Stay Ahead, Stay ONMINE

Supercharge Your RAG with Multi-Agent Self-RAG

Introduction Many of us might have tried to build a RAG application and noticed it falls significantly short of addressing real-life needs. Why is that? It’s because many real-world problems require multiple steps of information retrieval and reasoning. We need our agent to perform those as humans normally do, yet most RAG applications fall short […]

Introduction

Many of us might have tried to build a RAG application and noticed it falls significantly short of addressing real-life needs. Why is that? It’s because many real-world problems require multiple steps of information retrieval and reasoning. We need our agent to perform those as humans normally do, yet most RAG applications fall short of this.

This article explores how to supercharge your RAG application by making its data retrieval and reasoning process similar to how a human would, under a multi-agent framework. The framework presented here is based on the Self-RAG strategy but has been significantly modified to enhance its capabilities. Prior knowledge of the original strategy is not necessary for reading this article.

Real-life Case

Consider this: I was going to fly from Delhi to Munich (let’s assume I am taking the flight from an EU airline), but I was denied boarding somehow. Now I want to know what the compensation should be.

These two webpages contain relevant information, I go ahead adding them to my vector store, trying to have my agent answer this for me by retrieving the right information.

Now, I pass this question to the vector store: “how much can I receive if I am denied boarding, for flights from Delhi to Munich?”.

– – – – – – – – – – – – – – – – – – – – – – – – –
Overview of US Flight Compensation Policies To get compensation for delayed flights, you should contact your airline via their customer service or go to the customer service desk. At the same time, you should bear in mind that you will only receive compensation if the delay is not weather-related and is within the carrier`s control. According to the US Department of Transportation, US airlines are not required to compensate you if a flight is cancelled or delayed. You can be compensated if you are bumped or moved from an overbooked flight. If your provider cancels your flight less than two weeks before departure and you decide to cancel your trip entirely, you can receive a refund of both pre-paid baggage fees and your plane ticket. There will be no refund if you choose to continue your journey. In the case of a delayed flight, the airline will rebook you on a different flight. According to federal law, you will not be provided with money or other compensation. Comparative Analysis of EU vs. US Flight Compensation Policies
– – – – – – – – – – – – – – – – – – – – – – – – –
(AUTHOR-ADDED NOTE: IMPORTANT, PAY ATTENTION TO THIS)
Short-distance flight delays – if it is up to 1,500 km, you are due 250 Euro compensation.
Medium distance flight delays – for all the flights between 1,500 and 3,500 km, the compensation should be 400 Euro.
Long-distance flight delays – if it is over 3,500 km, you are due 600 Euro compensation. To receive this kind of compensation, the following conditions must be met; Your flight starts in a non-EU member state or in an EU member state and finishes in an EU member state and is organised by an EU airline. Your flight reaches the final destination with a delay that exceeds three hours. There is no force majeure.
– – – – – – – – – – – – – – – – – – – – – – – – –
Compensation policies in the EU and US are not the same, which implies that it is worth knowing more about them. While you can always count on Skycop flight cancellation compensation, you should still get acquainted with the information below.
– – – – – – – – – – – – – – – – – – – – – – – – –
Compensation for flight regulations EU: The EU does regulate flight delay compensation, which is known as EU261. US: According to the US Department of Transportation, every airline has its own policies about what should be done for delayed passengers. Compensation for flight delays EU: Just like in the United States, compensation is not provided when the flight is delayed due to uncontrollable reasons. However, there is a clear approach to compensation calculation based on distance. For example, if your flight was up to 1,500 km, you can receive 250 euros. US: There are no federal requirements. That is why every airline sets its own limits for compensation in terms of length. However, it is usually set at three hours. Overbooking EU: In the EU, they call for volunteers if the flight is overbooked. These people are entitled to a choice of: Re-routing to their final destination at the earliest opportunity. Refund of their ticket cost within a week if not travelling. Re-routing at a later date at the person`s convenience.

Unfortunately, they contain only generic flight compensation policies, without telling me how much I can expect when denied boarding from Delhi to Munich specifically. If the RAG agent takes these as the sole context, it can only provide a generic answer about flight compensation policy, without giving the answer we want.

However, while the documents are not immediately useful, there is an important insight contained in the 2nd piece of context: compensation varies according to flight distance. If the RAG agent thinks more like human, it should follow these steps to provide an answer:

  1. Based on the retrieved context, reason that compensation varies with flight distance
  2. Next, retrieve the flight distance between Delhi and Munich
  3. Given the distance (which is around 5900km), classify the flight as a long-distance one
  4. Combined with the previously retrieved context, figure out I am due 600 EUR, assuming other conditions are fulfilled

This example demonstrates how a simple RAG, in which a single retrieval is made, fall short for several reasons:

  1. Complex Queries: Users often have questions that a simple search can’t fully address. For example, “What’s the best smartphone for gaming under $500?” requires consideration of multiple factors like performance, price, and features, which a single retrieval step might miss.
  2. Deep Information: Some information lies across documents. For example, research papers, medical records, or legal documents often include references that need to be made sense of, before one can fully understand the content of a given article. Multiple retrieval steps help dig deeper into the content.

Multiple retrievals supplemented with human-like reasoning allow for a more nuanced, comprehensive, and accurate response, adapting to the complexity and depth of user queries.

Multi-Agent Self-RAG

Here I explain the reasoning process behind this strategy, afterwards I will provide the code to show you how to achieve this!

Note: For readers interested in knowing how my approach differs from the original Self-RAG, I will describe the discrepancies in quotation boxes like this. But general readers who are unfamiliar with the original Self-RAG can skip them.

In the below graphs, each circle represents a step (aka Node), which is performed by a dedicated agent working on the specific problem. We orchestrate them to form a multi-agent RAG application.

1st iteration: Simple RAG

A simple RAG chain

This is just the vanilla RAG approach I described in “Real-life Case”, represented as a graph. After Retrieve documents, the new_documents will be used as input for Generate Answer. Nothing special, but it serves as our starting point.

2nd iteration: Digest documents with “Grade documents”

Reasoning like human do

Remember I said in the “Real-life Case” section, that as a next step, the agent should “reason that compensation varies with flight distance”? The Grade documents step is exactly for this purpose.

Given the new_documents, the agent will try to output two items:

  1. useful_documents: Comparing the question asked, it determines if the documents are useful, and retain a memory for those deemed useful for future reference. As an example, since our question does not concern compensation policies for US, documents describing those are discarded, leaving only those for EU
  2. hypothesis: Based on the documents, the agent forms a hypothesis about how the question can be answered, that is, flight distance needs to be identified

Notice how the above reasoning resembles human thinking! But still, while these outputs are useful, we need to instruct the agent to use them as input for performing the next document retrieval. Without this, the answer provided in Generate answer is still not useful.

useful_documents are appended for each document retrieval loop, instead of being overwritten, to keep a memory of documents that are previously deemed useful. hypothesis is formed from useful_documents and new_documents to provide an “abstract reasoning” to inform how query is to be transformed subsequently.

The hypothesis is especially useful when no useful documents can be identified initially, as the agent can still form hypothesis from documents not immediately deemed as useful / only bearing indirect relationship to the question at hand, for informing what questions to ask next

3rd iteration: Brainstorm new questions to ask

Suggest questions for additional information retrieval

We have the agent reflect upon whether the answer is useful and grounded in context. If not, it should proceed to Transform query to ask further questions.

The output new_queries will be a list of new questions that the agent consider useful for obtaining extra information. Given the useful_documents (compensation policies for EU), and hypothesis (need to identify flight distance between Delhi and Munich), it asks questions like “What is the distance between Delhi and Munich?”

Now we are ready to use the new_queries for further retrieval!

The transform_query node will use useful_documents (which are accumulated per iteration, instead of being overwritten) and hypothesis as input for providing the agent directions to ask new questions.

The new questions will be a list of questions (instead of a single question) separated from the original question, so that the original question is kept in state, otherwise the agent could lose track of the original question after multiple iterations.

Final iteration: Further retrieval with new questions

Issuing new queries to retrieve extra documents

The output new_queries from Transform query will be passed to the Retrieve documents step, forming a retrieval loop.

Since the question “What is the distance between Delhi and Munich?” is asked, we can expect the flight distance is then retrieved as new_documents, and subsequently graded as useful_documents, further used as an input for Generate answer.

The grade_documents node will compare the documents against both the original question and new_questions list, so that documents that are considered useful for new_questions, even if not so for the original question, are kept.

This is because those documents might help answer the original question indirectly, by being relevant to new_questions (like “What is the distance between Delhi and Munich?”)

Final answer!

Equipped with this new context about flight distance, the agent is now ready to provide the right answer: 600 EUR!

Next, let us now dive into the code to see how this multi-agent RAG application is created.

Implementation

The source code can be found here. Our multi-agent RAG application involves iterations and loops, and LangGraph is a great library for building such complex multi-agent application. If you are not familiar with LangGraph, you are strongly suggested to have a look at LangGraph’s Quickstart guide to understand more about it!

To keep this article concise, I will focus on the key code snippets only.

Important note: I am using OpenRouter as the Llm interface, but the code can be easily adapted for other LLM interfaces. Also, while in my code I am using Claude 3.5 Sonnet as model, you can use any LLM as long as it support tools as parameter (check this list here), so you can also run this with other models, like DeepSeek V3 and OpenAI o1!

State definition

In the previous section, I have defined various elements e.g. new_documentshypothesis that are to be passed to each step (aka Nodes), in LangGraph’s terminology these elements are called State.

We define the State formally with the following snippet.

from typing import List, Annotated
from typing_extensions import TypedDict

def append_to_list(original: list, new: list) -> list:
original.append(new)
return original

def combine_list(original: list, new: list) -> list:
return original + new

class GraphState(TypedDict):
"""
Represents the state of our graph.

Attributes:
question: question
generation: LLM generation
new_documents: newly retrieved documents for the current iteration
useful_documents: documents that are considered useful
graded_documents: documents that have been graded
new_queries: newly generated questions
hypothesis: hypothesis
"""

question: str
generation: str
new_documents: List[str]
useful_documents: Annotated[List[str], combine_list]
graded_documents: List[str]
new_queries: Annotated[List[str], append_to_list]
hypothesis: str

Graph definition

This is where we combine the different steps to form a “Graph”, which is a representation of our multi-agent application. The definitions of various steps (e.g. grade_documents) are represented by their respective functions.

from langgraph.graph import END, StateGraph, START
from langgraph.checkpoint.memory import MemorySaver
from IPython.display import Image, display

workflow = StateGraph(GraphState)

# Define the nodes
workflow.add_node("retrieve", retrieve) # retrieve
workflow.add_node("grade_documents", grade_documents) # grade documents
workflow.add_node("generate", generate) # generatae
workflow.add_node("transform_query", transform_query) # transform_query

# Build graph
workflow.add_edge(START, "retrieve")
workflow.add_edge("retrieve", "grade_documents")
workflow.add_conditional_edges(
"grade_documents",
decide_to_generate,
{
"transform_query": "transform_query",
"generate": "generate",
},
)
workflow.add_edge("transform_query", "retrieve")
workflow.add_conditional_edges(
"generate",
grade_generation_v_documents_and_question,
{
"useful": END,
"not supported": "transform_query",
"not useful": "transform_query",
},
)

# Compile
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)
display(Image(app.get_graph(xray=True).draw_mermaid_png()))

Running the above code, you should see this graphical representation of our RAG application. Notice how it is essentially equivalent to the graph I have shown in the final iteration of “Enhanced Self-RAG Strategy”!

Visualizing the multi-agent RAG graph

After generate, if the answer is considered “not supported”, the agent will proceed to transform_query intead of to generate again, so that the agent will look for additional information rather than trying to regenerate answers based on existing context, which might not suffice for providing a “supported” answer

Now we are ready to put the multi-agent application to test! With the below code snippet, we ask this question how much can I receive if I am denied boarding, for flights from Delhi to Munich?

from pprint import pprint
config = {"configurable": {"thread_id": str(uuid4())}}

# Run
inputs = {
"question": "how much can I receive if I am denied boarding, for flights from Delhi to Munich?",
}
for output in app.stream(inputs, config):
for key, value in output.items():
# Node
pprint(f"Node '{key}':")
# Optional: print full state at each node
# print(app.get_state(config).values)
pprint("n---n")

# Final generation
pprint(value["generation"])

While output might vary (sometimes the application provides the answer without any iterations, because it “guessed” the distance between Delhi and Munich), it should look something like this, which shows the application went through multiple rounds of data retrieval for RAG.

---RETRIEVE---
"Node 'retrieve':"
'n---n'
---CHECK DOCUMENT RELEVANCE TO QUESTION---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---ASSESS GRADED DOCUMENTS---
---DECISION: GENERATE---
"Node 'grade_documents':"
'n---n'
---GENERATE---
---CHECK HALLUCINATIONS---
'---DECISION: GENERATION IS NOT GROUNDED IN DOCUMENTS, RE-TRY---'
"Node 'generate':"
'n---n'
---TRANSFORM QUERY---
"Node 'transform_query':"
'n---n'
---RETRIEVE---
"Node 'retrieve':"
'n---n'
---CHECK DOCUMENT RELEVANCE TO QUESTION---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---GRADE: DOCUMENT NOT RELEVANT---
---ASSESS GRADED DOCUMENTS---
---DECISION: GENERATE---
"Node 'grade_documents':"
'n---n'
---GENERATE---
---CHECK HALLUCINATIONS---
---DECISION: GENERATION IS GROUNDED IN DOCUMENTS---
---GRADE GENERATION vs QUESTION---
---DECISION: GENERATION ADDRESSES QUESTION---
"Node 'generate':"
'n---n'
('Based on the context provided, the flight distance from Munich to Delhi is '
'5,931 km, which falls into the long-distance category (over 3,500 km). '
'Therefore, if you are denied boarding on a flight from Delhi to Munich '
'operated by an EU airline, you would be eligible for 600 Euro compensation, '
'provided that:n'
'1. The flight is operated by an EU airlinen'
'2. There is no force majeuren'
'3. Other applicable conditions are metn'
'n'
"However, it's important to note that this compensation amount is only valid "
'if all the required conditions are met as specified in the regulations.')

And the final answer is what we aimed for!

Based on the context provided, the flight distance from Munich to Delhi is
5,931 km, which falls into the long-distance category (over 3,500 km).
Therefore, if you are denied boarding on a flight from Delhi to Munich
operated by an EU airline, you would be eligible for 600 Euro compensation,
provided that:
1. The flight is operated by an EU airline
2. There is no force majeure
3. Other applicable conditions are met

However, it's important to note that this compensation amount is only valid
if all the required conditions are met as specified in the regulations.

Inspecting the State, we see how the hypothesis and new_queries enhance the effectiveness of our multi-agent RAG application by mimicking human thinking process.

Hypothesis

print(app.get_state(config).values.get('hypothesis',""))
--- Output ---
To answer this question accurately, I need to determine:

1. Is this flight operated by an EU airline? (Since Delhi is non-EU and Munich is EU)
2. What is the flight distance between Delhi and Munich? (To determine compensation amount)
3. Are we dealing with a denied boarding situation due to overbooking? (As opposed to delay/cancellation)

From the context, I can find information about compensation amounts based on distance, but I need to verify:
- If the flight meets EU compensation eligibility criteria
- The exact distance between Delhi and Munich to determine which compensation tier applies (250€, 400€, or 600€)
- If denied boarding compensation follows the same amounts as delay compensation

The context doesn't explicitly state compensation amounts specifically for denied boarding, though it mentions overbooking situations in the EU require offering volunteers re-routing or refund options.

Would you like me to proceed with the information available, or would you need additional context about denied boarding compensation specifically?

New Queries

for questions_batch in app.get_state(config).values.get('new_queries',""):
for q in questions_batch:
print(q)
--- Output ---
What is the flight distance between Delhi and Munich?
Does EU denied boarding compensation follow the same amounts as flight delay compensation?
Are there specific compensation rules for denied boarding versus flight delays for flights from non-EU to EU destinations?
What are the compensation rules when flying with non-EU airlines from Delhi to Munich?
What are the specific conditions that qualify as denied boarding under EU regulations?

Conclusion

Simple RAG, while easy to build, might fall short in tackling real-life questions. By incorporating human thinking process into a multi-agent RAG framework, we are making RAG applications much more practical.

*Unless otherwise noted, all images are by the author


Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Four new vulnerabilities found in Ingress NGINX

NGINX is a reverse proxy/load balancer that generally acts as the front-end web traffic receiver and directs it to the application service for data transformation. Ingress NGINX is a version used in Kubernetes as the controller for traffic coming into the infrastructure. It takes care of mapping traffic to pods

Read More »

ADNOC Gas Announces ‘Record’ Net Income

In a statement sent to Rigzone on Monday, ADNOC Gas plc announced a “record” net income of $5.2 billion for 2025, which the company pointed out is a three percent increase compared to 2024. ADNOC Gas said in the statement that its results “underscored the strength of its long-term strategy” and added that its “robust 2025 net income was primarily driven by the strength of its domestic gas business, where its EBITDA was up 10 percent on sales volume growth of four percent year on year and improved commercial terms”. The company noted in the statement that fourth quarter 2025 net income was $1.2 billion, “despite softer export market pricing”. ADNOC Gas said it increased sales volumes by five percent compared to Q4 2024, “primarily driven by strong domestic gas performance, with demand remaining steady throughout the UAE’s milder weather conditions in the final quarter of 2025”. ADNOC Gas highlighted in its release that, overall, domestic Adjusted EBITDA for the fourth quarter of last year rose six percent year on year. The company said “this sustained demand is attributable to the robust industrial sector, which contributed to a 4.8 percent UAE GDP growth rate in 2025”. ADNOC Gas pointed out that its capital expenditure was $3.6 billion in 2025, “as several major projects progressed”. “In 2025 we launched phase one of the RGD project, which expands domestic gas processing capacity and increases production of export-traded liquids from new, richer gas supplies, which progressed in line with ADNOC Gas’ strategy,” the company noted. “Following the commissioning of IGD‑E2 in the final quarter of 2025, work is advancing as planned on the ADNOC Estidama gas-pipeline project, which aims to enhance access for industrial and utility customers in the Northern Emirates,” it said. “Together, these projects reinforce ADNOC Gas’ role as a critical

Read More »

USA Natural Gas Extends Decline

US natural gas dropped for a second session on the outlook for warmer temperatures across large parts of the country, which is likely to trim demand for the fuel used for heating and power generation. Futures for March delivery slipped as much as 6.5% to $3.200 per million British thermal units in early Asian trading. Temperatures are expected to be above normal in central and southern US from the end of this week, before warmer conditions move to the east, according to a government forecast. Prices dropped 2.5% on Friday, snapping a three-day gain, after a weekly report by Baker Hughes showed a significant uptick in drilling in the Haynesville shale in northwest Louisiana and East Texas. A higher rig count typically signals more supply later on, and that can weigh on near-term prices. US natural gas spiked at the end of last month to the highest level in more than three years after a cold snap led to higher demand and disrupted some supply. Futures have since unwound all those gains. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Oil Servicers Look to Middle East for Growth

The world’s largest oilfield-service providers are looking to production increases in the Middle East to help offset a slowdown in US shale.  That’s one of the big takeaways from comments this week made by executives at Helmerich & Payne Inc. and Patterson-UTI Energy Inc., who pointed to opportunities in countries such as Saudi Arabia to help drive growth. The comments echoed outlooks from some of the biggest names in the industry, including SLB and Weatherford International Plc, who expect the Middle East to lead a rebound in activity for the end of 2026 through 2027.  Operators in the US shale patch, once the world’s leader in oil production growth, are now closely watching commodity markets as they hover near the level that makes drilling profitable for producers. If crude prices drop into the low $50-per-barrel range for several months, companies are expected to make more drastic cuts to drilling and fracking in the US. Global oil prices have steadily declined in the past several months on expectations of a glut. West Texas Intermediate, the US benchmark, has fallen more than 10% over the past year, trading around $63 a barrel on Thursday. But some producers in the Middle East can better sustain the lower crude prices, which underscores why the oilfield-services companies are looking there for growth. Projects to frack for natural gas have also emerged in the region, as governments face rising electricity demand, industrial expansion and petrochemical build-outs.  Here’s a look at recent comments from oilfield-services companies: Helmerich & Payne One of the top drilling-rig contractors on the US shale patch, the company said the reactivation of its suspended rigs in Saudi Arabia is underway. On an earnings call Thursday, incoming Chief Executive Officer Trey Adams said the company remains hopeful for further opportunities in the region Patterson-UTI Energy

Read More »

Phillips 66 to Cut Nearly 300 Jobs as LA Refinery Shuts

Phillips 66 will lay off around half of its employees at its sole remaining oil refinery in California after shuttering operations. The Houston-based company said it will cut 122 employees effective April 3 at two facilities in Carson and Wilmington that make up the company’s Los Angeles refinery, according a notice filed Monday with California’s employment regulator. This follows a separate notice last month that 155 employees will be terminated at the refinery in December, bringing the total to 277. The century-old refinery employs about 600 staff, according to Phillips 66’s website. The fuel-making plant has been slated to close since 2024 and the facility, once capable of processing 139,000 barrels of oil a day, refined its final barrel of crude in late 2025. Another Texas-based refiner, Valero Energy Corp., is also cutting more than 200 jobs in California this year as it idles a San Francisco Bay Area plant. Oil companies have decried what they call a hostile regulatory environment in the state, whose residents regularly pay the highest gasoline prices in the nation. Chevron Corp. officially relocated its headquarters to Texas in recent years and refiners have either fled or converted plants to producing biofuels, dwindling the in-state supply of petroleum products like gasoline, diesel and jet fuel. Some state lawmakers have recently tried to soften their stance toward the oil and gas industry. Phillips 66 continues to operate a biofuels refinery near San Francisco and import fossil fuels to California. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

WTI, Brent Gain as Talks Ease Conflict Fears

Oil edged marginally higher after a choppy session as investors assessed the status of nuclear talks between the US and Iran. West Texas Intermediate settled above $63 a barrel, with markets reacting sharply to headlines tied to the meeting. Iranian Foreign Minister Abbas Araghchi said the talks had a “good start,” even as the Wall Street Journal reported that Tehran stood by its refusal to end enrichment of nuclear fuel, a major sticking point for the US. The escalation in the Middle East, which provides about a third of the world’s crude, has added a risk premium to benchmark oil prices. Traders have weighed the geopolitical tensions against an outlook for oversupply. Still, futures in New York notched their first weekly retreat since mid-December as the US-Iran talks helped allay concerns over a broader conflict in the region. Prices also extended gains after data showed US consumer sentiment unexpectedly improved to the highest in six months, calming some concerns over an economic slowdown in the country that could lead to weaker oil demand. Meanwhile, in trilateral negotiations with the US, Ukraine and Russia agreed to exchange prisoners for the first time in five months as they sought to end their four-year conflict. Talks were making progress, with results expected “in the coming weeks,” President Donald Trump’s special envoy said. Saudi Arabia cut prices for buyers in Asia by less than expected, signaling confidence in demand for its barrels, although prices have still been reduced to the lowest levels since late 2020. Oil Prices WTI for March delivery settled 0.4% higher at $63.55 a barrel in New York. Brent for April settlement rose 0.7% to close at $68.05 a barrel. What do you think? We’d love to hear from you, join the conversation on the Rigzone Energy Network. The Rigzone Energy

Read More »

Saudis Cut Key Oil Price for Asian Buyers

Saudi Arabia cut the price of its main oil grade for buyers in Asia to the lowest in years, a further sign that global supplies are running ahead of demand. State oil producer Saudi Aramco will reduce the price of its Arab Light grade by 30 cents a barrel to parity with the regional benchmark for March, according to a price list seen by Bloomberg. That brings pricing for the kingdom’s most plentiful crude blend to the lowest level since late 2020. Still, Aramco’s cut was not as deep as buyers expected, coming in smaller than even the most modest estimate of a reduction in a survey of refiners and traders. That offers a sign that the kingdom has faith in demand for its barrels and Aramco’s Chief Executive Officer Amin Nasser has previously said that fears of a glut are overblown. Saudi Arabia’s monthly crude pricing is keenly watched by traders across the globe as it sets the tone for other sellers in the world’s top producing regions. Asia is the biggest market for Middle Eastern crude, with the prices set for refiners determining the profitability of processing and influencing the cost of fuels like gasoline and diesel the world over. Aramco also cut pricing for its Arab Medium and Arab Heavy crude grades to Asia to the lowest levels since mid 2020, while it increased prices for the Extra Light and Super Light blends. That split reflects that dynamic in the Middle East market where prices for the heavier and more sulfurous crudes that are most plentiful in the region have trailed those for the lighter blends. The OPEC+ producers group, led by Saudi Arabia and Russia, agreed to keep production levels steady during talks on Feb. 1, maintaining an earlier decision to forgo output increases to avoid

Read More »

Nvidia’s $100 Billion OpenAI Bet Shrinks and Signals a New Phase in the AI Infrastructure Cycle

One of the most eye-popping figures of the AI boom – a proposed $100 billion Nvidia commitment to OpenAI and as much as 10 gigawatts of compute for the company’s Stargate AI infrastructure buildout – is no longer on the table. And that partial retreat tells the data center industry something important. According to multiple reports surfacing at the end of January, Nvidia has paused and re-scoped its previously discussed, non-binding investment framework with OpenAI, shifting from an unprecedented capital-plus-infrastructure commitment to a much smaller (though still massive) equity investment. What was once framed as a potential $100 billion alignment is now being discussed in the $20-30 billion range, as part of OpenAI’s broader effort to raise as much as $100 billion at a valuation approaching $830 billion. For data center operators, infrastructure developers, and power providers, the recalibration matters less for the headline number and more for what it reveals about risk discipline, competitive dynamics, and the limits of vertical circularity in AI infrastructure finance. From Moonshot to Measured Capital The original September 2025 memorandum reportedly contemplated not just capital, but direct alignment on compute delivery: a structure that would have tightly coupled Nvidia’s balance sheet with OpenAI’s AI-factory roadmap. By late January, however, sources indicated Nvidia executives had grown uneasy with both the scale and the structure of the deal. Speaking in Taipei on January 31, Nvidia CEO Jensen Huang pushed back on reports of friction, calling them “nonsense” and confirming Nvidia would “absolutely” participate in OpenAI’s current fundraising round. But Huang was also explicit on what had changed: the investment would be “nothing like” $100 billion, even if it ultimately becomes the largest single investment Nvidia has ever made. That nuance matters. Nvidia is not walking away from OpenAI. But it is drawing a clearer boundary around

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Onsite Engineer – Critical FacilitiesCharleston, SC This is NOT a traveling position. Having degreed engineers seems to be all the rage these days. I can also use this type of candidate in following cities: Ashburn, VA; Moncks Corner, SC; Binghamton, NY; Dallas, TX or Indianapolis, IN. Our client is an engineering design and commissioning company that is a subject matter expert in the data center space. This role will be onsite at a customer’s data center. They will provide onsite design coordination and construction administration, consulting and management support for the data center / mission critical facilities space with the mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Ashburn, VA This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Montvale, NJ; Charlotte, NC; Atlanta, GA; Hampton, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX; Kansas City, MO; Omaha, NE; Chesterton, IN or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They

Read More »

Operationalizing AI at Scale: Google Cloud on Data Infrastructure, Search, and Enterprise AI

The AI conversation has been dominated by model announcements, benchmark races, and the rapid evolution of large language models. But in enterprise environments, the harder problem isn’t building smarter models. It’s making them work reliably with real-world data. On the latest episode of the Data Center Frontier Show Podcast, Sailesh Krishnamurthy, VP of Engineering for Databases at Google Cloud, pulled back the curtain on the infrastructure layer where many ambitious AI initiatives succeed, or quietly fail. Krishnamurthy operates at the intersection of databases, search, and AI systems. His perspective underscores a growing reality across enterprise IT: AI success increasingly depends on how organizations manage, integrate, and govern data across operational systems, not just how powerful their models are. The Disconnect Between LLMs and Reality Enterprises today face a fundamental challenge: connecting LLMs to real-time operational data. Search systems handle documents and unstructured information well. Operational databases manage transactions, customer data, and financial records with precision. But combining the two remains difficult. Krishnamurthy described the problem as universal. “Inside enterprises, knowledge workers are often searching documents while separately querying operational systems,” he said. “But combining unstructured information with operational database data is still hard to do.” Externally, customers encounter the opposite issue. Portals expose personal data but struggle to incorporate broader contextual information. “You get a narrow view of your own data,” he explained, “but combining that with unstructured information that might answer your real question is still challenging.” The result: AI systems often operate with incomplete context. Vector Search Moves Into the Database Vector search has emerged as a bridge between structured and unstructured worlds. But its evolution over the past three years has changed how enterprises deploy it. Early use cases focused on semantic search, i.e. finding meaning rather than exact keyword matches. Bug tracking systems, for example, began

Read More »

Transmission at the Breaking Point: Why the Grid Is Becoming the Defining Constraint for AI Data Centers

Regions in a Position to Scale California (A- overall)California continues to lead in long-term, scenario-based transmission planning. CAISO’s most recent transmission plan identifies $4.8 billion in new projects to accommodate approximately 76 gigawatts of additional capacity by 2039, explicitly accounting for data center growth alongside broader electrification. For data center developers, California’s challenge is less about planning quality and more about execution. Permitting timelines, cost allocation debates, and political scrutiny remain significant hurdles. Plains / Southwest Power Pool (B- overall, A in regional planning)SPP stands out nationally for embracing ultra-high-voltage transmission as a backbone strategy. Its recent Integrated Transmission Plans approve more than $16 billion in new projects, including multiple 765-kV lines, with benefit-cost ratios exceeding 10:1. This approach positions the Plains region as one of the most structurally “AI-ready” grids in North America, particularly for multi-gigawatt campuses supported by wind, natural gas, and emerging nuclear resources. Midwest / MISO (B overall)MISO’s Long-Range Transmission Planning framework aligns closely with federal best practices, co-optimizing generation and transmission over long planning horizons. While challenges remain—particularly around interregional coordination—the Midwest is comparatively well positioned for sustained data center growth. Regions Facing Heightened Risk Texas / ERCOT (D- overall)Texas has approved massive new transmission investments, including 765-kV projects tied to explosive load growth in the Permian Basin. However, the report criticizes ERCOT’s planning for remaining largely siloed and reliability-driven, with limited long-term scenario analysis and narrow benefit assessments. For data centers, ERCOT still offers speed to market, but increasingly with risks tied to congestion, price volatility, and political backlash surrounding grid reliability. Southeast (F overall)The Southeast receives failing grades across all categories, with transmission development remaining fragmented, utility-driven, and largely disconnected from durable regional planning frameworks. As AI data centers increasingly target the region for its land availability and tax incentives, the lack of

Read More »

From Row-Level CDUs to Facility-Scale Cooling: DCX Ramps Liquid Cooling for the AI Factory Era

Enter the 8MW CDU Era The next evolution arrived just days later. On Jan. 20, DCX announced its second-generation facility-scale unit, the FDU V2AT2, pushing capacity into territory previously unimaginable for single CDU platforms. The system delivers up to 8.15 megawatts of heat transfer capacity with record flow rates designed to support 45°C warm-water cooling, aligning directly with NVIDIA’s roadmap for rack-scale AI systems, including Vera Rubin-class deployments. That temperature target is significant. Warm-water cooling at this level allows many facilities to eliminate traditional chillers for heat rejection, depending on climate and deployment design. Instead of relying on compressor-driven refrigeration, operators can shift toward dry coolers or other simplified heat rejection strategies. The result: • Reduced mechanical complexity• Lower energy consumption• Improved efficiency at scale• New opportunities for heat reuse According to DCX CTO Maciek Szadkowski, the goal is to avoid obsolescence in a single hardware generation: “As the datacenter industry transitions to AI factories, operators need cooling systems that won’t be obsolete in one platform cycle. The FDU V2AT2 replaces multiple legacy CDUs and enables 45°C supply water operation while simplifying cooling topology and significantly reducing both CAPEX and OPEX.” The unit incorporates a high-capacity heat exchanger with a 2°C approach temperature, N+1 redundant pump configuration, integrated water quality control, and diagnostics systems designed for predictive maintenance. In short, this is infrastructure built not for incremental density growth, but for hyperscale AI facilities where megawatts of cooling must scale as predictably as compute capacity. Liquid Cooling Becomes System Architecture The broader industry implication is clear: cooling is no longer an auxiliary mechanical function. It is becoming system architecture. DCX’s broader 2025 performance metrics underscore the speed of this transition. The company reported 600% revenue growth, expanded its workforce fourfold, and shipped or secured contracts covering more than 500 MW

Read More »

AI Infrastructure Scales Out and Up: Edge Expansion Meets the Gigawatt Campus Era

The AI infrastructure boom is often framed around massive hyperscale campuses racing to secure gigawatts of power. But an equally important shift is happening in parallel: AI infrastructure is also becoming more distributed, modular, and sovereign, extending compute far beyond traditional data center hubs. A wave of recent announcements across developers, infrastructure investors, and regional operators shows the market pursuing a dual strategy. On one end, developers are accelerating delivery of hyperscale campuses measured in hundreds of megawatts, and increasingly gigawatts, often located where power availability and energy economics offer structural advantage, and in some cases pairing compute directly with dedicated generation. On the other, providers are building increasingly capable regional and edge facilities designed to bring AI compute closer to users, industrial operations, and national jurisdictions. Taken together, these moves point toward a future in which AI infrastructure is no longer purely centralized, but built around interconnected hub-and-spoke architectures combining energy-advantaged hyperscale cores with rapidly deployable edge capacity. Recent developments across hyperscale developers, edge specialists, infrastructure investors, and regional operators illustrate how quickly this model is taking shape. Sovereign AI Moves Beyond the Core On Feb. 5, 2026, San Francisco-based Armada and European AI infrastructure builder Nscale signed a letter of intent to jointly deploy both large-scale and edge AI infrastructure worldwide. The collaboration targets enterprise and public sector customers seeking sovereign, secure, geographically distributed AI environments. Nscale is building large AI supercomputer clusters globally, offering vertically integrated capabilities spanning power, data centers, compute, and software. Armada specializes in modular deployments through its Galleon data centers and Armada Edge Platform, delivering compute and storage into remote or infrastructure-poor environments. The combined offering addresses a growing challenge: many governments and enterprises want AI capability deployed within their own jurisdictions, even where traditional hyperscale infrastructure does not yet exist. “There is

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »