Stay Ahead, Stay ONMINE

Talking about Games

Game theory is a field of research that is quite prominent in Economics but rather unpopular in other scientific disciplines. However, the concepts used in game theory can be of interest to a wider audience, including data scientists, statisticians, computer scientists or psychologists, to name just a few. This article is the opener to a […]

Game theory is a field of research that is quite prominent in Economics but rather unpopular in other scientific disciplines. However, the concepts used in game theory can be of interest to a wider audience, including data scientists, statisticians, computer scientists or psychologists, to name just a few. This article is the opener to a four-chapter tutorial series on the fundamentals of game theory, so stay tuned for the upcoming articles. 

In this article, I will explain the kinds of problems Game Theory deals with and introduce the main terms and concepts used to describe a game. We will see some examples of games that are typically analysed within game theory and lay the foundation for deeper insights into the capabilities of game theory in the later chapters. But before we go into the details, I want to introduce you to some applications of game theory, that show the multitude of areas game-theoretic concepts can be applied to. 

Applications of game theory

Even french fries can be an application of game theory. Photo by engin akyurt on Unsplash

Does it make sense to vote for a small party in an election if this party may not have a chance to win anyway? Is it worth starting a price war with your competitor who offers the same goods as you? Do you gain anything if you reduce your catch rate of overfished areas if your competitors simply carry on as before? Should you take out insurance if you believe that the government will pay for the reconstruction after the next hurricane anyway? And how should you behave in the next auction where you are about to bid on your favourite Picasso painting? 

All these questions (and many more) live within the area of applications that can be modelled with game theory. Whenever a situation includes strategic decisions in interaction with others, game-theoretic concepts can be applied to describe this situation formally and search for decisions that are not made intuitively but that are backed by a notion of rationality. Key to all the situations above is that your decisions depend on other people’s behaviour. If everybody agrees to conserve the overfished areas, you want to play along to preserve nature, but if you think that everybody else will continue fishing, why should you be the only one to stop? Likewise, your voting behaviour in an election might heavily depend on your assumptions about other people’s votes. If nobody votes for that candidate, your vote will be wasted, but if everybody thinks so, the candidate doesn’t have a chance at all. Maybe there are many people who say “I would vote for him if others vote for him too”.

Similar situations can happen in very different situations. Have you ever thought about having food delivered and everybody said “You don’t have to order anything because of me, but if you order anyway, I’d take some french fries”? All these examples can be applications of game theory, so let’s start understanding what game theory is all about. 

Understanding the game

Before playing, you need to understand the components of the game. Photo by Laine Cooper on Unsplash

When you hear the word game, you might think of video games such as Minecraft, board games such as Monopoly, or card games such as poker. There are some common principles to all these games: We always have some players who are allowed to do certain things determined by the game’s rules. For example, in poker, you can raise, check or give up. In Monopoly, you can buy a property you land on or don’t buy it. What we also have is some notion of how to win the game. In poker, you have to get the best hand to win and in Monopoly, you have to be the last person standing after everybody went bankrupt. That also means that some actions are better than others in some scenarios. If you have two aces on the hand, staying in the game is better than giving up. 

When we look at games from the perspective of game theory, we use the same concepts, just more formally.

A game in game theory consists of n players, where each player has a strategy set and a utility function.

A game consists of a set of players I = {1, .., n}, where each player has a set of strategies S and a utility function ui(s1, s2, … sn). The set of strategies is determined by the rules of the games. For example, it could be S = {check, raise, give-up} and the player would have to decide which of these actions they want to use. The utility function u (also called reward) describes how valuable a certain action of a player would be, given the actions of the other players. Every player wants to maximize their utility, but now comes the tricky part: The utility of an action of yours depends on the other players’ actions. But for them, the same applies: Their actions’ utilities depend on the actions of the other players (including yours). 

Let’s consider a well-known game to illustrate this point. In rock-paper-scissors, we have n=2 players and each player can choose between three actions, hence the strategy set is S={rock, paper, scissors} for each player. But the utility of an action depends on what the other player does. If our opponent chooses rock, the utility of paper is high (1), because paper beats rock. But if your opponent chooses scissors, the utility of paper is low (-1), because you would lose. Finally, if your opponent chooses paper as well, you reach a draw and the utility is 0. 

Utility values for player one choosing paper for three choices of the opponents strategy.

Instead of writing down the utility function for each case individually, it is common to display games in a matrix like this:

The first player decides for the row of the matrix by selecting his action and the second player decides for the column. For example, if player 1 chooses paper and player 2 chooses scissors, we end up in the cell in the third column and second row. The value in this cell is the utility for both players, where the first value corresponds to player 1 and the second value corresponds to player 2. (-1,1) means that player 1 has a utility of -1 and player 2 has a utility of 1. Scissors beat paper. 

Some more details

Now we have understood the main components of a game in game theory. Let me add a few more hints on what game theory is about and what assumptions it uses to describe its scenarios. 

  • We often assume that the players select their actions at the same time (like in rock-paper-scissors). We call such games static games. There are also dynamic games in which players take turns deciding on their actions (like in chess). We will consider these cases in a later chapter of this tutorial. 
  • In game theory, it is typically assumed that the players can not communicate with each other so they can’t come to an agreement before deciding on their actions. In rock-paper-scissors, you wouldn’t want to do that anyway, but there are other games where communication would make it easier to choose an action. However, we will always assume that communication is not possible. 
  • Game theory is considered a normative theory, not a descriptive one. That means we will analyse games concerning the question “What would be the rational solution?” This may not always be what people do in a likewise situation in reality. Such descriptions of real human behaviour are part of the research field of behavioural economics, which is located on the border between Psychology and economics. 

The prisoner’s dilemma

The prisoner’s dilemma is all about not ending up here. Photo by De an Sun on Unsplash

Let us become more familiar with the main concepts of game theory by looking at some typical games that are often analyzed. Often, such games are derived from are story or scenario that may happen in the real world and require people to decide between some actions. One such story could be as follows: 

Say we have two criminals who are suspected of having committed a crime. The police have some circumstantial evidence, but no actual proof for their guilt. Hence they question the two criminals, who now have to decide if they want to confess or deny the crime. If you are in the situation of one of the criminals, you might think that denying is always better than confessing, but now comes the tricky part: The police propose a deal to you. If you confess while your partner denies, you are considered a crown witness and will not be punished. In this case, you are free to go but your partner will go to jail for six years. Sounds like a good deal, but be aware, that the outcome also depends on your partner’s action. If you both confess, there is no crown witness anymore and you both go to jail for three years. If you both deny, the police can only use circumstantial evidence against you, which will lead to one year in prison for both you and your partner. But be aware, that your partner is offered the same deal. If you deny and he confesses, he is the crown witness and you go to jail for six years. How do you decide?

The prisoner’s dilemma.

The game derived from this story is called the prisoner’s dilemma and is a typical example of a game in game theory. We can visualize it as a matrix just like we did with rock-paper-scissors before and in this matrix, we easily see the dilemma the players are in. If both deny, they receive a rather low punishment. But if you assume that your partner denies, you might be tempted to confess, which would prevent you from going to jail. But your partner might think the same, and if you both confess, you both go to jail for longer. Such a game can easily make you go round in circles. We will talk about solutions to this problem in the next chapter of this tutorial. First, let’s consider some more examples. 

Bach vs. Stravinsky

Who do you prefer, Bach or Stravinsky? Photo by Sigmund on Unsplash

You and your friend want to go to a concert together. You are a fan of Bach’s music but your friend favors the Russian 20th. century composer Igor Stravinsky. However, you both want to avoid being alone in any concert. Although you prefer Bach over Stravinsky, you would rather go to the Stravinsky concert with your friend than go to the Bach concert alone. We can create a matrix for this game: 

Bach vs. Stravinsky

You decide for the row by going to the Bach or Stravinsky concert and your friend decides for the column by going to one of the concerts as well. For you, it would be best if you both chose Bach. Your reward would be 2 and your friend would get a reward of 1, which is still better for him than being in the Stravinsky concert all by himself. However, he would be even happier, if you were in the Stravinsky concert together. 

Do you remember, that we said players are not allowed to communicate before making their decision? This example illustrates why. If you could just call each other and decide where to go, this would not be a game to investigate with game theory anymore. But you can’t call each other so you just have to go to any of the concerts and hope you will meet your friend there. What do you do? 

Arm or disarm?

Make love, not war. Photo by Artem Beliaikin on Unsplash

A third example brings us to the realm of international politics. The world would be a much happier place with fewer firearms, wouldn’t it? However, if nations think about disarmament, they also have to consider the choices other nations make. If the USA disarms, the Soviet Union might want to rearm, to be able to attack the USA — that was the thinking during the Cold War, at least. Such a scenario could be described with the following matrix: 

The matrix for the disarm vs. upgrade game.

As you see, when both nations disarm, they get the highest reward (3 each), because there are fewer firearms in the world and the risk of war is minimized. However, if you disarm, while the opponent upgrades, your opponent is in the better position and gets a reward of 2, while you only get 0. Then again, it might have been better to upgrade yourself, which gives a reward of 1 for both players. That is better than being the only one who disarms, but not as good as it would get if both nations disarmed. 

The solution?

All these examples have one thing in common: There is no single option that is always the best. Instead, the utility of an action for one player always depends on the other player’s action, which, in turn, depends on the first player’s action and so on. Game theory is now interested in finding the optimal solution and deciding what would be the rational action; that is, the action that maximizes the expected reward. Different ideas on how exactly such a solution looks like will be part of the next chapter in this series. 

Summary

Learning about game theory is as much fun as playing a game, don’t you think? Photo by Christopher Paul High on Unsplash

Before continuing with finding solutions in the next chapter, let us recap what we have learned so far. 

  • A game consists of players, that decide for actions, which have a utility or reward
  • The utility/reward of an action depends on the other players’ actions. 
  • In static games, players decide for their actions simultaneously. In dynamic games, they take turns. 
  • The prisoner’s dilemma is a very popular example of a game in game theory.
  • Games become increasingly interesting if there is no single action that is better than any other. 

Now that you are familiar with how games are described in game theory, you can check out the next chapter to learn how to find solutions for games in game theory. 

References

The topics introduced here are typically covered in standard textbooks on game theory. I mainly used this one, which is written in German though: 

  • Bartholomae, F., & Wiens, M. (2016). Spieltheorie. Ein anwendungsorientiertes Lehrbuch. Wiesbaden: Springer Fachmedien Wiesbaden.

An alternative in English language could be this one: 

  • Espinola-Arredondo, A., & Muñoz-Garcia, F. (2023). Game Theory: An Introduction with Step-by-step Examples. Springer Nature.

Game theory is a rather young field of research, with the first main textbook being this one: 

  • Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior.

Like this article? Follow me to be notified of my future posts.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

ExxonMobil bumps up 2030 target for Permian production

ExxonMobil Corp., Houston, is looking to grow production in the Permian basin to about 2.5 MMboe/d by 2030, an increase of 200,000 boe/d from executives’ previous forecasts and a jump of more than 45% from this year’s output. Helping drive that higher target is an expected 2030 cost profile that

Read More »

Equinor Greenlights Johan Castberg Tieback

Equinor ASA and its partners have agreed to proceed with the first project to be connected to the Johan Castberg field. Johan Castberg started production in March as only the third development on Norway’s side of the Barents Sea, according to information on government website Norskpetroleum.no. The other two, Snøhvit and Goliat, came online 2007 and 2016 respectively. “Recoverable oil in the new subsea development [the Isflak discovery] is estimated at 46 million barrels, and start-up is planned as early as the fourth quarter of 2028”, the Norwegian primarily state-owned company said in an online statement. Isflak, the first of several discoveries planned to be tied back to Johan Castberg, was discovered 2021. Its development is estimated to cost over NOK 4 billion, according to the statement. “A rapid development is possible because we can copy standardized solutions from Johan Castberg. The reservoir is in the same license and is similar to the discoveries we have developed previously, which means that we can copy equipment and well solutions. Johan Castberg has been developed as a future hub in the area”, said Equinor senior vice president for project development Trond Bokn. Equinor said, “The development solution for the Isflak discovery consists of two wells in a new subsea template tied back to existing subsea facilities via pipelines and umbilicals, and all new infrastructure is located within the current Johan Castberg license”. “Equinor has therefore applied to the Ministry of Energy for confirmation that Equinor has fulfilled the impact assessment obligation and exemption from the requirement for a plan for development and operation”, it said. “Global combustion emissions have been assessed in line with new practice”. Johan Castberg has raised Norway’s production capacity by up to 220,000 barrels per day, with estimated recoverable volumes of 450-650 million barrels, according to Equinor. The

Read More »

TotalEnergies, Repsol, HitecVision Form UK North Sea Leader

TotalEnergies SE and NEO NEXT Energy Ltd, recently created by Repsol UK Ltd and HitecVision AS, have entered into a deal to combine their exploration and production assets in the United Kingdom and thereby create what they say would be the top producer in the UK North Sea. France’s TotalEnergies would own 47.5 percent of the resulting company, to be called NEO NEXT+. Norway-based HitecVision, a capital investor in Europe’s energy sector, and Repsol UK will retain 28.88 percent and 23.63 percent respectively, according to online statements by the parties. Repsol UK is 75 percent owned by Spanish integrated energy company Repsol SA and 25 percent owned by the United States’ EIG Global Energy Partners, which acquired a 25 percent stake in Repsol SA’s entire upstream portfolio in 2023 for $4.8 billion. HitecVision and Repsol UK had merged their North Sea assets into NEO NEXT earlier this year with interests of 55 percent and 45 percent respectively. NEO NEXT+ would “encompass a large and diverse asset portfolio including notably NEO Energy’s [HitecVision subsidiary] and Repsol UK’s interests in the Elgin/Franklin complex and the Penguins, Mariner, Shearwater and Culzean fields, enriched by TotalEnergies’ UK upstream assets, notably including its interests in the Elgin/Franklin complex and the Alwyn North, Dunbar and Culzean fields”, TotalEnergies said in a statement on its website. “With TotalEnergies as its leading shareholder, NEO NEXT+ will become the largest independent oil and gas producer in the UK with a production over 250,000 barrels of oil equivalent per day in 2026, ideally positioned to maximize the value of its portfolio, deliver strong financial returns and ensure a long-term sustainable and resilient future for its oil and gas business”, TotalEnergies said. TotalEnergies’ upstream portfolio in the UK averaged 121,000 barrels of oil equivalent a day (boed) last year, accounting for about 27 percent of the

Read More »

Eni Fires Up New Andalusia Solar Plant

Eni SpA, through Eni Plenitude SpA Società Benefit, has put online its second photovoltaic generation facility in Andalusia, the 150-megawatt (MW) Caparacena project in Granada. The latest start-up raises the Italian state-backed oil and gas producer’s installed renewables capacity in Spain to nearly 1.5 gigawatts (GW), it said in a press release. “The project, one of the most significant in the company’s portfolio in Spain, covers 264 hectares and comprises three photovoltaic parks of 50 MW each”, Eni said. With over 274,000 bifacial modules, the plant has an annual capacity of 320 gigawatt hours, it said. The Caparacena plant, in Chimeneas and Ventas de Huelma, is among renewable installations totaling about 400 MW – all solar – that Eni completed in Spain last year, according to a press release by the company January 7, 2025. Eni only announced activation now. Announcing the start-up, Eni noted the project had been completed while successfully preserving a sixth-century Iberian necropolis. Archaeological monitoring works at the site in April 2024 had led to the discovery, which yielded funerary ceramic urns and period artefacts, according to Eni. “In compliance with the requirements established for the project authorization process, during the construction of the plant, several measures were implemented to protect the natural environment and preserve the soil”, it said. Eni already produces solar power in Andalusia through Seville’s 230-MW Guillena plant. Eni is building another solar plant with a capacity of 200 MW in Seville, the Entrenúcleo project between the municipalities of Dos Hermanas and Coria del RÍo. It expects to start up the project next year. Eni announced the start of construction July 3. Elsewhere in Spain, Eni said June 30 the northern block of its Renopool solar plant in the municipality of Solana de los Barros, Badajoz, Extremadura, had begun production with a capacity of 130

Read More »

OPEC Data Points to Balanced Global Oil Market in 2026

OPEC kept forecasts for global oil supplies and demand in 2026 steady, pointing to a balanced world market that clashes with widespread predictions of a surplus. The Organization of the Petroleum Exporting Countries and its allies will need to produce an average of 43 million barrels a day next year to balance supply and demand, roughly in line with the amount pumped last month, according to a report on OPEC’s website. This runs counter to prevailing industry expectations for a supply excess in 2026. Top trader Trafigura Group said this week it could amount to a “super glut,” and the International Energy Agency — while paring its projections in its report earlier Thursday — continues to expect a record overhang. Key OPEC+ nations led by Saudi Arabia acknowledged the fragile backdrop last month by agreeing to pause further output increases during the first quarter after rapidly ramping up production earlier this year.  The outlook from OPEC’s Vienna-based secretariat has proven excessively bullish in recent years. Last year, OPEC was ultimately forced to slash demand projections by 32% over the course of six monthly downgrades. In late 2023, it forecast a record inventory deficit that never materialized. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Antero adds to Marcellus portfolio, Infinity picks up divested Ohio Utica interests

Antero Resources Corp., Denver, Co., has signed deals to expand its Marcellus shale footprint in West Virginia and to divest its certain Ohio Utica shale assets. Adding the Marcellus assets expands Antero Resources’ core acreage position, enhancing its position “as the premier liquids developer in the Marcellus,” and provides the company “with further dry gas optionality for local demand from data centers and natural gas fired power plants,” said Michael Kennedy, president and chief executive officer, in a release Dec. 8. Marcellus acquisition from HG Energy Through a deal to acquire the upstream assets of HG Energy II LLC, Parkersburg, WV, Antero aims to add 850 MMcfed of expected Marcellus production in 2026. The deal, expected to close in second-quarter 2026, was signed for $2.8 billion in cash plus the assumption of HG Energy’s commodity hedge book. Antero said about 90% of HG natural gas production is hedged in 2026 and 2027 at average NYMEX prices of $4.00 and $3.88, respectively. The deal adds 385,000 net acres offsetting Antero’s existing 475,000 net core Marcellus acreage position and includes over 400 additional locations that immediately compete for capital (75% liquids), the company said in a related investor presentation.  Antero said it anticipates capital synergies of about $550 million inclusive of development planning optimization and drilling and completions savings. Another $400 in income-related synergies is expected. Separately, Antero Midstream agreed to acquire the midstream assets from HG Energy for $1.1 billion in cash. The deal includes about 50 miles of bi-directional dry and rich gas gathering pipelines and water assets in which Antero plans to invest about $25 million to integrate with its legacy gathering and water system. Utica sale to Infinity Natural Resources Infinity Natural Resources Inc., in a release Dec. 8, said subsidiary Infinity Natural Resources LLC will acquire upstream and

Read More »

Market Focus: Oversupply takes center stage, fundamentals catch up with the market

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } <!–> In this Market Focus episode of the Oil & Gas Journal ReEnterprised podcast, Conglin Xu, managing editor, economics, takes a look at the growing oversupply in global crude markets and the shift now under way as fundamentals begin overtaking sentiment and geopolitics as the primary price driver. ]–>

Read More »

Executive Roundtable: Converging Disciplines in the AI Buildout

At Data Center Frontier, we rely on industry leaders to help us understand the most urgent challenges facing digital infrastructure. And in the fourth quarter of 2025, the data center industry is adjusting to a new kind of complexity.  AI-scale infrastructure is redefining what “mission critical” means, from megawatt density and modular delivery to the chemistry of cooling fluids and the automation of energy systems. Every project has arguably in effect now become an ecosystem challenge, demanding that electrical, mechanical, construction, and environmental disciplines act as one.  For this quarter’s Executive Roundtable, DCF convened subject matter experts from Ecolab, EdgeConneX, Rehlko and Schneider Electric – leaders spanning the full chain of facilities design, deployment, and operation. Their insights illuminate how liquid cooling, energy management, and sustainable process design in data centers are now converging to set the pace for the AI era. Our distinguished executive panelists for this quarter include: Rob Lowe, Director RD&E – Global High Tech, Ecolab Phillip Marangella, Chief Marketing and Product Officer, EdgeConneX Ben Rapp, Manager, Strategic Project Development, Rehlko Joe Reele, Vice President, Datacenter Solution Architects, Schneider Electric Today: Engineering the New Normal – Liquid Cooling at Scale  Today’s kickoff article grapples with how, as liquid cooling technology transitions to default hyperscale design, the challenge is no longer if, but how to scale builds safely, repeatably, and globally.  Cold plates, immersion, dielectric fluids, and liquid-to-chip loops are converging into factory-integrated building blocks, yet variability in chemistry, serviceability, materials, commissioning practices, and long-term maintenance threatens to fragment adoption just as demand accelerates.  Success now hinges on shared standards and tighter collaboration across OEMs, builders, and process specialists worldwide. So how do developers coordinate across the ecosystem to make liquid cooling a safe, maintainable global default? What’s Ahead in the Roundtable Over the coming days, our panel

Read More »

DCF Trends Summit 2025: AI for Good – How Operators, Vendors and Cooling Specialists See the Next Phase of AI Data Centers

At the 2025 Data Center Frontier Trends Summit (Aug. 26-28) in Reston, Va., the conversation around AI and infrastructure moved well past the hype. In a panel sponsored by Schneider Electric—“AI for Good: Building for AI Workloads and Using AI for Smarter Data Centers”—three industry leaders explored what it really means to design, cool and operate the new class of AI “factories,” while also turning AI inward to run those facilities more intelligently. Moderated by Data Center Frontier Editor in Chief Matt Vincent, the session brought together: Steve Carlini, VP, Innovation and Data Center Energy Management Business, Schneider Electric Sudhir Kalra, Chief Data Center Operations Officer, Compass Datacenters Andrew Whitmore, VP of Sales, Motivair Together, they traced both sides of the “AI for Good” equation: building for AI workloads at densities that would have sounded impossible just a few years ago, and using AI itself to reduce risk, improve efficiency and minimize environmental impact. From Bubble Talk to “AI Factories” Carlini opened by acknowledging the volatility surrounding AI investments, citing recent headlines and even Sam Altman’s public use of the word “bubble” to describe the current phase of exuberance. “It’s moving at an incredible pace,” Carlini noted, pointing out that roughly half of all VC money this year has flowed into AI, with more already spent than in all of the previous year. Not every investor will win, he said, and some companies pouring in hundreds of billions may not recoup their capital. But for infrastructure, the signal is clear: the trajectory is up and to the right. GPU generations are cycling faster than ever. Densities are climbing from high double-digits per rack toward hundreds of kilowatts. The hyperscale “AI factories,” as NVIDIA calls them, are scaling to campus capacities measured in gigawatts. Carlini reminded the audience that in 2024,

Read More »

FinOps Foundation sharpens FOCUS to reduce cloud cost chaos

“The big change that’s really started to happen in late 2024 early 2025 is that the FinOps practice started to expand past the cloud,” Storment said. “A lot of organizations got really good at using FinOps to manage the value of cloud, and then their organizations went, ‘oh, hey, we’re living in this happily hybrid state now where we’ve got cloud, SaaS, data center. Can you also apply the FinOps practice to our SaaS? Or can you apply it to our Snowflake? Can you apply it to our data center?’” The FinOps Foundation’s community has grown to approximately 100,000 practitioners. The organization now includes major cloud vendors, hardware providers like Nvidia and AMD, data center operators and data cloud platforms like Snowflake and Databricks. Some 96 of the Fortune 100 now participate in FinOps Foundation programs. The practice itself has shifted in two directions. It has moved left into earlier architectural and design processes, becoming more proactive rather than reactive. It has also moved up organizationally, from director-level cloud management roles to SVP and COO positions managing converged technology portfolios spanning multiple infrastructure types. This expansion has driven the evolution of FOCUS beyond its original cloud billing focus. Enterprises are implementing FOCUS as an internal standard for chargeback reporting even when their providers don’t generate native FOCUS data. Some newer cloud providers, particularly those focused on AI infrastructure, are using the FOCUS specification to define their billing data structures from the ground up rather than retrofitting existing systems. The FOCUS 1.3 release reflects this maturation, addressing technical gaps that have emerged as organizations apply cost management practices across increasingly complex hybrid environments. FOCUS 1.3 exposes cost allocation logic for shared infrastructure The most significant technical enhancement in FOCUS 1.3 addresses a gap in how shared infrastructure costs are allocated and

Read More »

Aetherflux joins the race to launch orbital data centers by 2027

Enterprises will connect to and manage orbital workloads “the same way they manage cloud workloads today,” using optical links, the spokesperson added. The company’s approach is to “continuously launch new hardware and quickly integrate the latest architectures,” with older systems running lower-priority tasks to serve out the full useful lifetime of their high-end GPUs. The company declined to disclose pricing. Aetherflux plans to launch about 30 satellites at a time on SpaceX Falcon 9 rockets. Before the data center launch, the company will launch a power-beaming demonstration satellite in 2026 to test transmission of one kilowatt of energy from orbit to ground stations, using infrared lasers. Competition in the sector has intensified in recent months. In November, Starcloud launched its Starcloud-1 satellite carrying an Nvidia H100 GPU, which is 100 times more powerful than any previous GPU flown in space, according to the company, and demonstrated running Google’s Gemma AI model in orbit. In the same month, Google announced Project Suncatcher, with a 2027 demonstration mission planned. Analysts see limited near-term applications Despite the competitive activity, orbital data centers won’t replace terrestrial cloud regions for general hosting through 2030, said Ashish Banerjee, senior principal analyst at Gartner. Instead, they suit specific workloads, including meeting data sovereignty requirements for jurisdictionally complex scenarios, offering disaster recovery immune to terrestrial risks, and providing asynchronous high-performance computing, he said. “Orbital centers are ideal for high-compute, low-I/O batch jobs,” Banerjee said. “Think molecular folding simulations for pharma, massive Monte Carlo financial simulations, or training specific AI model weights. If the job takes 48 hours, the 500ms latency penalty of LEO is irrelevant.” One immediate application involves processing satellite-generated data in orbit, he said. Earth observation satellites using synthetic aperture radar generate roughly 10 gigabytes per second, but limited downlink bandwidth creates bottlenecks. Processing data in

Read More »

Here’s what Oracle’s soaring infrastructure spend could mean for enterprises

He said he had earlier told analysts in a separate call that margins for AI workloads in these data centers would be in the 30% to 40% range over the life of a customer contract. Kehring reassured that there would be demand for the data centers when they were completed, pointing to Oracle’s increasing remaining performance obligations, or services contracted but not yet delivered, up $68 billion on the previous quarter, saying that Oracle has been seeing unprecedented demand for AI workloads driven by the likes of Meta and Nvidia. Rising debt and margin risks raise flags for CIOs For analysts, though, the swelling debt load is hard to dismiss, even with Oracle’s attempts to de-risk its spend and squeeze more efficiency out of its buildouts. Gogia sees Oracle already under pressure, with the financial ecosystem around the company pricing the risk — one of the largest debts in corporate history, crossing $100 billion even before the capex spend this quarter — evident in the rising cost of insuring the debt and the shift in credit outlook. “The combination of heavy capex, negative free cash flow, increasing financing cost and long-dated revenue commitments forms a structural pressure that will invariably finds its way into the commercial posture of the vendor,” Gogia said, hinting at an “eventual” increase in pricing of the company’s offerings. He was equally unconvinced by Magouyrk’s assurances about the margin profile of AI workloads as he believes that AI infrastructure, particularly GPU-heavy clusters, delivers significantly lower margins in the early years because utilisation takes time to ramp.

Read More »

New Nvidia software gives data centers deeper visibility into GPU thermals and reliability

Addressing the challenge Modern AI accelerators now draw more than 700W per GPU, and multi-GPU nodes can reach 6kW, creating concentrated heat zones, rapid power swings, and a higher risk of interconnect degradation in dense racks, according to Manish Rawat, semiconductor analyst at TechInsights. Traditional cooling methods and static power planning increasingly struggle to keep pace with these loads. “Rich vendor telemetry covering real-time power draw, bandwidth behavior, interconnect health, and airflow patterns shifts operators from reactive monitoring to proactive design,” Rawat said. “It enables thermally aware workload placement, faster adoption of liquid or hybrid cooling, and smarter network layouts that reduce heat-dense traffic clusters.” Rawat added that the software’s fleet-level configuration insights can also help operators catch silent errors caused by mismatched firmware or driver versions. This can improve training reproducibility and strengthen overall fleet stability. “Real-time error and interconnect health data also significantly accelerates root-cause analysis, reducing MTTR and minimizing cluster fragmentation,” Rawat said. These operational pressures can shape budget decisions and infrastructure strategy at the enterprise level.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »