With the conclusion of the 2025 OCP Global Summit, William G. Wong, Senior Content Director at DCF’s sister publications Electronic Design and Microwaves & RF, published a comprehensive roundup of standout technologies unveiled at the event. For Data Center Frontier readers, we’ve revisited those innovations through the lens of data center impact, focusing on how they reshape infrastructure design and operational strategy. This year’s OCP Summit marked a decisive shift toward denser GPU racks, standardized direct-to-chip liquid cooling, 800-V DC power distribution, high-speed in-rack fabrics, and “crypto-agile” platform security. Collectively, these advances aim to accelerate time-to-capacity, reduce power-distribution losses at megawatt rack scales, simplify retrofits in legacy halls, and fortify data center platforms against post-quantum threats. Rack Design and Cooling: From Ad-Hoc to Production-Grade Liquid Cooling NVIDIA’s Vera Rubin compute tray, newly offered to OCP for standardization, packages Rubin-generation GPUs with an integrated liquid-cooling manifold and PCB midplane. Compared with the GB300 tray, Vera Rubin represents a production-ready module delivering four times the memory and three times the memory bandwidth: a 7.5× performance factor at rack scale, with 150 TB of memory at 1.7 PB/s per rack. The system implements 45 °C liquid cooling, a 5,000-amp liquid-cooled busbar, and on-tray energy storage with power-resilience features such as flexible 100-amp whips and automatic-transfer power-supply units. NVIDIA also previewed a Kyber rack generation targeted for 2027, pivoting from 415/480 VAC to 800 V DC to support up to 576 Rubin Ultra GPUs, potentially eliminating the 200-kg copper busbars typical today. These refinements are aimed at both copper reduction and aisle-level manageability. Wiwynn’s announcements filled in the practicalities of deploying such densities. The company showcased rack- and system-level designs across NVIDIA GB300 NVL72 (72 Blackwell Ultra GPUs with 800 Gb/s ConnectX-8 SuperNICs) for large-scale inference and reasoning, and HGX B300 (eight GPUs /