Stay Ahead, Stay ONMINE

Supercharge Your RAG with Multi-Agent Self-RAG

Introduction Many of us might have tried to build a RAG application and noticed it falls significantly short of addressing real-life needs. Why is that? It’s because many real-world problems require multiple steps of information retrieval and reasoning. We need our agent to perform those as humans normally do, yet most RAG applications fall short […]

Introduction

Many of us might have tried to build a RAG application and noticed it falls significantly short of addressing real-life needs. Why is that? It’s because many real-world problems require multiple steps of information retrieval and reasoning. We need our agent to perform those as humans normally do, yet most RAG applications fall short of this.

This article explores how to supercharge your RAG application by making its data retrieval and reasoning process similar to how a human would, under a multi-agent framework. The framework presented here is based on the Self-RAG strategy but has been significantly modified to enhance its capabilities. Prior knowledge of the original strategy is not necessary for reading this article.

Real-life Case

Consider this: I was going to fly from Delhi to Munich (let’s assume I am taking the flight from an EU airline), but I was denied boarding somehow. Now I want to know what the compensation should be.

These two webpages contain relevant information, I go ahead adding them to my vector store, trying to have my agent answer this for me by retrieving the right information.

Now, I pass this question to the vector store: “how much can I receive if I am denied boarding, for flights from Delhi to Munich?”.

– – – – – – – – – – – – – – – – – – – – – – – – –
Overview of US Flight Compensation Policies To get compensation for delayed flights, you should contact your airline via their customer service or go to the customer service desk. At the same time, you should bear in mind that you will only receive compensation if the delay is not weather-related and is within the carrier`s control. According to the US Department of Transportation, US airlines are not required to compensate you if a flight is cancelled or delayed. You can be compensated if you are bumped or moved from an overbooked flight. If your provider cancels your flight less than two weeks before departure and you decide to cancel your trip entirely, you can receive a refund of both pre-paid baggage fees and your plane ticket. There will be no refund if you choose to continue your journey. In the case of a delayed flight, the airline will rebook you on a different flight. According to federal law, you will not be provided with money or other compensation. Comparative Analysis of EU vs. US Flight Compensation Policies
– – – – – – – – – – – – – – – – – – – – – – – – –
(AUTHOR-ADDED NOTE: IMPORTANT, PAY ATTENTION TO THIS)
Short-distance flight delays – if it is up to 1,500 km, you are due 250 Euro compensation.
Medium distance flight delays – for all the flights between 1,500 and 3,500 km, the compensation should be 400 Euro.
Long-distance flight delays – if it is over 3,500 km, you are due 600 Euro compensation. To receive this kind of compensation, the following conditions must be met; Your flight starts in a non-EU member state or in an EU member state and finishes in an EU member state and is organised by an EU airline. Your flight reaches the final destination with a delay that exceeds three hours. There is no force majeure.
– – – – – – – – – – – – – – – – – – – – – – – – –
Compensation policies in the EU and US are not the same, which implies that it is worth knowing more about them. While you can always count on Skycop flight cancellation compensation, you should still get acquainted with the information below.
– – – – – – – – – – – – – – – – – – – – – – – – –
Compensation for flight regulations EU: The EU does regulate flight delay compensation, which is known as EU261. US: According to the US Department of Transportation, every airline has its own policies about what should be done for delayed passengers. Compensation for flight delays EU: Just like in the United States, compensation is not provided when the flight is delayed due to uncontrollable reasons. However, there is a clear approach to compensation calculation based on distance. For example, if your flight was up to 1,500 km, you can receive 250 euros. US: There are no federal requirements. That is why every airline sets its own limits for compensation in terms of length. However, it is usually set at three hours. Overbooking EU: In the EU, they call for volunteers if the flight is overbooked. These people are entitled to a choice of: Re-routing to their final destination at the earliest opportunity. Refund of their ticket cost within a week if not travelling. Re-routing at a later date at the person`s convenience.

Unfortunately, they contain only generic flight compensation policies, without telling me how much I can expect when denied boarding from Delhi to Munich specifically. If the RAG agent takes these as the sole context, it can only provide a generic answer about flight compensation policy, without giving the answer we want.

However, while the documents are not immediately useful, there is an important insight contained in the 2nd piece of context: compensation varies according to flight distance. If the RAG agent thinks more like human, it should follow these steps to provide an answer:

  1. Based on the retrieved context, reason that compensation varies with flight distance
  2. Next, retrieve the flight distance between Delhi and Munich
  3. Given the distance (which is around 5900km), classify the flight as a long-distance one
  4. Combined with the previously retrieved context, figure out I am due 600 EUR, assuming other conditions are fulfilled

This example demonstrates how a simple RAG, in which a single retrieval is made, fall short for several reasons:

  1. Complex Queries: Users often have questions that a simple search can’t fully address. For example, “What’s the best smartphone for gaming under $500?” requires consideration of multiple factors like performance, price, and features, which a single retrieval step might miss.
  2. Deep Information: Some information lies across documents. For example, research papers, medical records, or legal documents often include references that need to be made sense of, before one can fully understand the content of a given article. Multiple retrieval steps help dig deeper into the content.

Multiple retrievals supplemented with human-like reasoning allow for a more nuanced, comprehensive, and accurate response, adapting to the complexity and depth of user queries.

Multi-Agent Self-RAG

Here I explain the reasoning process behind this strategy, afterwards I will provide the code to show you how to achieve this!

Note: For readers interested in knowing how my approach differs from the original Self-RAG, I will describe the discrepancies in quotation boxes like this. But general readers who are unfamiliar with the original Self-RAG can skip them.

In the below graphs, each circle represents a step (aka Node), which is performed by a dedicated agent working on the specific problem. We orchestrate them to form a multi-agent RAG application.

1st iteration: Simple RAG

A simple RAG chain

This is just the vanilla RAG approach I described in “Real-life Case”, represented as a graph. After Retrieve documents, the new_documents will be used as input for Generate Answer. Nothing special, but it serves as our starting point.

2nd iteration: Digest documents with “Grade documents”

Reasoning like human do

Remember I said in the “Real-life Case” section, that as a next step, the agent should “reason that compensation varies with flight distance”? The Grade documents step is exactly for this purpose.

Given the new_documents, the agent will try to output two items:

  1. useful_documents: Comparing the question asked, it determines if the documents are useful, and retain a memory for those deemed useful for future reference. As an example, since our question does not concern compensation policies for US, documents describing those are discarded, leaving only those for EU
  2. hypothesis: Based on the documents, the agent forms a hypothesis about how the question can be answered, that is, flight distance needs to be identified

Notice how the above reasoning resembles human thinking! But still, while these outputs are useful, we need to instruct the agent to use them as input for performing the next document retrieval. Without this, the answer provided in Generate answer is still not useful.

useful_documents are appended for each document retrieval loop, instead of being overwritten, to keep a memory of documents that are previously deemed useful. hypothesis is formed from useful_documents and new_documents to provide an “abstract reasoning” to inform how query is to be transformed subsequently.

The hypothesis is especially useful when no useful documents can be identified initially, as the agent can still form hypothesis from documents not immediately deemed as useful / only bearing indirect relationship to the question at hand, for informing what questions to ask next

3rd iteration: Brainstorm new questions to ask

Suggest questions for additional information retrieval

We have the agent reflect upon whether the answer is useful and grounded in context. If not, it should proceed to Transform query to ask further questions.

The output new_queries will be a list of new questions that the agent consider useful for obtaining extra information. Given the useful_documents (compensation policies for EU), and hypothesis (need to identify flight distance between Delhi and Munich), it asks questions like “What is the distance between Delhi and Munich?”

Now we are ready to use the new_queries for further retrieval!

The transform_query node will use useful_documents (which are accumulated per iteration, instead of being overwritten) and hypothesis as input for providing the agent directions to ask new questions.

The new questions will be a list of questions (instead of a single question) separated from the original question, so that the original question is kept in state, otherwise the agent could lose track of the original question after multiple iterations.

Final iteration: Further retrieval with new questions

Issuing new queries to retrieve extra documents

The output new_queries from Transform query will be passed to the Retrieve documents step, forming a retrieval loop.

Since the question “What is the distance between Delhi and Munich?” is asked, we can expect the flight distance is then retrieved as new_documents, and subsequently graded as useful_documents, further used as an input for Generate answer.

The grade_documents node will compare the documents against both the original question and new_questions list, so that documents that are considered useful for new_questions, even if not so for the original question, are kept.

This is because those documents might help answer the original question indirectly, by being relevant to new_questions (like “What is the distance between Delhi and Munich?”)

Final answer!

Equipped with this new context about flight distance, the agent is now ready to provide the right answer: 600 EUR!

Next, let us now dive into the code to see how this multi-agent RAG application is created.

Implementation

The source code can be found here. Our multi-agent RAG application involves iterations and loops, and LangGraph is a great library for building such complex multi-agent application. If you are not familiar with LangGraph, you are strongly suggested to have a look at LangGraph’s Quickstart guide to understand more about it!

To keep this article concise, I will focus on the key code snippets only.

Important note: I am using OpenRouter as the Llm interface, but the code can be easily adapted for other LLM interfaces. Also, while in my code I am using Claude 3.5 Sonnet as model, you can use any LLM as long as it support tools as parameter (check this list here), so you can also run this with other models, like DeepSeek V3 and OpenAI o1!

State definition

In the previous section, I have defined various elements e.g. new_documentshypothesis that are to be passed to each step (aka Nodes), in LangGraph’s terminology these elements are called State.

We define the State formally with the following snippet.

from typing import List, Annotated
from typing_extensions import TypedDict

def append_to_list(original: list, new: list) -> list:
original.append(new)
return original

def combine_list(original: list, new: list) -> list:
return original + new

class GraphState(TypedDict):
"""
Represents the state of our graph.

Attributes:
question: question
generation: LLM generation
new_documents: newly retrieved documents for the current iteration
useful_documents: documents that are considered useful
graded_documents: documents that have been graded
new_queries: newly generated questions
hypothesis: hypothesis
"""

question: str
generation: str
new_documents: List[str]
useful_documents: Annotated[List[str], combine_list]
graded_documents: List[str]
new_queries: Annotated[List[str], append_to_list]
hypothesis: str

Graph definition

This is where we combine the different steps to form a “Graph”, which is a representation of our multi-agent application. The definitions of various steps (e.g. grade_documents) are represented by their respective functions.

from langgraph.graph import END, StateGraph, START
from langgraph.checkpoint.memory import MemorySaver
from IPython.display import Image, display

workflow = StateGraph(GraphState)

# Define the nodes
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("transform_query", transform_query) # transform_query

# Build graph
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"useful": END,
"not supported": "transform_query",
"not useful": "transform_query",
},
)

# Compile
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)
display(Image(app.get_graph(xray=True).draw_mermaid_png()))

Running the above code, you should see this graphical representation of our RAG application. Notice how it is essentially equivalent to the graph I have shown in the final iteration of “Enhanced Self-RAG Strategy”!

Visualizing the multi-agent RAG graph

After generate, if the answer is considered “not supported”, the agent will proceed to transform_query intead of to generate again, so that the agent will look for additional information rather than trying to regenerate answers based on existing context, which might not suffice for providing a “supported” answer

Now we are ready to put the multi-agent application to test! With the below code snippet, we ask this question how much can I receive if I am denied boarding, for flights from Delhi to Munich?

from pprint import pprint
config = {"configurable": {"thread_id": str(uuid4())}}

# Run
inputs = {
"question": "how much can I receive if I am denied boarding, for flights from Delhi to Munich?",
}
for output in app.stream(inputs, config):
for key, value in output.items():
# Node
pprint(f"Node '{key}':")
# Optional: print full state at each node
# print(app.get_state(config).values)
pprint("n---n")

# Final generation
pprint(value["generation"])

While output might vary (sometimes the application provides the answer without any iterations, because it “guessed” the distance between Delhi and Munich), it should look something like this, which shows the application went through multiple rounds of data retrieval for RAG.

---RETRIEVE---
"Node 'retrieve':"
'n---n'
---CHECK DOCUMENT RELEVANCE TO QUESTION---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---ASSESS GRADED DOCUMENTS---
---DECISION: GENERATE---
"Node 'grade_documents':"
'n---n'
---GENERATE---
---CHECK HALLUCINATIONS---
'---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---'
"Node 'generate':"
'n---n'
---TRANSFORM QUERY---
"Node 'transform_query':"
'n---n'
---RETRIEVE---
"Node 'retrieve':"
'n---n'
---CHECK DOCUMENT RELEVANCE TO QUESTION---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---ASSESS GRADED DOCUMENTS---
---DECISION: GENERATE---
"Node 'grade_documents':"
'n---n'
---GENERATE---
---CHECK HALLUCINATIONS---
---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---
---GRADE GENERATION vs QUESTION---
---DECISION: GENERATION ADDRESSES QUESTION---
"Node 'generate':"
'n---n'
('Based on the context provided, the flight distance from Munich to Delhi is '
'5,931 km, which falls into the long-distance category (over 3,500 km). '
'Therefore, if you are denied boarding on a flight from Delhi to Munich '
'operated by an EU airline, you would be eligible for 600 Euro compensation, '
'provided that:n'
'1. The flight is operated by an EU airlinen'
'2. There is no force majeuren'
'3. Other applicable conditions are metn'
'n'
"However, it's important to note that this compensation amount is only valid "
'if all the required conditions are met as specified in the regulations.')

And the final answer is what we aimed for!

Based on the context provided, the flight distance from Munich to Delhi is
5,931 km, which falls into the long-distance category (over 3,500 km).
Therefore, if you are denied boarding on a flight from Delhi to Munich
operated by an EU airline, you would be eligible for 600 Euro compensation,
provided that:
1. The flight is operated by an EU airline
2. There is no force majeure
3. Other applicable conditions are met

However, it's important to note that this compensation amount is only valid
if all the required conditions are met as specified in the regulations.

Inspecting the State, we see how the hypothesis and new_queries enhance the effectiveness of our multi-agent RAG application by mimicking human thinking process.

Hypothesis

print(app.get_state(config).values.get('hypothesis',""))
--- Output ---
To answer this question accurately, I need to determine:

1. Is this flight operated by an EU airline? (Since Delhi is non-EU and Munich is EU)
2. What is the flight distance between Delhi and Munich? (To determine compensation amount)
3. Are we dealing with a denied boarding situation due to overbooking? (As opposed to delay/cancellation)

From the context, I can find information about compensation amounts based on distance, but I need to verify:
- If the flight meets EU compensation eligibility criteria
- The exact distance between Delhi and Munich to determine which compensation tier applies (250€, 400€, or 600€)
- If denied boarding compensation follows the same amounts as delay compensation

The context doesn't explicitly state compensation amounts specifically for denied boarding, though it mentions overbooking situations in the EU require offering volunteers re-routing or refund options.

Would you like me to proceed with the information available, or would you need additional context about denied boarding compensation specifically?

New Queries

for questions_batch in app.get_state(config).values.get('new_queries',""):
for q in questions_batch:
print(q)
--- Output ---
What is the flight distance between Delhi and Munich?
Does EU denied boarding compensation follow the same amounts as flight delay compensation?
Are there specific compensation rules for denied boarding versus flight delays for flights from non-EU to EU destinations?
What are the compensation rules when flying with non-EU airlines from Delhi to Munich?
What are the specific conditions that qualify as denied boarding under EU regulations?

Conclusion

Simple RAG, while easy to build, might fall short in tackling real-life questions. By incorporating human thinking process into a multi-agent RAG framework, we are making RAG applications much more practical.

*Unless otherwise noted, all images are by the author


Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

SSHStalker botnet brute-forces its way onto 7,000 Linux machines

However, so far the botnet hasn’t done much other than maintaining persistence on infected machines. It has the ability to launch DDoS (distributed denial of service) attacks and conduct cryptomining, but hasn’t done anything yet to monetize its access. That, Flare says, suggests either the operator is still staging the

Read More »

NetBrain’s new AI agents automate network diagnosis

In testing, the system handled the majority of real-world network issues. “90% of the real-world network issues that they had when they threw them at it, it handled it,” Nixon said. “[People] couldn’t quite believe that it was at the 90% mark. People went in thinking, ‘Well, if this gives me

Read More »

IBM FlashSystems gain AI-assisted telemetry, analytics

For security, the systems include a new FlashCore Module all-flash drive, which brings hardware-accelerated, real-time ransomware detection, data reduction, analytics and operations. The devices can spot anomalies and patterns in data that need to be remediated, IBM noted. “The next-generation IBM FlashSystem elevates storage to an intelligent, always-available layer, where autonomous

Read More »

Wright Says China Bought Some VEN Oil From the USA

China has bought some Venezuelan oil that was purchased earlier by the US, according to Energy Secretary Chris Wright. “China has already bought some of the crude that’s been sold by the US government,” Wright told the media in Caracas, without giving details. “Legitimate Chinese business deals under legitimate business conditions” would be fine, he said, when asked about possible joint ventures in the country. China’s Foreign Ministry spokesman Lin Jian said he wasn’t familiar with Wright’s comments when asked at a regular briefing in Beijing on Thursday. The global oil market was jolted in January as US forces swooped into Venezuela and seized former President Nicolás Maduro, with Washington asserting control over the OPEC member’s crude industry. Since then, traders have looked for signals about how export patterns may change, and how output may be revived after years of neglect, sanctions, and underinvestment. The South American country’s so-called “oil quarantine” was essentially over, Wright said on Thursday. Ahead of the intervention, the US blockaded the country’s oil flows with a vast naval force, and seized several vessels. Refiners in China — the largest world’s oil importer — were the biggest buyers of Venezuelan crude before the US move, with the bulk of the imports bought by private processors. Given those flows were sanctioned, they were typically offered with deep discounts, making them attractive to local users. After Maduro’s seizure, President Donald Trump said that Venezuela would turn over 30 million to 50 million barrels of sanctioned oil to the US, according to a post on Truth Social. In addition, Wright told Fox News in January that the US would not cut China off from accessing Venezuelan crude. Several Indian refiners have bought Venezuela’s flagship Merey-grade crude following the US action, and the government has asked state-owned processors to consider buying more Venezuelan and US oil.

Read More »

Crude Glut Is a Boon for USA Refiners

Oil markets are awash in crude, keeping a lid on prices and squeezing drillers. For US refiners, though, the glut is proving a windfall.  The big three US refiners — Marathon Petroleum, Valero Energy Corp. and Phillips 66 — all beat estimates in fourth quarter earnings results reported in recent weeks. On calls with analysts, executives signaled a profitable outlook for 2026 and the years ahead, not least because they’re set to benefit from an influx of cheaper and more readily available heavy crudes.  The divergence reflects a growing imbalance in global fuel markets: demand for gasoline, diesel and jet fuel is rising faster than new refining capacity is growing, even as oil producers continue to pump more crude than the world needs. That dynamic allows refiners to buy cheaper feedstock while charging more for finished fuels. “We are very bullish,” Phillips 66 Chief Executive Officer Mark Lashier said on a Feb. 4 call with analysts. Fuel demand is set to grow in 2026, and global refining capacity additions will fall short, Lashier said. The upbeat tone is a far cry from early 2025, when President Donald Trump’s tariff uncertainty clouded the economic outlook and sparked concerns over fuel demand. At the time, the industry braced for a wave of plant closures. Since then, fuel consumption has remained resilient even as the supply glut drove oil prices lower. Brent crude, the global benchmark, is down about 10% over the past 12 months.  Refining margins for America’s top fuel makers, who collectively process some 8 million barrels of oil a day, ended 2025 with profits that were about $5 a barrel higher than the fourth quarter of 2024. With fuel demand forecast to stay strong, the upward momentum for margins is likely to continue. Consultant Rapidan Energy, in its refined product outlook

Read More »

Ukraine Strikes 2nd Lukoil Refinery in Russia This Week

Ukrainian drones hit another Russian refinery owned by Lukoil PJSC, as Kyiv’s attacks on its foe’s energy infrastructure resume after a lull last month. Fire crews are working to extinguish a blaze at an oil refinery in the city of Ukhta some 1,550 kilometers (965 miles) from Moscow, following a Ukrainian drone attack, Komi region Governor Rostislav Goldshtein said in a post on Telegram, without giving further details.  The fire broke out at the refinery’s primary unit and a visbreaker, a unit designed to convert heavy residue into lighter oil products, Ukraine’s General Staff said on Telegram. Lukoil didn’t respond to a Bloomberg request for comment.  Ukraine carried out multiple high-precision strikes on Russia’s energy assets last year, leading to refinery shutdowns, disruptions at oil terminals and the rerouting of some tankers. The attacks are designed to curb the Kremlin’s energy revenues and restrict fuel supplies to Russian front lines as the war is about to enter a fifth year.  The attacks slowed in January, targeting three small independent Russian refineries that together account for about 7% of the country’s typical monthly crude throughput. The lull offered temporary relief for Russia’s downstream sector, allowing refinery runs to gradually recover. As processing rates improved, the government lifted its ban on most gasoline exports, enabling producers to resume shipments in February, a month earlier than planned. On Wednesday, however, Ukraine attacked Lukoil’s oil refinery in Russia’s Volgograd region in the first major strike on the country’s oil-processing industry this year. The plant’s design capacity is about 300,000 barrels of crude a day.  The smaller Ukhta refinery has recently been processing just over 60,000 barrels per day.  WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting

Read More »

USA Crude Oil Stocks Rise More Than 8MM Barrels WoW

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), increased by 8.5 million barrels from the week ending January 30 to the week ending February 6. That’s what the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report, which was released on Wednesday and included data for the week ending February 6. According to the EIA report, crude oil stocks, not including the SPR, stood at 428.8 million barrels on February 6, 420.3 million barrels on January 30, and 427.9 million barrels on February 7, 2025. Crude oil in the SPR stood at 415.2 million barrels on February 6, 415.2 million barrels on January 30, and 395.3 million barrels on February 7, 2025, the EIA report revealed. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.689 billion barrels on February 6, the report highlighted. Total petroleum stocks were down 1.7 million barrels week on week and up 81.9 million barrels year on year, the report pointed out. “At 428.8 million barrels, U.S. crude oil inventories are about three percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories increased by 1.2 million barrels from last week and are about four percent above the five year average for this time of year. Finished gasoline inventories decreased, while blending components inventories increased last week,” it added. “Distillate fuel inventories decreased by 2.7 million barrels last week and are about four percent below the five year average for this time of year. Propane/propylene inventories decreased 5.4 million barrels from last week and are about 36 percent above the five

Read More »

USA Labor Market Report Underpins Energy Demand

In a market update sent to Rigzone late Wednesday, Rystad Energy outlined that the January U.S. labor market report “surprise[d]… to the upside, underpinning energy demand”. Rystad noted in the report that the latest U.S. jobs data “shows promise, with the unemployment rate falling by 4.3 percent, pointing to market stability”. “Non-farm payrolls increased by 130,000 jobs in January, while the rise for December was downwardly revised to 48,000,” it pointed out, adding that the unemployment rate in December was 4.4 percent. “The latest data compares with consensus expectations of job gains of around 70,000 and the unemployment rate holding steady at 4.4 percent,” Rystad said. In the update, Rystad Energy Chief Economist Claudio Galimberti noted that payroll growth exceeded expectations and that unemployment edged lower. “Following a series of weaker private indicators, the data suggests stabilization rather than strong acceleration,” Galimberti said. “Markets that had positioned for a rapid easing cycle responded by repricing yields higher and scaling back expectations for near-term rate cuts,” he added. “For energy markets, the implications are moderately supportive. A resilient labor market underpins demand for transport fuels, petrochemicals and power generation, reducing downside risks to U.S. consumption at a time when macro sentiment had turned cautious,” he continued. “While the U.S. is not the primary driver of incremental global oil demand, labor market stability reinforces the view that the demand picture is firming up,” he went on to state. Galimberti noted in the update that “revisions to prior data confirm that the cycle is mature, not accelerating”. “Still, in a market already balancing OPEC+ supply management against geopolitical risk, a firmer U.S. macro signal marginally strengthens the demand outlook,” he said. “The result is a modestly constructive backdrop for oil prices in the near term, without materially shifting the fundamentals,” Galimberti concluded. In

Read More »

Energy Department Announces $175 Million to Modernize Coal Plants, Keeping Affordable Reliable Power Online for Americans

WASHINGTON—The U.S. Department of Energy (DOE) today announced $175 million in funding for six projects to modernize, retrofit, and extend the useful life of coal-fired power plants that serve rural and remote communities across the United States, keeping dependable energy sources online, strengthening grid reliability, and helping keep electricity costs low for American families and businesses. The projects are part of the Department’s $525 million effort to expand and reinvigorate America’s coal fleet through targeted upgrades that increase efficiency, extend plant life, and add dependable capacity using infrastructure that is already built and connected to the grid. Modernizing existing plants provides one of the fastest and most cost-effective ways to deliver reliable power while preserving high-wage energy jobs, particularly across Appalachian communities that have long powered the nation. “For years, previous administrations targeted America’s coal industry and the workers who power our country, forcing the premature closure of reliable plants, and driving up electricity costs,” said U.S. Secretary of Energy Chris Wright. “President Trump has ended the war on American coal and is restoring common-sense energy policy. These investments will keep America’s coal plants operating, keep costs low for Americans, and ensure we have the reliable power needed to keep the lights on and power our future.” These actions advance President Trump’s Executive Orders Reinvigorating America’s Beautiful Clean Coal Industry and Strengthening the Reliability and Security of the United States Electric Grid to restore common-sense energy policies that prioritize dependable power, affordability, and American workers. As electricity demand continues to grow, dependable, around-the-clock generation remains essential to maintaining a reliable and affordable power system. By upgrading existing coal facilities, DOE is strengthening the backbone of America’s power grid and ensuring communities have access to secure, reliable energy when they need it most. Selected projects include the following: Appalachian Power Company (Letart and Winfield, West Virginia) will upgrade two coal-fired plants in West

Read More »

Energy providers seek flexible load strategies for data center operations

“In theory, yes, they’d have to wait a little bit longer while their queries are routed to a data center that has capacity,” said Lawrence. The one thing the industry cannot do is operate like it has in the past, where data center power was tuned and then forgotten for six months. Previously, data centers would test their power sources once or twice a year. They don’t have that luxury anymore. They need to check their power sources and loads far more regularly, according to Lawrence. “I think that for that for the data center industry to continue to survive like we all need it, there’s going to have to be some realignment on the incentives to why somebody would become flexible,” said Lawrence. The survey suggests that utilities and load operators expect to expand their demand response activities and budgets in the near term. Sixty-three percent of respondents anticipate DR program funding to grow by 50% or more over the next three years. While they remain a major source of load growth and system strain, 57% of respondents indicate that onsite power generation from data centers will be most important to improving grid stability over the next five years. One of the proposed fixes to the power shortage has been small modular nuclear reactors. These have gained a lot of traction in the marketplace even if they have nothing to sell yet. But Lawrence said that that’s not an ideal solution for existing power generators, ironically enough.

Read More »

Nokia predicts huge WAN traffic growth, but experts question assumptions

Consumer, which includes both mobile access and fixed access, including fixed wireless access. Enterprise and industrial, which covers wide-area connectivity that supports knowledge work, automation, machine vision, robotics coordination, field support, and industrial IoT. AI, including applications that people directly invoke, such as assistants, copilots, and media generation, as well as autonomous use cases in which AI systems trigger other AI systems to perform functions and move data across networks. The report outlines three scenarios: conservative, moderate, and aggressive. “Our goal is to present scenarios that fall within a realistic range of possible outcomes, encouraging stakeholders to plan across the full spectrum of high-impact demand possibilities,” the report says. Nokia’s prediction for global WAN traffic growth ranges from a 13% CAGR for the conservative scenario to 16% CAGR for moderate and 22% CAGR for aggressive. Looking more closely at the moderate scenario, it’s clear that consumer traffic dominates. Enterprise and industrial traffic make up only about 14% to 17% of overall WAN traffic, although their share is expected to grow during the 10-year forecast period. “On the consumer side, the vast majority of traffic by volume is video,” says William Webb, CEO of the consulting firm Commcisive. Asked whether any of that consumer traffic is at some point served up by enterprises, the answer is a decisive “no.” It’s mostly YouTube and streaming services like Netflix, he says. In short, that doesn’t raise enterprise concerns. Nokia predicts AI traffic boom AI is a different story. “Consumer- and enterprise-generated AI traffic imposes a substantial impact on the wide-area network (WAN) by adding AI workloads processed by data centers across the WAN. AI traffic does not stay inside one data center; it moves across edge, metro, core, and cloud infrastructure, driving dense lateral flows and new capacity demands,” the report says. An

Read More »

Cisco amps up Silicon One line, delivers new systems and optics for AI networking

Those building blocks include the new G300 as well as the G200 51.2 Tbps chip, which is aimed at spine and aggregation applications, and the G100 25.6 Tbps chip, which is aimed at leaf operations. Expanded portfolio of Silicon One P200-powered systems Cisco in October rolled out the P200 Silicon One chip and the high-end, 51.2 Tbps 8223 router aimed at distributed AI workloads. That system supports Octal Small Form-Factor Pluggable (OSFP) and Quad Small Form-Factor Pluggable Double Density (QSFP-DD) optical form factors that help the box support geographically dispersed AI clusters. Cisco grew the G200 family this week with the addition of the 8122X-64EF-O, a 64x800G switch that will run the SONiC OS and includes support for Cisco 800G Linear Pluggable Optics (LPO) connectivity. LPO components typically set up direct links between fiber optic modules, eliminating the need for traditional components such as a digital signal processor. Cisco said its P200 systems running IOS XR software now better support core routing services to allow data-center-to-data-center links and data center interconnect applications. In addition, Cisco introduced a P200-powered 88-LC2-36EF-M line card, which delivers 28.8T of capacity. “Available for both our 8-slot and 18-slot modular systems, this line card enables up to an unprecedented 518.4T of total system bandwidth, the highest in the industry,” wrote Guru Shenoy, senior vice president of the Cisco provider connectivity group, in a blog post about the news. “When paired with Cisco 800G ZR/ZR+ coherent pluggable optics, these systems can easily connect sites over 1,000 kilometers apart, providing the high-density performance needed for modern data center interconnects and core routing.”

Read More »

NetBox Labs ships AI copilot designed for network engineers, not developers

Natural language for network engineers Beevers explained that network operations teams face two fundamental barriers to automation. First, they lack accurate data about their infrastructure. Second, they aren’t software developers and shouldn’t have to become them. “These are not software developers. They are network engineers or IT infrastructure engineers,” Beevers said. “The big realization for us through the copilot journey is they will never be software developers. Let’s stop trying to make them be. Let’s let these computers that are really good at being software developers do that, and let’s let the network engineers or the data center engineers be really good at what they’re really good at.”  That vision drove the development of NetBox Copilot’s natural language interface and its capabilities. Grounding AI in infrastructure reality The challenge with deploying AI  in network operations is trust. Generic large language models hallucinate, produce inconsistent results, and lack the operational context to make reliable decisions. NetBox Copilot addresses this by grounding the AI agent in NetBox’s comprehensive infrastructure data model. NetBox serves as the system of record for network and infrastructure teams, maintaining a semantic map of devices, connections, IP addressing, rack layouts, power distribution and the relationships between these elements. Copilot has native awareness of this data structure and the context it provides. This enables queries that would be difficult or impossible with traditional interfaces. Network engineers can ask “Which devices are missing IP addresses?” to validate data completeness, “Who changed this prefix last week?” for change tracking and compliance, or “What depends on this switch?” for impact analysis before maintenance windows.

Read More »

US pushes voluntary pact to curb AI data center energy impact

Others note that cost pressure isn’t limited to the server rack. Danish Faruqui, CEO of Fab Economics, said the AI ecosystem is layered from silicon to software services, creating multiple points where infrastructure expenses eventually resurface. “Cloud service providers are likely to gradually introduce more granular pricing models across cloud, AI, and SaaS offerings, tailored by customer type, as they work to absorb the costs associated with the White House energy and grid compact,” Faruqui said.   This may not show up as explicit energy surcharges, but instead surface through reduced discounts, higher spending commitments, and premiums for guaranteed capacity or performance. “Smaller enterprises will feel the impact first, while large strategic customers remain insulated longer,” Rawat said. “Ultimately, the compact would delay and redistribute cost pressure; it does not eliminate it.” Implications for data center design The proposal is also likely to accelerate changes in how AI facilities are designed. “Data centers will evolve into localized microgrids that combine utility power with on-site generation and higher-level implementation of battery energy storage systems,” Faruqui said. “Designing for grid interaction will become imperative for AI data centers, requiring intelligent, high-speed switching gear, increased battery energy storage capacity for frequency regulation, and advanced control systems that can manage on-site resources.”

Read More »

Intel teams with SoftBank to develop new memory type

However, don’t expect anything anytime soon. Intel’s Director of Global Strategic Partnerships Sanam Masroor outlined the plans in a blog post. Operations are expected to begin in Q1 2026, with prototypes due in 2027 and commercial products by 2030. While Intel has not come out and said it, that memory design is almost identical to HBM used in GPU accelerators and AI data centers. HBM sits right on the GPU die for immediate access to the GPU, unlike standard DRAM which resides on memory sticks plugged into the motherboard. HBM is much faster than DDR memory but is also much more expensive to produce. It’s also much more profitable than standard DRAM which is why the big three memory makers – Micron, Samsung, and SK Hynix – are favoring production of it.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »