intel decides to keep networking business after all

That doesn’t explain why Intel made the decision to pursue spin-off in the first place. In July, NEX chief Sachin Katti issued a memo that outlined plans to establish key elements of the Networking and Communications business as a stand-alone company. It looked like a done deal, experts said. Jim Hines, research director for enabling technologies and semiconductors at IDC, declined to speculate on whether Intel could get a decent offer but noted NEX is losing ground. IDC estimates Intel’s market share in overall semiconductors at 6.8% in Q3 2025, which is down from 7.4% for the full year 2024 and 9.2% for the full year 2023. Intel’s course reversal “is a positive for Intel in the long term, and recent improvements in its financial situation may have contributed to the decision to keep NEX in house,” he said. When Tan took over as CEO earlier this year, prioritized strengthening the balance sheet and bringing a greater focus on execution. Divest NEX was aligned with these priorities, but since then, Intel has secured investments from the US Government, Nvidia and SoftBank that have reduced the need to raise cash through other means, Hines notes. “The NEX business will prove to be a strategic asset for Intel as it looks to protect and expand its position in the AI datacenter market. Success in this market now requires processor suppliers to offer a full-stack solution, not just silicon. Scale-up and scale-out networking solutions are a key piece of the package, and Intel will be able to leverage its NEX technologies and software, including silicon photonics, to develop differentiated product offerings in this space,” Hines said.

Read More »

At the Crossroads of AI and the Edge: Inside 1623 Farnam’s Rising Role as a Midwest Interconnection Powerhouse

That was the thread that carried through our recent conversation for the DCF Show podcast, where Severn walked through the role Farnam now plays in AI-driven networking, multi-cloud connectivity, and the resurgence of regional interconnection as a core part of U.S. digital infrastructure. Aggregation, Not Proximity: The Practical Edge Severn is clear-eyed about what makes the edge work and what doesn’t. The idea that real content delivery could aggregate at the base of cell towers, he noted, has never been realistic. The traffic simply isn’t there. Content goes where the network already concentrates, and the network concentrates where carriers, broadband providers, cloud onramps, and CDNs have amassed critical mass. In Farnam’s case, that density has grown steadily since the building changed hands in 2018. At the time an “underappreciated asset,” the facility has since become a meeting point for more than 40 broadband providers and over 60 carriers, with major content operators and hyperscale platforms routing traffic directly through its MMRs. That aggregation effect feeds on itself; as more carrier and content traffic converges, more participants anchor themselves to the hub, increasing its gravitational pull. Geography only reinforces that position. Located on the 41st parallel, the building sits at the historical shortest-distance path for early transcontinental fiber routes. It also lies at the crossroads of major east–west and north–south paths that have made Omaha a natural meeting point for backhaul routes and hyperscale expansions across the Midwest. AI and the New Interconnection Economy Perhaps the clearest sign of Farnam’s changing role is the sheer volume of fiber entering the building. More than 5,000 new strands are being brought into the property, with another 5,000 strands being added internally within the Meet-Me Rooms in 2025 alone. These are not incremental upgrades—they are hyperscale-grade expansions driven by the demands of AI traffic,

Read More »

Schneider Electric’s $2.3 Billion in AI Power and Cooling Deals Sends Message to Data Center Sector

When Schneider Electric emerged from its 2025 North American Innovation Summit in Las Vegas last week with nearly $2.3 billion in fresh U.S. data center commitments, it didn’t just notch a big sales win. It arguably put a stake in the ground about who controls the AI power-and-cooling stack over the rest of this decade. Within a single news cycle, Schneider announced: Together, the deals total about $2.27 billion in U.S. data center infrastructure, a number Schneider confirmed in background with multiple outlets and which Reuters highlighted as a bellwether for AI-driven demand.  For the AI data center ecosystem, these contracts function like early-stage fuel supply deals for the power and cooling systems that underpin the “AI factory.” Supply Capacity Agreements: Locking in the AI Supply Chain Significantly, both deals are structured as supply capacity agreements, not traditional one-off equipment purchase orders. Under the SCA model, Schneider is committing dedicated manufacturing lines and inventory to these customers, guaranteeing output of power and cooling systems over a multi-year horizon. In return, Switch and Digital Realty are providing Schneider with forecastable volume and visibility at the scale of gigawatt-class campus build-outs.  A Schneider spokesperson told Reuters that the two contracts are phased across 2025 and 2026, underscoring that this arrangement is about pipeline, as opposed to a one-time backlog spike.  That structure does three important things for the market: Signals confidence that AI demand is durable.You don’t ring-fence billions of dollars of factory output for two customers unless you’re highly confident the AI load curve runs beyond the current GPU cycle. Pre-allocates power & cooling the way the industry pre-allocated GPUs.Hyperscalers and neoclouds have already spent two years locking up Nvidia and AMD capacity. These SCAs suggest power trains and thermal systems are joining chips on the list of constrained strategic resources.

Read More »

The Data Center Power Squeeze: Mapping the Real Limits of AI-Scale Growth

As we all know, the data center industry is at a crossroads. As artificial intelligence reshapes the already insatiable digital landscape, the demand for computing power is surging at a pace that outstrips the growth of the US electric grid. As engines of the AI economy, an estimated 1,000 new data centers1 are needed to process, store, and analyze the vast datasets that run everything from generative models to autonomous systems. But this transformation comes with a steep price and the new defining criteria for real estate: power. Our appetite for electricity is now the single greatest constraint on our expansion, threatening to stall the very innovation we enable. In 2024, US data centers consumed roughly 4% of the nation’s total electricity, a figure that is projected to triple by 2030, reaching 12% or more.2 For AI-driven hyperscale facilities, the numbers are even more staggering. With the largest planned data centers requiring gigawatts of power, enough to supply entire cities, the cumulative demand from all data centers is expected to reach 134 gigawatts by 2030, nearly three times the current load.​3 This presents a systemic challenge. The U.S. power grid, built for a different era, is struggling to keep pace. Utilities are reporting record interconnection requests, with some regions seeing demand projections that exceed their total system capacity by fivefold.4 In Virginia and Texas, the epicenters of data center expansion, grid operators are warning of tight supply-demand balances and the risk of blackouts during peak periods.5 The problem is not just the sheer volume of power needed, but the speed at which it must be delivered. Data center operators are racing to secure power for projects that could be online in as little as 18 months, but grid upgrades and new generation can take years, if not decades. The result

Read More »

The Future of Hyperscale: Neoverse Joins NVLink Fusion as SC25 Accelerates Rack-Scale AI Architectures

Neoverse’s Expanding Footprint and the Power-Efficiency Imperative With Neoverse deployments now approaching roughly 50% of all compute shipped into top hyperscalers in 2025 (representing more than a billion Arm cores) and with nation-scale AI campuses such as the Stargate project already anchored on Arm compute, the addition of NVLink Fusion becomes a pivotal extension of the Neoverse roadmap. Partners can now connect custom Arm CPUs to their preferred NVIDIA accelerators across a coherent, high-bandwidth, rack-scale fabric. Arm characterized the shift as a generational inflection point in data-center architecture, noting that “power—not FLOPs—is the bottleneck,” and that future design priorities hinge on maximizing “intelligence per watt.” Ian Buck, vice president and general manager of accelerated computing at NVIDIA, underscored the practical impact: “Folks building their own Arm CPU, or using an Arm IP, can actually have access to NVLink Fusion—be able to connect that Arm CPU to an NVIDIA GPU or to the rest of the NVLink ecosystem—and that’s happening at the racks and scale-up infrastructure.” Despite the expanded design flexibility, this is not being positioned as an open interconnect ecosystem. NVIDIA continues to control the NVLink Fusion fabric, and all connections ultimately run through NVIDIA’s architecture. For data-center planners, the SC25 announcement translates into several concrete implications: 1.   NVIDIA “Grace-style” Racks Without Buying Grace With NVLink Fusion now baked into Neoverse, hyperscalers and sovereign operators can design their own Arm-based control-plane or pre-processing CPUs that attach coherently to NVIDIA GPU domains—such as NVL72 racks or HGX B200/B300 systems—without relying on Grace CPUs. A rack-level architecture might now resemble: Custom Neoverse SoC for ingest, orchestration, agent logic, and pre/post-processing NVLink Fusion fabric Blackwell GPU islands and/or NVLink-attached custom accelerators (Marvell, MediaTek, others) This decouples CPU choice from NVIDIA’s GPU roadmap while retaining the full NVLink fabric. In practice, it also opens

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »