Stay Ahead, Stay ONMINE

Three reasons Meta will struggle with community fact-checking

Earlier this month, Mark Zuckerberg announced that Meta will cut back on its content moderation efforts and eliminate fact-checking in the US in favor of the more “democratic” approach that X (formerly Twitter) calls Community Notes, rolling back protections that he claimed had been developed only in response to media and government pressure. The move is raising alarm bells, and rightly so. Meta has left a trail of moderation controversies in its wake, from overmoderating images of breastfeeding women to undermoderating hate speech in Myanmar, contributing to the genocide of Rohingya Muslims. Meanwhile, ending professional fact-checking creates the potential for misinformation and hate to spread unchecked. Enlisting volunteers is how moderation started on the Internet, long before social media giants realized that centralized efforts were necessary. And volunteer moderation can be successful, allowing for the development of bespoke regulations aligned with the needs of particular communities. But without significant commitment and oversight from Meta, such a system cannot contend with how much content is shared across the company’s platforms, and how fast. In fact, the jury is still out on how well it works at X, which is used by 21% of Americans (Meta’s are significantly more popular—Facebook alone is used by 70% of Americans, according to Pew).   Community Notes, which started in 2021 as Birdwatch, is a community-driven moderation system on X that allows users who sign up for the program to add context to posts. Having regular users provide public fact-checking is relatively new, and so far results are mixed. For example, researchers have found that participants are more likely to challenge content they disagree with politically and that flagging content as false does not reduce engagement, but they have also found that the notes are typically accurate and can help reduce the spread of misleading posts.  I’m a community moderator who researches community moderation. Here’s what I’ve learned about the limitations of relying on volunteers for moderation—and what Meta needs to do to succeed:  1. The system will miss falsehoods and could amplify hateful content There is a real risk under this style of moderation that only posts about things that a lot of people know about will get flagged in a timely manner—or at all. Consider how a post with a picture of a death cap mushroom and the caption “Tasty” might be handled under Community Notes–style moderation. If an expert in mycology doesn’t see the post, or sees it only after it’s been widely shared, it may not get flagged as “Poisonous, do not eat”—at least not until it’s too late. Topic areas that are more esoteric will be undermoderated. This could have serious impacts on both individuals (who may eat a poisonous mushroom) and society (if a falsehood spreads widely).  Crucially, X’s Community Notes aren’t visible to readers when they are first added. A note becomes visible to the wider user base only when enough contributors agree that it is accurate by voting for it. And not all votes count. If a note is rated only by people who tend to agree with each other, it won’t show up. X does not make a note visible until there’s agreement from people who have disagreed on previous ratings. This is an attempt to reduce bias, but it’s not foolproof. It still relies on people’s opinions about a note and not on actual facts. Often what’s needed is expertise.I moderate a community on Reddit called r/AskHistorians. It’s a public history site with over 2 million members and is very strictly moderated. We see people get facts wrong all the time. Sometimes these are straightforward errors. But sometimes there is hateful content that takes experts to recognize. One time a question containing a Holocaust-denial dog whistle escaped review for hours and ended up amassing hundreds of upvotes before it was caught by an expert on our team. Hundreds of people—probably with very different voting patterns and very different opinions on a lot of topics—not only missed the problematic nature of the content but chose to promote it through upvotes. This happens with answers to questions, too. People who aren’t experts in history will upvote outdated, truthy-sounding answers that aren’t actually correct. Conversely, they will downvote good answers if they reflect viewpoints that are tough to swallow.  r/AskHistorians works because most of its moderators are expert historians. If Meta wants its Community Notes–style program to work, it should  make sure that the people with the knowledge to make assessments see the posts and that expertise is accounted for in voting, especially when there’s a misalignment between common understanding and expert knowledge.  2. It won’t work without well-supported volunteers   Meta’s paid content moderators review the worst of the worst—including gore, sexual abuse and exploitation, and violence. As a result, many have suffered severe trauma, leading to lawsuits and unionization efforts. When Meta cuts resources from its centralized moderation efforts, it will be increasingly up to unpaid volunteers to keep the platform safe.  Community moderators don’t have an easy job. On top of exposure to horrific content, as identifiable members of their communities, they are also often subject to harassment and abuse—something we experience daily on r/AskHistorians. However, community moderators moderate only what they can handle. For example, while I routinely manage hate speech and violent language, as a moderator of a text-based community I am rarely exposed to violent imagery. Community moderators also work as a team. If I do get exposed to something I find upsetting or if someone is being abusive, my colleagues take over and provide emotional support. I also care deeply about the community I moderate. Care for community, supportive colleagues, and self-selection all help keep volunteer moderators’ morale high(ish).  It’s unclear how Meta’s new moderation system will be structured. If volunteers choose what content they flag, will that replicate X’s problem, where partisanship affects which posts are flagged and how? It’s also unclear what kind of support the platform will provide. If volunteers are exposed to content they find upsetting, will Meta—the company that is currently being sued for damaging the mental health of its paid content moderators—provide social and psychological aid? To be successful, the company will need to ensure that volunteers have access to such resources and are able to choose the type of content they moderate (while also ensuring that this self-selection doesn’t unduly influence the notes).     3. It can’t work without protections and guardrails  Online communities can thrive when they are run by people who deeply care about them. However, volunteers can’t do it all on their own. Moderation isn’t just about making decisions on what’s “true” or “false.” It’s also about identifying and responding to other kinds of harmful content. Zuckerberg’s decision is coupled with other changes to its community standards that weaken rules around hateful content in particular. Community moderation is part of a broader ecosystem, and it becomes significantly harder to do it when that ecosystem gets poisoned by toxic content.  I started moderating r/AskHistorians in 2020 as part of a research project to learn more about the behind-the-scenes experiences of volunteer moderators. While Reddit had started addressing some of the most extreme hate on its platform by occasionally banning entire communities, many communities promoting misogyny, racism, and all other forms of bigotry were permitted to thrive and grow. As a result, my early field notes are filled with examples of extreme hate speech, as well as harassment and abuse directed at moderators. It was hard to keep up with.  But halfway through 2020, something happened. After a milquetoast statement about racism from CEO Steve Huffman, moderators on the site shut down their communities in protest. And to its credit, the platform listened. Reddit updated its community standards to explicitly prohibit hate speech and began to enforce the policy more actively. While hate is still an issue on Reddit, I see far less now than I did in 2020 and 2021. Community moderation needs robust support because volunteers can’t do it all on their own. It’s only one tool in the box.  If Meta wants to ensure that its users are safe from scams, exploitation, and manipulation in addition to hate, it cannot rely solely on community fact-checking. But keeping the user base safe isn’t what this decision aims to do. It’s a political move to curry favor with the new administration. Meta could create the perfect community fact-checking program, but because this decision is coupled with weakening its wider moderation practices, things are going to get worse for its users rather than better.  Sarah Gilbert is research director for the Citizens and Technology Lab at Cornell University.

Earlier this month, Mark Zuckerberg announced that Meta will cut back on its content moderation efforts and eliminate fact-checking in the US in favor of the more “democratic” approach that X (formerly Twitter) calls Community Notes, rolling back protections that he claimed had been developed only in response to media and government pressure.

The move is raising alarm bells, and rightly so. Meta has left a trail of moderation controversies in its wake, from overmoderating images of breastfeeding women to undermoderating hate speech in Myanmar, contributing to the genocide of Rohingya Muslims. Meanwhile, ending professional fact-checking creates the potential for misinformation and hate to spread unchecked.

Enlisting volunteers is how moderation started on the Internet, long before social media giants realized that centralized efforts were necessary. And volunteer moderation can be successful, allowing for the development of bespoke regulations aligned with the needs of particular communities. But without significant commitment and oversight from Meta, such a system cannot contend with how much content is shared across the company’s platforms, and how fast. In fact, the jury is still out on how well it works at X, which is used by 21% of Americans (Meta’s are significantly more popular—Facebook alone is used by 70% of Americans, according to Pew).  

Community Notes, which started in 2021 as Birdwatch, is a community-driven moderation system on X that allows users who sign up for the program to add context to posts. Having regular users provide public fact-checking is relatively new, and so far results are mixed. For example, researchers have found that participants are more likely to challenge content they disagree with politically and that flagging content as false does not reduce engagement, but they have also found that the notes are typically accurate and can help reduce the spread of misleading posts

I’m a community moderator who researches community moderation. Here’s what I’ve learned about the limitations of relying on volunteers for moderation—and what Meta needs to do to succeed: 

1. The system will miss falsehoods and could amplify hateful content

There is a real risk under this style of moderation that only posts about things that a lot of people know about will get flagged in a timely manner—or at all. Consider how a post with a picture of a death cap mushroom and the caption “Tasty” might be handled under Community Notes–style moderation. If an expert in mycology doesn’t see the post, or sees it only after it’s been widely shared, it may not get flagged as “Poisonous, do not eat”—at least not until it’s too late. Topic areas that are more esoteric will be undermoderated. This could have serious impacts on both individuals (who may eat a poisonous mushroom) and society (if a falsehood spreads widely). 

Crucially, X’s Community Notes aren’t visible to readers when they are first added. A note becomes visible to the wider user base only when enough contributors agree that it is accurate by voting for it. And not all votes count. If a note is rated only by people who tend to agree with each other, it won’t show up. X does not make a note visible until there’s agreement from people who have disagreed on previous ratings. This is an attempt to reduce bias, but it’s not foolproof. It still relies on people’s opinions about a note and not on actual facts. Often what’s needed is expertise.

I moderate a community on Reddit called r/AskHistorians. It’s a public history site with over 2 million members and is very strictly moderated. We see people get facts wrong all the time. Sometimes these are straightforward errors. But sometimes there is hateful content that takes experts to recognize. One time a question containing a Holocaust-denial dog whistle escaped review for hours and ended up amassing hundreds of upvotes before it was caught by an expert on our team. Hundreds of people—probably with very different voting patterns and very different opinions on a lot of topics—not only missed the problematic nature of the content but chose to promote it through upvotes. This happens with answers to questions, too. People who aren’t experts in history will upvote outdated, truthy-sounding answers that aren’t actually correct. Conversely, they will downvote good answers if they reflect viewpoints that are tough to swallow. 

r/AskHistorians works because most of its moderators are expert historians. If Meta wants its Community Notes–style program to work, it should  make sure that the people with the knowledge to make assessments see the posts and that expertise is accounted for in voting, especially when there’s a misalignment between common understanding and expert knowledge. 

2. It won’t work without well-supported volunteers  

Meta’s paid content moderators review the worst of the worst—including gore, sexual abuse and exploitation, and violence. As a result, many have suffered severe trauma, leading to lawsuits and unionization efforts. When Meta cuts resources from its centralized moderation efforts, it will be increasingly up to unpaid volunteers to keep the platform safe. 

Community moderators don’t have an easy job. On top of exposure to horrific content, as identifiable members of their communities, they are also often subject to harassment and abuse—something we experience daily on r/AskHistorians. However, community moderators moderate only what they can handle. For example, while I routinely manage hate speech and violent language, as a moderator of a text-based community I am rarely exposed to violent imagery. Community moderators also work as a team. If I do get exposed to something I find upsetting or if someone is being abusive, my colleagues take over and provide emotional support. I also care deeply about the community I moderate. Care for community, supportive colleagues, and self-selection all help keep volunteer moderators’ morale high(ish). 

It’s unclear how Meta’s new moderation system will be structured. If volunteers choose what content they flag, will that replicate X’s problem, where partisanship affects which posts are flagged and how? It’s also unclear what kind of support the platform will provide. If volunteers are exposed to content they find upsetting, will Meta—the company that is currently being sued for damaging the mental health of its paid content moderators—provide social and psychological aid? To be successful, the company will need to ensure that volunteers have access to such resources and are able to choose the type of content they moderate (while also ensuring that this self-selection doesn’t unduly influence the notes).    

3. It can’t work without protections and guardrails 

Online communities can thrive when they are run by people who deeply care about them. However, volunteers can’t do it all on their own. Moderation isn’t just about making decisions on what’s “true” or “false.” It’s also about identifying and responding to other kinds of harmful content. Zuckerberg’s decision is coupled with other changes to its community standards that weaken rules around hateful content in particular. Community moderation is part of a broader ecosystem, and it becomes significantly harder to do it when that ecosystem gets poisoned by toxic content. 

I started moderating r/AskHistorians in 2020 as part of a research project to learn more about the behind-the-scenes experiences of volunteer moderators. While Reddit had started addressing some of the most extreme hate on its platform by occasionally banning entire communities, many communities promoting misogyny, racism, and all other forms of bigotry were permitted to thrive and grow. As a result, my early field notes are filled with examples of extreme hate speech, as well as harassment and abuse directed at moderators. It was hard to keep up with. 

But halfway through 2020, something happened. After a milquetoast statement about racism from CEO Steve Huffman, moderators on the site shut down their communities in protest. And to its credit, the platform listened. Reddit updated its community standards to explicitly prohibit hate speech and began to enforce the policy more actively. While hate is still an issue on Reddit, I see far less now than I did in 2020 and 2021. Community moderation needs robust support because volunteers can’t do it all on their own. It’s only one tool in the box. 

If Meta wants to ensure that its users are safe from scams, exploitation, and manipulation in addition to hate, it cannot rely solely on community fact-checking. But keeping the user base safe isn’t what this decision aims to do. It’s a political move to curry favor with the new administration. Meta could create the perfect community fact-checking program, but because this decision is coupled with weakening its wider moderation practices, things are going to get worse for its users rather than better. 

Sarah Gilbert is research director for the Citizens and Technology Lab at Cornell University.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Fluent Bit vulnerabilities could enable full cloud takeover

Attackers could flood monitoring systems with false or misleading events, hide alerts in the noise, or even hijack the telemetry stream entirely, Katz said. The issue is now tracked as CVE-2025-12969 and awaits a severity valuation. Almost equally troubling are other flaws in the “tag” mechanism, which determines how the records are

Read More »

NFL, AWS drive football modernization with cloud, AI

AWS Next Gen Stats: Initially used for player participation tracking (replacing manual photo-taking), Next Gen Stats uses sensors to capture center-of-mass and contact information, which is then used to generate performance insights. Computer vision: Computer vision was initially insufficient, but the technology has improved greatly over the past few years.

Read More »

Apstra founder launches Aria to tackle AI networking performance

Aria’s technical approach differs from incumbent vendors in its focus on end-to-end path optimization rather than individual switch performance. Karam argues that traditional networking vendors think of themselves primarily as switch companies, with software efforts concentrated on switch operating systems rather than cluster-wide operational models. “It’s no longer just about

Read More »

NatGas Immediate Term Volatility Risks Remain High

In an EBW Analytics Group report sent to Rigzone by the EBW team on Tuesday, Eli Rubin, an energy analyst at the company, warned that, for the U.S. natural gas price, “immediate-term volatility risks remain high into December expiration”. Rubin highlighted in the report that yesterday’s December options expiry “saw the front-month falter 13.6 cents before recovering 10.5 cents into the close”. “While daily fundamental signals appear supportive, downside offers confirmation of last week’s January contract bearish triple-top technical pattern at $4.80 [per million British thermal units (MMBtu)],” he said. “DTN’s outsized day over day weather gain is partially catching up to other meteorologists previously anticipating a colder early December,” Rubin added. “Further, while more expansive cold to open the month, Week 3 became milder (particularly across the South) amid shifts in the Pacific North America (PNA) teleconnection – and early-morning price action seems to be reacting to a possibility of ‘seeing beyond’ the early-December cold,” Rubin continued. Rubin went on to state in the report that daily LNG feedgas “may be touching another all-time high this morning as gas production continues to show strength”. “We repeat our analysis that while immediate-term pricing appears to have run ahead of fundamentals, the medium to longer term outlook could see narrowing storage surpluses to lead renewed mid-winter upside potential,” he added. The EBW report pointed out that the December natural gas contract closed at $4.549 per MMBtu on Monday. This marked a 3.1 cent, or 0.7 percent drop from Friday’s close, the report outlined. In the report, EBW predicted a “volatility risks elevated” trend for the NYMEX front-month natural gas contract price over the next 7-10 days and a “jagged path higher” trend over the next 30-45 days. In a separate report sent to Rigzone by the EBW team on Monday, Rubin

Read More »

Aramco Weighs Raising Billions From Its Biggest Disposals Yet

Saudi Aramco is considering plans to raise billions of dollars by selling a range of assets, people familiar with the matter said, deals that could rank as its most significant disposals ever. The firm is weighing the sale of a stake in its oil export and storage terminals as part of the plans, the people said, declining to be identified as the information is confidential. Banks have been asked to pitch for roles on feasibility studies for the disposals, which could fetch more than $10 billion, they said.  Aramco is eying options including raising fresh equity from the deal, the people said. It could also pursue a structure similar to the recent $11 billion lease transaction with a group led by BlackRock Inc.’s Global Infrastructure Partners for assets linked to the Jafurah gas project, they said. That sale drew interest from firms around the world and bankers have since pitched several asset disposal plans given increasing demand from investors, one of the people said. Aramco’s terminals business is seen as a lucrative asset and the company could kick off a formal sales process as soon as early next year, the person said. At the same time, the oil giant is considering selling part of its real estate portfolio, some of the people said. Those assets will also likely be worth billions of dollars and will be seen as attractive at a time when the kingdom is advancing plans to allow foreign ownership. Discussions are at an early stage and no final decisions have been made. Aramco declined to comment. Aramco’s main oil storage and export infrastructure is located at Ras Tanura on the Persian Gulf and the company has similar terminals on the Red Sea. Internationally, the firm owns stakes in product terminals in the Netherlands and leases crude as well as product

Read More »

Natural gas sees ‘largest year-over-year drop’ in California as solar surges

Listen to the article 2 min This audio is auto-generated. Please let us know if you have feedback. California’s natural gas generation has continued a several-year decline in 2025, while the state’s utility-scale solar keeps rising, according to a new report from the Energy Information Administration. Natural gas is still the dominant energy source in the state overall, but solar is starting to close the gap. For the first eight months of this year, utility-scale solar generation totaled 40.3 billion kilowatt hours in California, and natural gas accounted for 45.5 BkWh. As of the second quarter of this year, California had a total of 49 GW of solar capacity installed, according to the Solar Energy Industries Association.  Optional Caption Courtesy of Energy Information Administration While solar’s performance from January to August 2025 was nearly double its generation for the same period in 2020, natural gas supplied 18% less than it did in the same period in 2020, EIA said. California’s natural gas generation peaked above 2020 levels in 2021 “due to drought-spurred reduced hydroelectric output, but natural gas generation has fallen since then,” EIA said. “The largest year-over-year drop occurred this year, when natural gas generation declined 9.5 BkWh, or 17%, compared with 2024.” In the midday hours between noon and 5 p.m., when solar generation is highest, natural gas generation decreases, EIA said. In the midday hours of May and June this year, solar generation accounted for 18.8 GW, compared to 10.2 GW in 2020, according to data from the California Independent System Operator. “During peak evening hours between 5:00 p.m. and 9:00 p.m., generation from batteries charged by excess solar generation during midday rose from an average of less than 1 GW in May and June 2022 to 4.9 GW in 2025, displacing natural gas generation during that period,”

Read More »

Petrobras makes oil discovery in Campos basin postsalt

@import url(‘https://fonts.googleapis.com/css2?family=Inter:[email protected]&display=swap’); a { color: var(–color-primary-main); } .ebm-page__main h1, .ebm-page__main h2, .ebm-page__main h3, .ebm-page__main h4, .ebm-page__main h5, .ebm-page__main h6 { font-family: Inter; } body { line-height: 150%; letter-spacing: 0.025em; font-family: Inter; } button, .ebm-button-wrapper { font-family: Inter; } .label-style { text-transform: uppercase; color: var(–color-grey); font-weight: 600; font-size: 0.75rem; } .caption-style { font-size: 0.75rem; opacity: .6; } #onetrust-pc-sdk [id*=btn-handler], #onetrust-pc-sdk [class*=btn-handler] { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-policy a, #onetrust-pc-sdk a, #ot-pc-content a { color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-pc-sdk .ot-active-menu { border-color: #c19a06 !important; } #onetrust-consent-sdk #onetrust-accept-btn-handler, #onetrust-banner-sdk #onetrust-reject-all-handler, #onetrust-consent-sdk #onetrust-pc-btn-handler.cookie-setting-link { background-color: #c19a06 !important; border-color: #c19a06 !important; } #onetrust-consent-sdk .onetrust-pc-btn-handler { color: #c19a06 !important; border-color: #c19a06 !important; } Petrobras discovered hydrocarbons in an exploratory well in the Southwest block of Tartaruga Verde in the Campos basin postsalt, 108 km off the coast of Campos dos Goytacazes, Rio de Janeiro, Brazil, in 734 m of water. Well 4-BRSA-1403D-RJS has been completed, and the oil-bearing interval was verified through electrical profiles, gas indications, and fluid sampling, the operator said in a release Nov. 17. Petrobras will send the samples to a lab for analysis to help characertize reservoir conditions and fluids found with the aim of further evaluating the area’s potential.  Petrobras is operator of the block with 100% interest.  

Read More »

Shell UK farms out 50% stake in West of Shetland Tobermory gas discovery to Ithaca Energy

Shell UK agreed to farm out 50% non-working interest in two West of Shetland basin licenses to UK oil and gas operator Ithaca Energy plc. Financial terms were not disclosed. The UK North Sea licenses, P2629 and P2630, contain the Tobermory gas discovery, Ithaca Energy said in a release Nov. 19.  Ithaca Energy, as part of its third-quarter report also released Nov. 19, listed estimated gross 2C resource at Tobermory of 60-65 MMboe as of Dec. 31, 2024.   Following completion of the farm-in, Shell UK will continue to hold a 50% stake in the Tobermory discovery and act as license operator. The farm-out builds on the companies’ partnership in the UK Continental Shelf and fits into Ithaca Energy’s broader strategy to expand investment in the West of Shetland area. Shell UK and Ithaca Energy are existing 50-50 partners in the Tornado discovery.  As part of its third-quarter release, Ithaca said the Tornado project is progressing toward a financial investment decision (FID) with tendering and advancement of the Environmental Statement. Tornado’s estimated gross 2C resource is estimated by Ithaca at 67 MMboe.  In the release announcing the deal, Yaniv Friedman, executive chairman, Ithaca Energy, said the West of Shetland “represents a key basin for the Group’s long-term growth, with the ongoing development of the Rosebank field and the continued progression of the Cambo and Tornado discoveries towards final investment decision.” 

Read More »

BW Energy confirms liquid hydrocarbons in Kudu area offshore Namibia

BW Energy has confirmed the presence of liquid hydrocarbons in the Kudu license area in Orange basin offshore Namibia. Results come following completed drilling operations on the Kharas-1 appraisal well in the Kudu license area, the company said in a release Nov. 19. The Kharas prospect, on the northwest portion of the Kudu formation, was sanctioned as part of BW Energy’s broader plan to identify upside targets in the 4,567-sq license area (PPL003) following seismic acquisition in 2023. Kharas-1 achieved its technical objective of testing multiple targets within a single penetration, said Carl Arnet, chief executive officer, and the results “confirm, for the first time, the presence of liquid hydrocarbons” within the block, contributing to the company’s understanding of the broader petroleum system. Arnet said the reservoir complexity requires additional appraisal to assess its potential and that a forward program “will focus on further high value targets based on the presence of liquid hydrocarbons, as well as gas and the learnings from Kharas-1A.” The well reached a total depth of 5,100 m and intersected multiple reservoir intervals. Several shallow turbidite reservoirs with dry-gas shows were encountered, and reservoir properties from these and the acquired whole core are now being evaluated, the company said. In the deeper section of the well, hydrocarbons were encountered in a fractured volcaniclastic reservoir, which the company said confirms a working petroleum system with condensate and/or light oil. Further analysis is ongoing to determine the extent of the system and to characterize reservoir properties and appraisal options. The well will now be plugged. Kudu gas field was discovered in 1974 about 130 km off the southwest coast of Namibia in in water depth of 170 m. It is delineated by seven subsequent wells.  

Read More »

Networks, AI, and metaversing

Our first, conservative, view says that AI’s network impact is largely confined to the data center, to connect clusters of GPU servers and the data they use as they crunch large language models. It’s all “horizontal” traffic; one TikTok challenge would generate way more traffic in the wide area. WAN costs won’t rise for you as an enterprise, and if you’re a carrier you won’t be carrying much new, so you don’t have much service revenue upside. If you don’t host AI on premises, you can pretty much dismiss its impact on your network. Contrast that with the radical metaverse view, our third view. Metaverses and AR/VR transform AI missions, and network services, from transaction processing to event processing, because the real world is a bunch of events pushing on you. They also let you visualize the way that process control models (digital twins) relate to the real world, which is critical if the processes you’re modeling involve human workers who rely on their visual sense. Could it be that the reason Meta is willing to spend on AI, is that the most credible application of AI, and the most impactful for networks, is the metaverse concept? In any event, this model of AI, by driving the users’ experiences and activities directly, demands significant edge connectivity, so you could expect it to have a major impact on network requirements. In fact, just dipping your toes into a metaverse could require a major up-front network upgrade. Networks carry traffic. Traffic is messages. More messages, more traffic, more infrastructure, more service revenue…you get the picture. Door number one, to the AI giant future, leads to nothing much in terms of messages. Door number three, metaverses and AR/VR, leads to a message, traffic, and network revolution. I’ll bet that most enterprises would doubt

Read More »

Microsoft’s Fairwater Atlanta and the Rise of the Distributed AI Supercomputer

Microsoft’s second Fairwater data center in Atlanta isn’t just “another big GPU shed.” It represents the other half of a deliberate architectural experiment: proving that two massive AI campuses, separated by roughly 700 miles, can operate as one coherent, distributed supercomputer. The Atlanta installation is the latest expression of Microsoft’s AI-first data center design: purpose-built for training and serving frontier models rather than supporting mixed cloud workloads. It links directly to the original Fairwater campus in Wisconsin, as well as to earlier generations of Azure AI supercomputers, through a dedicated AI WAN backbone that Microsoft describes as the foundation of a “planet-scale AI superfactory.” Inside a Fairwater Site: Preparing for Multi-Site Distribution Efficient multi-site training only works if each individual site behaves as a clean, well-structured unit. Microsoft’s intra-site design is deliberately simplified so that cross-site coordination has a predictable abstraction boundary—essential for treating multiple campuses as one distributed AI system. Each Fairwater installation presents itself as a single, flat, high-regularity cluster: Up to 72 NVIDIA Blackwell GPUs per rack, using GB200 NVL72 rack-scale systems. NVLink provides the ultra-low-latency, high-bandwidth scale-up fabric within the rack, while the Spectrum-X Ethernet stack handles scale-out. Each rack delivers roughly 1.8 TB/s of GPU-to-GPU bandwidth and exposes a multi-terabyte pooled memory space addressable via NVLink—critical for large-model sharding, activation checkpointing, and parallelism strategies. Racks feed into a two-tier Ethernet scale-out network offering 800 Gbps GPU-to-GPU connectivity with very low hop counts, engineered to scale to hundreds of thousands of GPUs without encountering the classic port-count and topology constraints of traditional Clos fabrics. Microsoft confirms that the fabric relies heavily on: SONiC-based switching and a broad commodity Ethernet ecosystem to avoid vendor lock-in and accelerate architectural iteration. Custom network optimizations, such as packet trimming, packet spray, high-frequency telemetry, and advanced congestion-control mechanisms, to prevent collective

Read More »

Land & Expand: Hyperscale, AI Factory, Megascale

Land & Expand is Data Center Frontier’s periodic roundup of notable North American data center development activity, tracking the newest sites, land plays, retrofits, and hyperscale campus expansions shaping the industry’s build cycle. October delivered a steady cadence of announcements, with several megascale projects advancing from concept to commitment. The month was defined by continued momentum in OpenAI and Oracle’s Stargate initiative (now spanning multiple U.S. regions) as well as major new investments from Google, Meta, DataBank, and emerging AI cloud players accelerating high-density reuse strategies. The result is a clearer picture of how the next wave of AI-first infrastructure is taking shape across the country. Google Begins $4B West Memphis Hyperscale Buildout Google formally broke ground on its $4 billion hyperscale campus in West Memphis, Arkansas, marking the company’s first data center in the state and the anchor for a new Mid-South operational hub. The project spans just over 1,000 acres, with initial site preparation and utility coordination already underway. Google and Entergy Arkansas confirmed a 600 MW solar generation partnership, structured to add dedicated renewable supply to the regional grid. As part of the launch, Google announced a $25 million Energy Impact Fund for local community affordability programs and energy-resilience improvements—an unusually early community-benefit commitment for a first-phase hyperscale project. Cooling specifics have not yet been made public. Water sourcing—whether reclaimed, potable, or hybrid seasonal mode—remains under review, as the company finalizes environmental permits. Public filings reference a large-scale onsite water treatment facility, similar to Google’s deployments in The Dalles and Council Bluffs. Local governance documents show that prior to the October announcement, West Memphis approved a 30-year PILOT via Groot LLC (Google’s land assembly entity), with early filings referencing a typical placeholder of ~50 direct jobs. At launch, officials emphasized hundreds of full-time operations roles and thousands

Read More »

The New Digital Infrastructure Geography: Green Street’s David Guarino on AI Demand, Power Scarcity, and the Next Phase of Data Center Growth

As the global data center industry races through its most frenetic build cycle in history, one question continues to define the market’s mood: is this the peak of an AI-fueled supercycle, or the beginning of a structurally different era for digital infrastructure? For Green Street Managing Director and Head of Global Data Center and Tower Research David Guarino, the answer—based firmly on observable fundamentals—is increasingly clear. Demand remains blisteringly strong. Capital appetite is deepening. And the very definition of a “data center market” is shifting beneath the industry’s feet. In a wide-ranging discussion with Data Center Frontier, Guarino outlined why data centers continue to stand out in the commercial real estate landscape, how AI is reshaping underwriting and development models, why behind-the-meter power is quietly reorganizing the U.S. map, and what Green Street sees ahead for rents, REITs, and the next wave of hyperscale expansion. A ‘Safe’ Asset in an Uncertain CRE Landscape Among institutional investors, the post-COVID era was the moment data centers stepped decisively out of “niche” territory. Guarino notes that pandemic-era reliance on digital services crystallized a structural recognition: data centers deliver stable, predictable cash flows, anchored by the highest-credit tenants in global real estate. Hyperscalers today dominate new leasing and routinely sign 15-year (or longer) contracts, a duration largely unmatched across CRE categories. When compared with one-year apartment leases, five-year office leases, or mall anchor terms, the stability story becomes plain. “These are AAA-caliber companies signing the longest leases in the sector’s history,” Guarino said. “From a real estate point of view, that combination of tenant quality and lease duration continues to position the asset class as uniquely durable.” And development returns remain exceptional. Even without assuming endless AI growth, the math works: strong demand, rising rents, and high-credit tenants create unusually predictable performance relative to

Read More »

The Flexential Blueprint: New CEO Ryan Mallory on Power, AI, and Bending the Physics Curve

In a coordinated leadership transition this fall, Ryan Mallory has stepped into the role of CEO at Flexential, succeeding Chris Downie. The move, described as thoughtful and planned, signals not a shift in direction, but a reinforcement of the company’s core strategy, with a sharpened focus on the unprecedented opportunities presented by the artificial intelligence revolution. In an exclusive interview on the Data Center Frontier Show Podcast, Mallory outlined a confident vision for Flexential, positioning the company at the critical intersection of enterprise IT and next-generation AI infrastructure. “Flexential will continue to focus on being an industry and market leader in wholesale, multi-tenant, and interconnection capabilities,” Mallory stated, affirming the company’s foundational strengths. His central thesis is that the AI infrastructure boom is not a monolithic wave, but a multi-stage evolution where Flexential’s model is uniquely suited for the emerging “inference edge.” The AI Build Cycle: A Three-Act Play Mallory frames the AI infrastructure market as a three-stage process, each lasting roughly four years. We are currently at the tail end of Stage 1, which began with the ChatGPT explosion three years ago. This phase, characterized by a frantic rush for capacity, has led to elongated lead times for critical infrastructure like generators, switchgear, and GPUs. The capacity from this initial build-out is expected to come online between late 2025 and late 2026. Stage 2, beginning around 2026 and stretching to 2030, will see the next wave of builds, with significant capacity hitting the market in 2028-2029. “This stage will reveal the viability of AI and actual consumption models,” Mallory notes, adding that air-cooled infrastructure will still dominate during this period. Stage 3, looking ahead to the early 2030s, will focus on long-term scale, mirroring the evolution of the public cloud. For Mallory, the enduring nature of this build cycle—contrasted

Read More »

Centersquare Launches $1 Billion Expansion to Scale an AI-Ready North American Data Center Platform

A Platform Built for Both Colo and AI Density The combined Evoque–Cyxtera platform entered the market with hundreds of megawatts of installed capacity and a clear runway for expansion. That scale positioned Centersquare to offer both traditional enterprise colocation and the higher-density, AI-ready footprints increasingly demanded through 2024 and 2025. The addition of these ten facilities demonstrates that the consolidation strategy is gaining traction, giving the platform more owned capacity to densify and more regional optionality as AI deployment accelerates. What’s in the $1 Billion Package — and Why It Matters 1) Lease-to-Own Conversions in Boston & Minneapolis Centersquare’s decision to purchase two long-operated but previously leased sites in Boston and Minneapolis reduces long-term occupancy risk and gives the operator full capex control. Owning the buildings unlocks the ability to schedule power and cooling upgrades on Centersquare’s terms, accelerate retrofits for high-density AI aisles, deploy liquid-ready thermal topologies, and add incremental power blocks without navigating landlord approval cycles. This structural flexibility aligns directly with the platform’s “AI-era backbone” positioning. 2) Eight Additional Data Centers Across Six Metros The acquisitions broaden scale in fast-rising secondary markets—Tulsa, Nashville, Raleigh—while deepening Centersquare’s presence in Dallas and expanding its Canadian footprint in Toronto and Montréal. Dallas remains a core scaling hub, but Nashville and Raleigh are increasingly important for enterprises modernizing their stacks and deploying regional AI workloads at lower cost and with faster timelines than congested Tier-1 corridors. Tulsa provides a network-adjacent, cost-efficient option for disaster recovery, edge aggregation, and latency-tolerant compute. In Canada, Toronto and Montréal offer strong enterprise demand, attractive economics, and grid advantages—including Québec’s hydro-powered, low-carbon energy mix—that position them well for AI training spillover and inference workloads requiring reliable, competitively priced power. 3) Self-Funded With Cash on Hand In the current rate environment, funding the entire $1 billion package

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »