Stay Ahead, Stay ONMINE

Talking about Games

Game theory is a field of research that is quite prominent in Economics but rather unpopular in other scientific disciplines. However, the concepts used in game theory can be of interest to a wider audience, including data scientists, statisticians, computer scientists or psychologists, to name just a few. This article is the opener to a […]

Game theory is a field of research that is quite prominent in Economics but rather unpopular in other scientific disciplines. However, the concepts used in game theory can be of interest to a wider audience, including data scientists, statisticians, computer scientists or psychologists, to name just a few. This article is the opener to a four-chapter tutorial series on the fundamentals of game theory, so stay tuned for the upcoming articles. 

In this article, I will explain the kinds of problems Game Theory deals with and introduce the main terms and concepts used to describe a game. We will see some examples of games that are typically analysed within game theory and lay the foundation for deeper insights into the capabilities of game theory in the later chapters. But before we go into the details, I want to introduce you to some applications of game theory, that show the multitude of areas game-theoretic concepts can be applied to. 

Applications of game theory

Even french fries can be an application of game theory. Photo by engin akyurt on Unsplash

Does it make sense to vote for a small party in an election if this party may not have a chance to win anyway? Is it worth starting a price war with your competitor who offers the same goods as you? Do you gain anything if you reduce your catch rate of overfished areas if your competitors simply carry on as before? Should you take out insurance if you believe that the government will pay for the reconstruction after the next hurricane anyway? And how should you behave in the next auction where you are about to bid on your favourite Picasso painting? 

All these questions (and many more) live within the area of applications that can be modelled with game theory. Whenever a situation includes strategic decisions in interaction with others, game-theoretic concepts can be applied to describe this situation formally and search for decisions that are not made intuitively but that are backed by a notion of rationality. Key to all the situations above is that your decisions depend on other people’s behaviour. If everybody agrees to conserve the overfished areas, you want to play along to preserve nature, but if you think that everybody else will continue fishing, why should you be the only one to stop? Likewise, your voting behaviour in an election might heavily depend on your assumptions about other people’s votes. If nobody votes for that candidate, your vote will be wasted, but if everybody thinks so, the candidate doesn’t have a chance at all. Maybe there are many people who say “I would vote for him if others vote for him too”.

Similar situations can happen in very different situations. Have you ever thought about having food delivered and everybody said “You don’t have to order anything because of me, but if you order anyway, I’d take some french fries”? All these examples can be applications of game theory, so let’s start understanding what game theory is all about. 

Understanding the game

Before playing, you need to understand the components of the game. Photo by Laine Cooper on Unsplash

When you hear the word game, you might think of video games such as Minecraft, board games such as Monopoly, or card games such as poker. There are some common principles to all these games: We always have some players who are allowed to do certain things determined by the game’s rules. For example, in poker, you can raise, check or give up. In Monopoly, you can buy a property you land on or don’t buy it. What we also have is some notion of how to win the game. In poker, you have to get the best hand to win and in Monopoly, you have to be the last person standing after everybody went bankrupt. That also means that some actions are better than others in some scenarios. If you have two aces on the hand, staying in the game is better than giving up. 

When we look at games from the perspective of game theory, we use the same concepts, just more formally.

A game in game theory consists of n players, where each player has a strategy set and a utility function.

A game consists of a set of players I = {1, .., n}, where each player has a set of strategies S and a utility function ui(s1, s2, … sn). The set of strategies is determined by the rules of the games. For example, it could be S = {check, raise, give-up} and the player would have to decide which of these actions they want to use. The utility function u (also called reward) describes how valuable a certain action of a player would be, given the actions of the other players. Every player wants to maximize their utility, but now comes the tricky part: The utility of an action of yours depends on the other players’ actions. But for them, the same applies: Their actions’ utilities depend on the actions of the other players (including yours). 

Let’s consider a well-known game to illustrate this point. In rock-paper-scissors, we have n=2 players and each player can choose between three actions, hence the strategy set is S={rock, paper, scissors} for each player. But the utility of an action depends on what the other player does. If our opponent chooses rock, the utility of paper is high (1), because paper beats rock. But if your opponent chooses scissors, the utility of paper is low (-1), because you would lose. Finally, if your opponent chooses paper as well, you reach a draw and the utility is 0. 

Utility values for player one choosing paper for three choices of the opponents strategy.

Instead of writing down the utility function for each case individually, it is common to display games in a matrix like this:

The first player decides for the row of the matrix by selecting his action and the second player decides for the column. For example, if player 1 chooses paper and player 2 chooses scissors, we end up in the cell in the third column and second row. The value in this cell is the utility for both players, where the first value corresponds to player 1 and the second value corresponds to player 2. (-1,1) means that player 1 has a utility of -1 and player 2 has a utility of 1. Scissors beat paper. 

Some more details

Now we have understood the main components of a game in game theory. Let me add a few more hints on what game theory is about and what assumptions it uses to describe its scenarios. 

  • We often assume that the players select their actions at the same time (like in rock-paper-scissors). We call such games static games. There are also dynamic games in which players take turns deciding on their actions (like in chess). We will consider these cases in a later chapter of this tutorial. 
  • In game theory, it is typically assumed that the players can not communicate with each other so they can’t come to an agreement before deciding on their actions. In rock-paper-scissors, you wouldn’t want to do that anyway, but there are other games where communication would make it easier to choose an action. However, we will always assume that communication is not possible. 
  • Game theory is considered a normative theory, not a descriptive one. That means we will analyse games concerning the question “What would be the rational solution?” This may not always be what people do in a likewise situation in reality. Such descriptions of real human behaviour are part of the research field of behavioural economics, which is located on the border between Psychology and economics. 

The prisoner’s dilemma

The prisoner’s dilemma is all about not ending up here. Photo by De an Sun on Unsplash

Let us become more familiar with the main concepts of game theory by looking at some typical games that are often analyzed. Often, such games are derived from are story or scenario that may happen in the real world and require people to decide between some actions. One such story could be as follows: 

Say we have two criminals who are suspected of having committed a crime. The police have some circumstantial evidence, but no actual proof for their guilt. Hence they question the two criminals, who now have to decide if they want to confess or deny the crime. If you are in the situation of one of the criminals, you might think that denying is always better than confessing, but now comes the tricky part: The police propose a deal to you. If you confess while your partner denies, you are considered a crown witness and will not be punished. In this case, you are free to go but your partner will go to jail for six years. Sounds like a good deal, but be aware, that the outcome also depends on your partner’s action. If you both confess, there is no crown witness anymore and you both go to jail for three years. If you both deny, the police can only use circumstantial evidence against you, which will lead to one year in prison for both you and your partner. But be aware, that your partner is offered the same deal. If you deny and he confesses, he is the crown witness and you go to jail for six years. How do you decide?

The prisoner’s dilemma.

The game derived from this story is called the prisoner’s dilemma and is a typical example of a game in game theory. We can visualize it as a matrix just like we did with rock-paper-scissors before and in this matrix, we easily see the dilemma the players are in. If both deny, they receive a rather low punishment. But if you assume that your partner denies, you might be tempted to confess, which would prevent you from going to jail. But your partner might think the same, and if you both confess, you both go to jail for longer. Such a game can easily make you go round in circles. We will talk about solutions to this problem in the next chapter of this tutorial. First, let’s consider some more examples. 

Bach vs. Stravinsky

Who do you prefer, Bach or Stravinsky? Photo by Sigmund on Unsplash

You and your friend want to go to a concert together. You are a fan of Bach’s music but your friend favors the Russian 20th. century composer Igor Stravinsky. However, you both want to avoid being alone in any concert. Although you prefer Bach over Stravinsky, you would rather go to the Stravinsky concert with your friend than go to the Bach concert alone. We can create a matrix for this game: 

Bach vs. Stravinsky

You decide for the row by going to the Bach or Stravinsky concert and your friend decides for the column by going to one of the concerts as well. For you, it would be best if you both chose Bach. Your reward would be 2 and your friend would get a reward of 1, which is still better for him than being in the Stravinsky concert all by himself. However, he would be even happier, if you were in the Stravinsky concert together. 

Do you remember, that we said players are not allowed to communicate before making their decision? This example illustrates why. If you could just call each other and decide where to go, this would not be a game to investigate with game theory anymore. But you can’t call each other so you just have to go to any of the concerts and hope you will meet your friend there. What do you do? 

Arm or disarm?

Make love, not war. Photo by Artem Beliaikin on Unsplash

A third example brings us to the realm of international politics. The world would be a much happier place with fewer firearms, wouldn’t it? However, if nations think about disarmament, they also have to consider the choices other nations make. If the USA disarms, the Soviet Union might want to rearm, to be able to attack the USA — that was the thinking during the Cold War, at least. Such a scenario could be described with the following matrix: 

The matrix for the disarm vs. upgrade game.

As you see, when both nations disarm, they get the highest reward (3 each), because there are fewer firearms in the world and the risk of war is minimized. However, if you disarm, while the opponent upgrades, your opponent is in the better position and gets a reward of 2, while you only get 0. Then again, it might have been better to upgrade yourself, which gives a reward of 1 for both players. That is better than being the only one who disarms, but not as good as it would get if both nations disarmed. 

The solution?

All these examples have one thing in common: There is no single option that is always the best. Instead, the utility of an action for one player always depends on the other player’s action, which, in turn, depends on the first player’s action and so on. Game theory is now interested in finding the optimal solution and deciding what would be the rational action; that is, the action that maximizes the expected reward. Different ideas on how exactly such a solution looks like will be part of the next chapter in this series. 

Summary

Learning about game theory is as much fun as playing a game, don’t you think? Photo by Christopher Paul High on Unsplash

Before continuing with finding solutions in the next chapter, let us recap what we have learned so far. 

  • A game consists of players, that decide for actions, which have a utility or reward
  • The utility/reward of an action depends on the other players’ actions. 
  • In static games, players decide for their actions simultaneously. In dynamic games, they take turns. 
  • The prisoner’s dilemma is a very popular example of a game in game theory.
  • Games become increasingly interesting if there is no single action that is better than any other. 

Now that you are familiar with how games are described in game theory, you can check out the next chapter to learn how to find solutions for games in game theory. 

References

The topics introduced here are typically covered in standard textbooks on game theory. I mainly used this one, which is written in German though: 

  • Bartholomae, F., & Wiens, M. (2016). Spieltheorie. Ein anwendungsorientiertes Lehrbuch. Wiesbaden: Springer Fachmedien Wiesbaden.

An alternative in English language could be this one: 

  • Espinola-Arredondo, A., & Muñoz-Garcia, F. (2023). Game Theory: An Introduction with Step-by-step Examples. Springer Nature.

Game theory is a rather young field of research, with the first main textbook being this one: 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior.

Like this article? Follow me to be notified of my future posts.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chinese cyberspies target VMware vSphere for long-term persistence

Designed to work in virtualized environments The CISA, NSA, and Canadian Cyber Center analysts note that some of the BRICKSTORM samples are virtualization-aware and they create a virtual socket (VSOCK) interface that enables inter-VM communication and data exfiltration. The malware also checks the environment upon execution to ensure it’s running

Read More »

IBM boosts DNS protection for multicloud operations

“In addition to this DNS synchronization, you can publish DNS configurations to your Amazon Simple Storage Service (S3) bucket. As you implement DNS changes, the S3 bucket will automatically update. The ability to store multiple configurations in your S3 bucket allows you to choose the most appropriate restore point if

Read More »

Cloudflare firewall reacts badly to React exploit mitigation

During the same window, Downdetector saw a spike in problem reports for enterprise services including Shopify, Zoom, Claude AI, and Amazon Web Services, and a host of consumer services from games to dating apps. Cloudflare explained the outage on its service status page: “A change made to how Cloudflare’s Web

Read More »

New Fortress Energy Seals Deal to Continue Supplying Gas to Puerto Rico

New Fortress Energy Inc (NFE) has received approval from local authorities to continue delivering natural gas for Puerto Rico’s power system for seven more years. The consent from the Financial Oversight and Management Board for Puerto Rico provides for the supply of about 75 trillion British thermal units (TBtu), New York City-based NFE said in an online statement. “Under the terms of the agreement, NFE will supply reliable, lower-emission natural gas to help enhance grid stability and support cleaner power generation across Puerto Rico’s energy system”, NFE said. According to NFE’s September 16 announcement about the agreed contract terms, the agreement involved “minimum annual take-or-pay volumes of 40 TBtu, increasing to up to 50 TBtu if certain conditions are met”. “This landmark agreement provides two critical benefits to the island. First, it establishes security of supply in San Juan for the next seven years for power plants currently running on LNG”, NFE chief executive Wes Edens said then. “Second, it provides for incremental LNG volumes to be delivered, allowing for the conversion of additional gas-ready plants currently burning diesel, resulting in hundreds of millions of dollars in energy savings for Puerto Ricans”. NFE said at the time, “Pricing of the volumes supplied through the GSA [Gas Supply Agreement] is set at a blend of 115 percent of Henry Hub plus $7.95/million Btu, excluding natural gas supplied to the units at San Juan 5 & 6 (which has historically consumed ~20 TBtu per year). Instead, these volumes are priced at 115 percent of Henry Hub plus $6.50/MMBtu”. According to the September statement, NFE expects to source the LNG under the new GSA from its Fast LNG facility in Altamira, Mexico. With a capacity of 1.4 million metric tons per annum, the project started operations in the fourth quarter of 2024, according to NFE. On March 17 NFE said it had amended the

Read More »

BGN Plans Global Gas Push Ahead of New Supplies

Energy trader BGN is set to expand its fledgling natural gas business into a global portfolio with stakes in plants, vessels and pipelines.  The push comes as the market for liquefied natural gas is set to boom, with US exports ramping up and Qatar, another major producer, also adding output. While that’s likely to push prices lower, the wave of extra supplies is poised to create new trading opportunities. The firm is in talks to buy LNG on contracts as long as 15 years, as well as equity in U.S. export plants, the company’s co-heads of LNG, Ruben Mosquera Arias and Maria Eugenia Suardiaz, said in an interview in Istanbul on Thursday. BGN got its start in the market for liquefied petroleum gas and has amassed a fleet of about 40 ships. In recent years, it has expanded rapidly into crude, oil products and metals.    “In LNG, we would like to be present globally as well, from the Atlantic basin to Asia Pacific,” said Suardiaz, declining to provide details on the volume they plan to handle.  Producers are set to add a record 300 billion cubic meters of annual export capacity by 2030, the International Energy Agency wrote last month in a report. That’s poised to reshape the market after years of scarcity. “We want to capture this wave,” said Mosquera Arias.  The company is also applying for licenses to buy capacity in European pipelines. It expects to take delivery of its first newbuild LNG carriers in the next two years, although the executives declined to provide more details.  BGN started its LNG team in 2024 and sold spot cargoes to both Egypt and Germany earlier this year. In the summer, it struck a deal to supply as many as 42 shipments to the North African country, where it’s already a major

Read More »

Crude Finishes Higher on Short Covering

Oil gained, finishing the week positive as investors assessed the murky outlook for a cease-fire in Ukraine and as the commodity pushed past an important technical level. West Texas Intermediate rose 0.7% to settle above $60 a barrel, signaling that a risk premium persists as a peace deal between Russia and Ukraine remains elusive. Ukrainian negotiators continued talks with US officials in Florida for a second day, with Russia objecting to some of the points in a US-backed plan. The market is watching for progress on a settlement that could lower prices by potentially easing sanctions and boosting Russian oil flows just as an expected oversupply in the market starts to materialize. But an agreement appears distant: Ukraine took credit for an overnight attack on Russia’s Syzran refinery and the Temryuk seaport. Meanwhile, Washington reportedly lobbied European countries in an effort to block a plan to use Moscow’s frozen assets to back a massive loan for Ukraine. Adding to bullish momentum, WTI on Friday settled above its 50-day moving average, a key level of support for the commodity. Prices have also received a boost from algorithmic traders covering some of their bearish positions in recent sessions — and analysts say more buying could materialize in coming weeks. “This session should mark the first notable short covering program since algo selling activity exhausted itself, and the bar is low for subsequent CTA buying activity to hit the tapes over the coming week,” said Dan Ghali, a commodity strategist at TD Securities. Countering geopolitical risks, oversupply is putting downward pressure on prices globally. Saudi Aramco will reduce the price of its flagship Arab Light crude grade to the lowest level since 2021 for January, while Canadian oil has tumbled. And the number of crude oil rigs in the US rose by 6

Read More »

ITT Agrees to Buy Lone Star’s SPX Flow in $4.8B Deal

ITT Inc. has agreed to acquire industrial equipment manufacturer SPX Flow Inc. from Lone Star Funds in a $4.775 billion cash and stock deal. The deal will will consist of a combination of cash and $700 million in ITT common stock issued to Lone Star, according to a statement confirming an earlier report by Bloomberg News that the companies were nearing a deal. Charlotte, North Carolina-based SPX Flow makes products including valves and pumps under brands such as APV and Johnson Pump, as well as food processing equipment such as its Gerstenberg Schröder-branded butter maker. Lone Star Funds agreed in 2021 to take SPX Flow private for $3.8 billion including debt.  The SPX Flow acquisition is the largest ever by Stamford, Connecticut-based ITT, according to data compiled by Bloomberg. ITT’s shares have gained 28% this year, giving it a market value of $14.3 billion. ITT’s history dates to 1920, with its genesis as International Telephone and Telegraph, a provider of telephone switching equipment and services, according to the company’s website. In 1995, that conglomerate was split into three divisions, including the company that became the current manufacturer of components and technology for a range of transportation, industrial and energy markets. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Energy Department Launches Breakthrough AI-Driven Biotechnology Platform at PNNL

Richland, Wash.—U.S. Secretary of Energy Chris Wright launched a new chapter to secure American leadership in autonomous biological discovery yesterday alongside scientists and private partners at Pacific Northwest National Laboratory (PNNL). As part of his visit to PNNL, Secretary Wright commissioned and signed the Anaerobic Microbial Phenotyping Platform (AMP2). PNNL scientists believe AMP2 will be the world’s largest autonomous-capable science system for anaerobic microbial experimentation. The platform supports the Trump Administration’s recently announced Genesis Mission, which calls on the Department of Energy (DOE) to transform American leadership in science and innovation with the development of artificial intelligence (AI). Built by Gingko Bioworks, AMP2 gives DOE scientists an unprecedented capability to explore the world of microbes—an invisible yet powerful workforce poised to boost biotech manufacturing as well as provide insights into basic life science questions. This first-of-its-kind capability will transform how the U.S. identifies, grows, and optimizes the use of microbes in days and weeks instead of years using automation and AI.  “President Trump launched the Genesis Mission to ensure American leadership in science and innovation,” said Secretary Chris Wright. “This ongoing public-private partnership at PNNL will help do exactly that in the field of biotechnology. By launching AI-enabled, autonomous platforms like AMP2, our DOE National Laboratories are driving scientific breakthroughs faster than ever before and ensuring the United States leads the world in technologies that will better human lives and secure our future.”  The AMP2 platform will serve as a prototype for DOE’s planned development of the larger Microbial Molecular Phenotyping Capability (M2PC). Together, the systems will establish the world’s largest autonomous microbial research infrastructure, and position the U.S. to lead in biotechnology, biomanufacturing, and next-generation materials innovation for decades to come. Secretary Wright visited PNNL as part of his ongoing tour of all 17 DOE National Laboratories. PNNL marks

Read More »

Chevron, Gorgon Partners OK $2B to Drill for More Gas

Chevron Corp’s Australian unit and its joint venture partners have reached a final investment decision to further develop the massive Gorgon natural gas project in Western Australia, it said in a statement on Friday. Chevron Australia and its partners — including Exxon Mobil Corp. and Shell Plc — will spend A$3 billion ($2 billion) connecting two offshore natural gas fields to existing infrastructure and processing facilities on Barrow Island as part of the Gorgon Stage 3 development, it said in the statement. Six wells will also be drilled.  Gorgon, on the remote Barrow Island in northwestern Australia, is the largest resource development in Australia’s history, and produces about 15.6 million tons of liquefied natural gas a year. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

At the Crossroads of AI and the Edge: Inside 1623 Farnam’s Rising Role as a Midwest Interconnection Powerhouse

That was the thread that carried through our recent conversation for the DCF Show podcast, where Severn walked through the role Farnam now plays in AI-driven networking, multi-cloud connectivity, and the resurgence of regional interconnection as a core part of U.S. digital infrastructure. Aggregation, Not Proximity: The Practical Edge Severn is clear-eyed about what makes the edge work and what doesn’t. The idea that real content delivery could aggregate at the base of cell towers, he noted, has never been realistic. The traffic simply isn’t there. Content goes where the network already concentrates, and the network concentrates where carriers, broadband providers, cloud onramps, and CDNs have amassed critical mass. In Farnam’s case, that density has grown steadily since the building changed hands in 2018. At the time an “underappreciated asset,” the facility has since become a meeting point for more than 40 broadband providers and over 60 carriers, with major content operators and hyperscale platforms routing traffic directly through its MMRs. That aggregation effect feeds on itself; as more carrier and content traffic converges, more participants anchor themselves to the hub, increasing its gravitational pull. Geography only reinforces that position. Located on the 41st parallel, the building sits at the historical shortest-distance path for early transcontinental fiber routes. It also lies at the crossroads of major east–west and north–south paths that have made Omaha a natural meeting point for backhaul routes and hyperscale expansions across the Midwest. AI and the New Interconnection Economy Perhaps the clearest sign of Farnam’s changing role is the sheer volume of fiber entering the building. More than 5,000 new strands are being brought into the property, with another 5,000 strands being added internally within the Meet-Me Rooms in 2025 alone. These are not incremental upgrades—they are hyperscale-grade expansions driven by the demands of AI traffic,

Read More »

Schneider Electric’s $2.3 Billion in AI Power and Cooling Deals Sends Message to Data Center Sector

When Schneider Electric emerged from its 2025 North American Innovation Summit in Las Vegas last week with nearly $2.3 billion in fresh U.S. data center commitments, it didn’t just notch a big sales win. It arguably put a stake in the ground about who controls the AI power-and-cooling stack over the rest of this decade. Within a single news cycle, Schneider announced: Together, the deals total about $2.27 billion in U.S. data center infrastructure, a number Schneider confirmed in background with multiple outlets and which Reuters highlighted as a bellwether for AI-driven demand.  For the AI data center ecosystem, these contracts function like early-stage fuel supply deals for the power and cooling systems that underpin the “AI factory.” Supply Capacity Agreements: Locking in the AI Supply Chain Significantly, both deals are structured as supply capacity agreements, not traditional one-off equipment purchase orders. Under the SCA model, Schneider is committing dedicated manufacturing lines and inventory to these customers, guaranteeing output of power and cooling systems over a multi-year horizon. In return, Switch and Digital Realty are providing Schneider with forecastable volume and visibility at the scale of gigawatt-class campus build-outs.  A Schneider spokesperson told Reuters that the two contracts are phased across 2025 and 2026, underscoring that this arrangement is about pipeline, as opposed to a one-time backlog spike.  That structure does three important things for the market: Signals confidence that AI demand is durable.You don’t ring-fence billions of dollars of factory output for two customers unless you’re highly confident the AI load curve runs beyond the current GPU cycle. Pre-allocates power & cooling the way the industry pre-allocated GPUs.Hyperscalers and neoclouds have already spent two years locking up Nvidia and AMD capacity. These SCAs suggest power trains and thermal systems are joining chips on the list of constrained strategic resources.

Read More »

The Data Center Power Squeeze: Mapping the Real Limits of AI-Scale Growth

As we all know, the data center industry is at a crossroads. As artificial intelligence reshapes the already insatiable digital landscape, the demand for computing power is surging at a pace that outstrips the growth of the US electric grid. As engines of the AI economy, an estimated 1,000 new data centers1 are needed to process, store, and analyze the vast datasets that run everything from generative models to autonomous systems. But this transformation comes with a steep price and the new defining criteria for real estate: power. Our appetite for electricity is now the single greatest constraint on our expansion, threatening to stall the very innovation we enable. In 2024, US data centers consumed roughly 4% of the nation’s total electricity, a figure that is projected to triple by 2030, reaching 12% or more.2 For AI-driven hyperscale facilities, the numbers are even more staggering. With the largest planned data centers requiring gigawatts of power, enough to supply entire cities, the cumulative demand from all data centers is expected to reach 134 gigawatts by 2030, nearly three times the current load.​3 This presents a systemic challenge. The U.S. power grid, built for a different era, is struggling to keep pace. Utilities are reporting record interconnection requests, with some regions seeing demand projections that exceed their total system capacity by fivefold.4 In Virginia and Texas, the epicenters of data center expansion, grid operators are warning of tight supply-demand balances and the risk of blackouts during peak periods.5 The problem is not just the sheer volume of power needed, but the speed at which it must be delivered. Data center operators are racing to secure power for projects that could be online in as little as 18 months, but grid upgrades and new generation can take years, if not decades. The result

Read More »

The Future of Hyperscale: Neoverse Joins NVLink Fusion as SC25 Accelerates Rack-Scale AI Architectures

Neoverse’s Expanding Footprint and the Power-Efficiency Imperative With Neoverse deployments now approaching roughly 50% of all compute shipped into top hyperscalers in 2025 (representing more than a billion Arm cores) and with nation-scale AI campuses such as the Stargate project already anchored on Arm compute, the addition of NVLink Fusion becomes a pivotal extension of the Neoverse roadmap. Partners can now connect custom Arm CPUs to their preferred NVIDIA accelerators across a coherent, high-bandwidth, rack-scale fabric. Arm characterized the shift as a generational inflection point in data-center architecture, noting that “power—not FLOPs—is the bottleneck,” and that future design priorities hinge on maximizing “intelligence per watt.” Ian Buck, vice president and general manager of accelerated computing at NVIDIA, underscored the practical impact: “Folks building their own Arm CPU, or using an Arm IP, can actually have access to NVLink Fusion—be able to connect that Arm CPU to an NVIDIA GPU or to the rest of the NVLink ecosystem—and that’s happening at the racks and scale-up infrastructure.” Despite the expanded design flexibility, this is not being positioned as an open interconnect ecosystem. NVIDIA continues to control the NVLink Fusion fabric, and all connections ultimately run through NVIDIA’s architecture. For data-center planners, the SC25 announcement translates into several concrete implications: 1.   NVIDIA “Grace-style” Racks Without Buying Grace With NVLink Fusion now baked into Neoverse, hyperscalers and sovereign operators can design their own Arm-based control-plane or pre-processing CPUs that attach coherently to NVIDIA GPU domains—such as NVL72 racks or HGX B200/B300 systems—without relying on Grace CPUs. A rack-level architecture might now resemble: Custom Neoverse SoC for ingest, orchestration, agent logic, and pre/post-processing NVLink Fusion fabric Blackwell GPU islands and/or NVLink-attached custom accelerators (Marvell, MediaTek, others) This decouples CPU choice from NVIDIA’s GPU roadmap while retaining the full NVLink fabric. In practice, it also opens

Read More »

Flex’s Integrated Data Center Bet: How a Manufacturing Giant Plans to Reshape AI-Scale Infrastructure

At this year’s OCP Global Summit, Flex made a declaration that resonated across the industry: the era of slow, bespoke data center construction is over. AI isn’t just stressing the grid or forcing new cooling techniques—it’s overwhelming the entire design-build process. To meet this moment, Flex introduced a globally manufactured, fully integrated data center platform aimed directly at multi-gigawatt AI campuses. The company claims it can cut deployment timelines by as much as 30 percent by shifting integration upstream into the factory and unifying power, cooling, compute, and lifecycle services into pre-engineered modules. This is not a repositioning on the margins. Flex is effectively asserting that the future hyperscale data center will be manufactured like a complex industrial system, not built like a construction project. On the latest episode of The Data Center Frontier Show, we spoke with Rob Campbell, President of Flex Communications, Enterprise & Cloud, and Chris Butler, President of Flex Power, about why Flex believes this new approach is not only viable but necessary in the age of AI. The discussion revealed a company leaning heavily on its global manufacturing footprint, its cross-industry experience, and its expanding cooling and power technology stack to redefine what deployment speed and integration can look like at scale. AI Has Broken the Old Data Center Model From the outset, Campbell and Butler made clear that Flex’s strategy is a response to a structural shift. AI workloads no longer allow power, cooling, and compute to evolve independently. Densities have jumped so quickly—and thermals have risen so sharply—that the white space, gray space, and power yard are now interdependent engineering challenges. Higher chip TDPs, liquid-cooled racks approaching one to two megawatts, and the need to assemble entire campuses in record time have revealed deep fragility in traditional workflows. As Butler put it, AI

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Data Center Facility Technician (All Shifts Available) Impact, TX This position is also available in: Ashburn, VA; Abilene, TX; Needham, MA and New York, NY. Navy Nuke / Military Vets leaving service accepted!  This opportunity is working with a leading mission-critical data center provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients, colo providers and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Montvale, NJ This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »