Stay Ahead, Stay ONMINE

What’s next for AI in 2025

MIT Technology Review’s What’s Next series looks across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here. For the last couple of years we’ve had a go at predicting what’s coming next in AI. A fool’s game given how fast this industry moves. But we’re on a roll, and we’re doing it again. How did we score last time round? Our four hot trends to watch out for in 2024 included what we called customized chatbots—interactive helper apps powered by multimodal large language models (check: we didn’t know it yet, but we were talking about what everyone now calls agents, the hottest thing in AI right now); generative video (check: few technologies have improved so fast in the last 12 months, with OpenAI and Google DeepMind releasing their flagship video generation models, Sora and Veo, within a week of each other this December); and more general-purpose robots that can do a wider range of tasks (check: the payoffs from large language models continue to trickle down to other parts of the tech industry, and robotics is top of the list).  We also said that AI-generated election disinformation would be everywhere, but here—happily—we got it wrong. There were many things to wring our hands over this year, but political deepfakes were thin on the ground.  So what’s coming in 2025? We’re going to ignore the obvious here: You can bet that agents and smaller, more efficient, language models will continue to shape the industry. Instead, here are five alternative picks from our AI team. 1. Generative virtual playgrounds  If 2023 was the year of generative images and 2024 was the year of generative video—what comes next? If you guessed generative virtual worlds (a.k.a. video games), high fives all round. We got a tiny glimpse of this technology in February, when Google DeepMind revealed a generative model called Genie that could take a still image and turn it into a side-scrolling 2D platform game that players could interact with. In December, the firm revealed Genie 2, a model that can spin a starter image into an entire virtual world. Other companies are building similar tech. In October, the AI startups Decart and Etched revealed an unofficial Minecraft hack in which every frame of the game gets generated on the fly as you play. And World Labs, a startup cofounded by Fei-Fei Li—creator of ImageNet, the vast data set of photos that kick-started the deep-learning boom—is building what it calls large world models, or LWMs. One obvious application is video games. There’s a playful tone to these early experiments, and generative 3D simulations could be used to explore design concepts for new games, turning a sketch into a playable environment on the fly. This could lead to entirely new types of games.  But they could also be used to train robots. World Labs wants to develop so-called spatial intelligence—the ability for machines to interpret and interact with the everyday world. But robotics researchers lack good data about real-world scenarios with which to train such technology. Spinning up countless virtual worlds and dropping virtual robots into them to learn by trial and error could help make up for that.    —Will Douglas Heaven 2. Large language models that “reason” The buzz was justified. When OpenAI revealed o1 in September, it introduced a new paradigm in how large language models work. Two months later, the firm pushed that paradigm forward in almost every way with o3—a model that just might reshape this technology for good. Most models, including OpenAI’s flagship GPT-4, spit out the first response they come up with. Sometimes it’s correct; sometimes it’s not. But the firm’s new models are trained to work through their answers step by step, breaking down tricky problems into a series of simpler ones. When one approach isn’t working, they try another. This technique, known as “reasoning” (yes—we know exactly how loaded that term is), can make this technology more accurate, especially for math, physics, and logic problems. It’s also crucial for agents. In December, Google DeepMind revealed an experimental new web-browsing agent called Mariner. In the middle of a preview demo that the company gave to MIT Technology Review, Mariner seemed to get stuck. Megha Goel, a product manager at the company, had asked the agent to find her a recipe for Christmas cookies that looked like the ones in a photo she’d given it. Mariner found a recipe on the web and started adding the ingredients to Goel’s online grocery basket. Then it stalled; it couldn’t figure out what type of flour to pick. Goel watched as Mariner explained its steps in a chat window: “It says, ‘I will use the browser’s Back button to return to the recipe.’” It was a remarkable moment. Instead of hitting a wall, the agent had broken the task down into separate actions and picked one that might resolve the problem. Figuring out you need to click the Back button may sound basic, but for a mindless bot it’s akin to rocket science. And it worked: Mariner went back to the recipe, confirmed the type of flour, and carried on filling Goel’s basket. Google DeepMind is also building an experimental version of Gemini 2.0, its latest large language model, that uses this step-by-step approach to problem solving, called Gemini 2.0 Flash Thinking. But OpenAI and Google are just the tip of the iceberg. Many companies are building large language models that use similar techniques, making them better at a whole range of tasks, from cooking to coding. Expect a lot more buzz about reasoning (we know, we know) this year. —Will Douglas Heaven 3. It’s boom time for AI in science  One of the most exciting uses for AI is speeding up discovery in the natural sciences. Perhaps the greatest vindication of AI’s potential on this front came last October, when the Royal Swedish Academy of Sciences awarded the Nobel Prize for chemistry to Demis Hassabis and John M. Jumper from Google DeepMind for building the AlphaFold tool, which can solve protein folding, and to David Baker for building tools to help design new proteins. Expect this trend to continue next year, and to see more data sets and models that are aimed specifically at scientific discovery. Proteins were the perfect target for AI, because the field had excellent existing data sets that AI models could be trained on.  The hunt is on to find the next big thing. One potential area is materials science. Meta has released massive data sets and models that could help scientists use AI to discover new materials much faster, and in December, Hugging Face, together with the startup Entalpic, launched LeMaterial, an open-source project that aims to simplify and accelerate materials research. Their first project is a data set that unifies, cleans, and standardizes the most prominent material data sets.  AI model makers are also keen to pitch their generative products as research tools for scientists. OpenAI let scientists test its latest o1 model and see how it might support them in research. The results were encouraging.  Having an AI tool that can operate in a similar way to a scientist is one of the fantasies of the tech sector. In a manifesto published in October last year, Anthropic founder Dario Amodei highlighted science, especially biology, as one of the key areas where powerful AI could help. Amodei speculates that in the future, AI could be not only a method of data analysis but a “virtual biologist who performs all the tasks biologists do.” We’re still a long way away from this scenario. But next year, we might see important steps toward it.  —Melissa Heikkilä 4. AI companies get cozier with national security There is a lot of money to be made by AI companies willing to lend their tools to border surveillance, intelligence gathering, and other national security tasks.  The US military has launched a number of initiatives that show it’s eager to adopt AI, from the Replicator program—which, inspired by the war in Ukraine, promises to spend $1 billion on small drones—to the Artificial Intelligence Rapid Capabilities Cell, a unit bringing AI into everything from battlefield decision-making to logistics. European militaries are under pressure to up their tech investment, triggered by concerns that Donald Trump’s administration will cut spending to Ukraine. Rising tensions between Taiwan and China weigh heavily on the minds of military planners, too.  In 2025, these trends will continue to be a boon for defense-tech companies like Palantir, Anduril, and others, which are now capitalizing on classified military data to train AI models.  The defense industry’s deep pockets will tempt mainstream AI companies into the fold too. OpenAI in December announced it is partnering with Anduril on a program to take down drones, completing a year-long pivot away from its policy of not working with the military. It joins the ranks of Microsoft, Amazon, and Google, which have worked with the Pentagon for years.  Other AI competitors, which are spending billions to train and develop new models, will face more pressure in 2025 to think seriously about revenue. It’s possible that they’ll find enough non-defense customers who will pay handsomely for AI agents that can handle complex tasks, or creative industries willing to spend on image and video generators.  But they’ll also be increasingly tempted to throw their hats in the ring for lucrative Pentagon contracts. Expect to see companies wrestle with whether working on defense projects will be seen as a contradiction to their values. OpenAI’s rationale for changing its stance was that “democracies should continue to take the lead in AI development,” the company wrote, reasoning that lending its models to the military would advance that goal. In 2025, we’ll be watching others follow its lead.  —James O’Donnell 5. Nvidia sees legitimate competition For much of the current AI boom, if you were a tech startup looking to try your hand at making an AI model, Jensen Huang was your man. As CEO of Nvidia, the world’s most valuable corporation, Huang helped the company become the undisputed leader of chips used both to train AI models and to ping a model when anyone uses it, called “inferencing.” A number of forces could change that in 2025. For one, behemoth competitors like Amazon, Broadcom, AMD, and others have been investing heavily in new chips, and there are early indications that these could compete closely with Nvidia’s—particularly for inference, where Nvidia’s lead is less solid.  A growing number of startups are also attacking Nvidia from a different angle. Rather than trying to marginally improve on Nvidia’s designs, startups like Groq are making riskier bets on entirely new chip architectures that, with enough time, promise to provide more efficient or effective training. In 2025 these experiments will still be in their early stages, but it’s possible that a standout competitor will change the assumption that top AI models rely exclusively on Nvidia chips. Underpinning this competition, the geopolitical chip war will continue. That war thus far has relied on two strategies. On one hand, the West seeks to limit exports to China of top chips and the technologies to make them. On the other, efforts like the US CHIPS Act aim to boost domestic production of semiconductors. Donald Trump may escalate those export controls and has promised massive tariffs on any goods imported from China. In 2025, such tariffs would put Taiwan—on which the US relies heavily because of the chip manufacturer TSMC—at the center of the trade wars. That’s because Taiwan has said it will help Chinese firms relocate to the island to help them avoid the proposed tariffs. That could draw further criticism from Trump, who has expressed frustration with US spending to defend Taiwan from China.  It’s unclear how these forces will play out, but it will only further incentivize chipmakers to reduce reliance on Taiwan, which is the entire purpose of the CHIPS Act. As spending from the bill begins to circulate, next year could bring the first evidence of whether it’s materially boosting domestic chip production.  —James O’Donnell

MIT Technology Review’s What’s Next series looks across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here.

For the last couple of years we’ve had a go at predicting what’s coming next in AI. A fool’s game given how fast this industry moves. But we’re on a roll, and we’re doing it again.

How did we score last time round? Our four hot trends to watch out for in 2024 included what we called customized chatbots—interactive helper apps powered by multimodal large language models (check: we didn’t know it yet, but we were talking about what everyone now calls agents, the hottest thing in AI right now); generative video (check: few technologies have improved so fast in the last 12 months, with OpenAI and Google DeepMind releasing their flagship video generation models, Sora and Veo, within a week of each other this December); and more general-purpose robots that can do a wider range of tasks (check: the payoffs from large language models continue to trickle down to other parts of the tech industry, and robotics is top of the list). 

We also said that AI-generated election disinformation would be everywhere, but here—happily—we got it wrong. There were many things to wring our hands over this year, but political deepfakes were thin on the ground

So what’s coming in 2025? We’re going to ignore the obvious here: You can bet that agents and smaller, more efficient, language models will continue to shape the industry. Instead, here are five alternative picks from our AI team.

1. Generative virtual playgrounds 

If 2023 was the year of generative images and 2024 was the year of generative video—what comes next? If you guessed generative virtual worlds (a.k.a. video games), high fives all round.

We got a tiny glimpse of this technology in February, when Google DeepMind revealed a generative model called Genie that could take a still image and turn it into a side-scrolling 2D platform game that players could interact with. In December, the firm revealed Genie 2, a model that can spin a starter image into an entire virtual world.

Other companies are building similar tech. In October, the AI startups Decart and Etched revealed an unofficial Minecraft hack in which every frame of the game gets generated on the fly as you play. And World Labs, a startup cofounded by Fei-Fei Li—creator of ImageNet, the vast data set of photos that kick-started the deep-learning boom—is building what it calls large world models, or LWMs.

One obvious application is video games. There’s a playful tone to these early experiments, and generative 3D simulations could be used to explore design concepts for new games, turning a sketch into a playable environment on the fly. This could lead to entirely new types of games

But they could also be used to train robots. World Labs wants to develop so-called spatial intelligence—the ability for machines to interpret and interact with the everyday world. But robotics researchers lack good data about real-world scenarios with which to train such technology. Spinning up countless virtual worlds and dropping virtual robots into them to learn by trial and error could help make up for that.   

Will Douglas Heaven

2. Large language models that “reason”

The buzz was justified. When OpenAI revealed o1 in September, it introduced a new paradigm in how large language models work. Two months later, the firm pushed that paradigm forward in almost every way with o3—a model that just might reshape this technology for good.

Most models, including OpenAI’s flagship GPT-4, spit out the first response they come up with. Sometimes it’s correct; sometimes it’s not. But the firm’s new models are trained to work through their answers step by step, breaking down tricky problems into a series of simpler ones. When one approach isn’t working, they try another. This technique, known as “reasoning” (yes—we know exactly how loaded that term is), can make this technology more accurate, especially for math, physics, and logic problems.

It’s also crucial for agents.

In December, Google DeepMind revealed an experimental new web-browsing agent called Mariner. In the middle of a preview demo that the company gave to MIT Technology Review, Mariner seemed to get stuck. Megha Goel, a product manager at the company, had asked the agent to find her a recipe for Christmas cookies that looked like the ones in a photo she’d given it. Mariner found a recipe on the web and started adding the ingredients to Goel’s online grocery basket.

Then it stalled; it couldn’t figure out what type of flour to pick. Goel watched as Mariner explained its steps in a chat window: “It says, ‘I will use the browser’s Back button to return to the recipe.’”

It was a remarkable moment. Instead of hitting a wall, the agent had broken the task down into separate actions and picked one that might resolve the problem. Figuring out you need to click the Back button may sound basic, but for a mindless bot it’s akin to rocket science. And it worked: Mariner went back to the recipe, confirmed the type of flour, and carried on filling Goel’s basket.

Google DeepMind is also building an experimental version of Gemini 2.0, its latest large language model, that uses this step-by-step approach to problem solving, called Gemini 2.0 Flash Thinking.

But OpenAI and Google are just the tip of the iceberg. Many companies are building large language models that use similar techniques, making them better at a whole range of tasks, from cooking to coding. Expect a lot more buzz about reasoning (we know, we know) this year.

—Will Douglas Heaven

3. It’s boom time for AI in science 

One of the most exciting uses for AI is speeding up discovery in the natural sciences. Perhaps the greatest vindication of AI’s potential on this front came last October, when the Royal Swedish Academy of Sciences awarded the Nobel Prize for chemistry to Demis Hassabis and John M. Jumper from Google DeepMind for building the AlphaFold tool, which can solve protein folding, and to David Baker for building tools to help design new proteins.

Expect this trend to continue next year, and to see more data sets and models that are aimed specifically at scientific discovery. Proteins were the perfect target for AI, because the field had excellent existing data sets that AI models could be trained on. 

The hunt is on to find the next big thing. One potential area is materials science. Meta has released massive data sets and models that could help scientists use AI to discover new materials much faster, and in December, Hugging Face, together with the startup Entalpic, launched LeMaterial, an open-source project that aims to simplify and accelerate materials research. Their first project is a data set that unifies, cleans, and standardizes the most prominent material data sets. 

AI model makers are also keen to pitch their generative products as research tools for scientists. OpenAI let scientists test its latest o1 model and see how it might support them in research. The results were encouraging. 

Having an AI tool that can operate in a similar way to a scientist is one of the fantasies of the tech sector. In a manifesto published in October last year, Anthropic founder Dario Amodei highlighted science, especially biology, as one of the key areas where powerful AI could help. Amodei speculates that in the future, AI could be not only a method of data analysis but a “virtual biologist who performs all the tasks biologists do.” We’re still a long way away from this scenario. But next year, we might see important steps toward it. 

—Melissa Heikkilä

4. AI companies get cozier with national security

There is a lot of money to be made by AI companies willing to lend their tools to border surveillance, intelligence gathering, and other national security tasks. 

The US military has launched a number of initiatives that show it’s eager to adopt AI, from the Replicator program—which, inspired by the war in Ukraine, promises to spend $1 billion on small drones—to the Artificial Intelligence Rapid Capabilities Cell, a unit bringing AI into everything from battlefield decision-making to logistics. European militaries are under pressure to up their tech investment, triggered by concerns that Donald Trump’s administration will cut spending to Ukraine. Rising tensions between Taiwan and China weigh heavily on the minds of military planners, too. 

In 2025, these trends will continue to be a boon for defense-tech companies like Palantir, Anduril, and others, which are now capitalizing on classified military data to train AI models. 

The defense industry’s deep pockets will tempt mainstream AI companies into the fold too. OpenAI in December announced it is partnering with Anduril on a program to take down drones, completing a year-long pivot away from its policy of not working with the military. It joins the ranks of Microsoft, Amazon, and Google, which have worked with the Pentagon for years. 

Other AI competitors, which are spending billions to train and develop new models, will face more pressure in 2025 to think seriously about revenue. It’s possible that they’ll find enough non-defense customers who will pay handsomely for AI agents that can handle complex tasks, or creative industries willing to spend on image and video generators. 

But they’ll also be increasingly tempted to throw their hats in the ring for lucrative Pentagon contracts. Expect to see companies wrestle with whether working on defense projects will be seen as a contradiction to their values. OpenAI’s rationale for changing its stance was that “democracies should continue to take the lead in AI development,” the company wrote, reasoning that lending its models to the military would advance that goal. In 2025, we’ll be watching others follow its lead. 

James O’Donnell

5. Nvidia sees legitimate competition

For much of the current AI boom, if you were a tech startup looking to try your hand at making an AI model, Jensen Huang was your man. As CEO of Nvidia, the world’s most valuable corporation, Huang helped the company become the undisputed leader of chips used both to train AI models and to ping a model when anyone uses it, called “inferencing.”

A number of forces could change that in 2025. For one, behemoth competitors like Amazon, Broadcom, AMD, and others have been investing heavily in new chips, and there are early indications that these could compete closely with Nvidia’s—particularly for inference, where Nvidia’s lead is less solid. 

A growing number of startups are also attacking Nvidia from a different angle. Rather than trying to marginally improve on Nvidia’s designs, startups like Groq are making riskier bets on entirely new chip architectures that, with enough time, promise to provide more efficient or effective training. In 2025 these experiments will still be in their early stages, but it’s possible that a standout competitor will change the assumption that top AI models rely exclusively on Nvidia chips.

Underpinning this competition, the geopolitical chip war will continue. That war thus far has relied on two strategies. On one hand, the West seeks to limit exports to China of top chips and the technologies to make them. On the other, efforts like the US CHIPS Act aim to boost domestic production of semiconductors.

Donald Trump may escalate those export controls and has promised massive tariffs on any goods imported from China. In 2025, such tariffs would put Taiwan—on which the US relies heavily because of the chip manufacturer TSMC—at the center of the trade wars. That’s because Taiwan has said it will help Chinese firms relocate to the island to help them avoid the proposed tariffs. That could draw further criticism from Trump, who has expressed frustration with US spending to defend Taiwan from China. 

It’s unclear how these forces will play out, but it will only further incentivize chipmakers to reduce reliance on Taiwan, which is the entire purpose of the CHIPS Act. As spending from the bill begins to circulate, next year could bring the first evidence of whether it’s materially boosting domestic chip production. 

James O’Donnell

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Microsoft’s largest quantum site to be built in Denmark

With this strategic move, Denmark will become Microsoft’s global quantum hub. According to the company, the expansion of the Lyngby laboratory will enable the complete core components of the Majorana chip to be manufactured directly on site. This research is based on years of cooperation with leading Danish research institutions,

Read More »

Extreme plots enterprise marketplace for AI agents, tools, apps

Extreme Networks this week previewed an AI marketplace where it plans to offer a curated catalog of AI tools, agents and applications. Called Extreme Exchange, it’s designed to give enterprise customers a way to discover, deploy, and create AI agents, microapps, and workflows in minutes rather than developing such components

Read More »

Adnoc Buy of Covestro Wins Conditional EU Approval

Abu Dhabi National Oil Co. won conditional European Union approval for its EUR 12 billion ($13.9 billion) takeover of Covestro AG after it dealt with EU concerns that its state subsidies could stifle competition.  The European Commission said Friday that an offer from Adnoc to maintain Covestro’s intellectual property in Europe as well as concessions on the company’s unlimited state guarantee from the UAE settled its earlier fears. Those commitments are valid for 10 years. “Commitments offered by Adnoc effectively address the potential negative effects by allowing market participants to access key Covestro patents in the field of sustainability,” EU competition chief Teresa Ribera said in a statement. “Clear, pre-defined access to these patents will enable others to innovate and advance research in an area that is critical for Europe’s future.” The planned purchase of Covestro would give Adnoc – the biggest oil producer in the United Arab Emirates – control over a German company that supplies materials for some of the world’s most prominent phone and carmakers. Adnoc would own Covestro through its investment unit XRG, set up in last year as the company’s international platform for natural gas, chemicals and energy solutions. In July, the commission, the EU’s antitrust arm, opened a full-scale investigation into the deal under tough new foreign subsidies rules. These are aimed at preventing sovereign states from using their financial muscle to crush competition in the 27-nation bloc. EU officials warned at the time that Adnoc’s state funding may give it an unfair advantage over rivals with less-deep pockets. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

The week in 5 numbers: Electricity prices extend rise, regulators rein in data centers

The upper end of Duke Energy’s expanded five-year capital spending plan, which it expects to roll out early next year. Executives attribute the rise in spending to rapid load growth, including many data centers, which they say is likely to continue into the early 2030s. Additional generation added to Duke’s system could exceed 13 GW in the next five years, including 7.5 GW of new gas facilities. Duke is one of many utilities that have bumped their spending in response to projected load growth from artificial intelligence, manufacturing and electrification. 

Read More »

Solar project delays decreased in Q3 2025: EIA

Listen to the article 2 min This audio is auto-generated. Please let us know if you have feedback. Fewer solar developers reported delays in the third quarter of 2025 compared to the same period last year, the Energy Information Administration said in a Monday report. In the third quarter this year, “solar projects representing about 20% of planned capacity reported a delay, a decrease from 25% in the same period in 2024,” EIA said.  “Despite the relatively high number of projects reporting delays in 2024, that year was a record year for U.S. solar capacity additions,” EIA said. Developers added around 31 GW of utility-scale solar capacity last year, though their projections at the beginning of the year forecasted 36 GW in additions.  Optional Caption Courtesy of Energy Information Administration “Because survey respondents may not anticipate the occurrence or duration of delays, ultimate capacity additions tend to be less than the expected amount that developers report to us at the beginning of the year,” EIA said. The agency said in February that it predicts 32.5 GW of utility-scale solar will be added this year, indicating that less solar may come online this year than last year, despite the decrease in delays. EIA also noted that delays are more common than cancellations, and “less than 1% of planned solar capacity is entirely cancelled in a typical month … Much of the reported delayed capacity occurs at projects that are in the late construction or testing phases just before they come online. These delays are typically only for a month or two.” Justin Baca, vice president of markets and research at the Solar Energy Industries Association, said in an email that it’s “important to note that most of the solar capacity that has come online this year began construction last year.” “The

Read More »

Oil Rises as Geopolitics Heat Up

Oil rose after Ukraine attacked a key Russian oil port and Iran seized a tanker near the Strait of Hormuz, injecting a fresh geopolitical premium into prices.  West Texas Intermediate rose 2.4% to settle above $60. Brent also advanced.  A major drone attack damaged an oil depot and a vessel in the vital Black Sea port of Novorossiysk. About 700,000 barrels a day of Russian oil were shipped from there in September and October, according to vessel tracking data compiled by Bloomberg, while a nearby terminal handles more than 1.5 million barrels a day of Kazakh shipments.  Ukraine’s General Staff also said that it struck Rosneft PJSC’s Saratov refinery in Russia’s Volga region. That’s the third attack this month on the facility. The attacks came on the same day that a US defense official said Iranian forces seized a tanker after it passed the vital Strait of Hormuz chokepoint, through which about a fifth of the world’s oil flows. The ship was smuggling 3,000 liters of fuel, state-run Islamic Republic News Agency reports. While authorities are still confirming the nature of the diversion toward the country’s territorial waters, Friday’s event would add to concerns that Iran is turning to hijacking merchant ships again. Though motive remains unclear, Iran’s moves appear less likely to be a concerted effort to inhibit crude flows than a potential response to a US action against the Middle Eastern nation’s exports, said Gregory Brew, a geopolitical analyst at the Eurasia Group. Iran’s exports have been in excess of two million barrels a day over September and October, he added.  The twin concerns come against the backdrop of a tightening of US sanctions against Russia. Curbs on the country’s two largest oil companies, Rosneft and Lukoil PJSC, are due to kick in within days. Those restrictions won’t

Read More »

Energy Department Announces $355 Million to Expand Domestic Production of Critical Minerals and Materials

WASHINGTON—The U.S. Department of Energy (DOE) today announced $355 million for two notices of funding opportunities issued by DOE’s Office of Fossil Energy (FE) to expand domestic production of critical materials essential for advancing U.S. energy production, manufacturing, transportation and national defense. The first funding opportunity provides up to $275 million for American industrial facilities capable of producing valuable minerals from existing industrial and coal byproducts. The second provides up to $80 million to establish Mine of the Future proving grounds for real-world testing of next-generation mining technologies. The Department announced in August its intent to invest $1 billion to advance and scale mining, processing, and manufacturing technologies, delivering on President Trump’s Executive Orders, Unleashing American Energy and Immediate Measures to Increase American Mineral Production. These actions will secure America’s critical material supply chain, increase domestic mineral production, reduce reliance on foreign sources, and strengthen U.S. energy independence. “For too long, the United States has relied on foreign nations for the minerals and materials that power our economy,” said U.S. Secretary of Energy Chris Wright. “We have these resources here at home, but years of complacency ceded America’s mining and industrial base to other nations. Thanks to President Trump’s leadership, we are reversing that trend, rebuilding America’s ability to mine, process, and manufacture the materials essential to our energy and economic security.” “The Mine of the Future – Proving Ground Initiative will be among the Department of Energy’s first major investments into mining technology research and development in almost four decades,” said U.S. Department of Energy Assistant Secretary of the Office of Fossil Energy Kyle Haustveit. “This effort will help establish the United States as the world’s leading producer and processor of non-fuel minerals—creating economic prosperity in fossil energy communities across the country while strengthening critical mineral supply chains for

Read More »

Ukraine Drones Hit Russian Black Sea Oil Terminal

(Update) November 14, 2025, 9:45 AM GMT+1: Article updated with additional details. Ukrainian drones attacked Russia’s giant Black Sea port of Novorossiysk overnight, prompting a state of emergency, as Moscow launched a massive air strike on Kyiv that killed four and damaged several residential buildings. Falling drone debris caused a fire at the Russian depot located at Transneft PJSC’s Sheskharis oil terminal, the regional emergency service said on Telegram early Friday. The blaze was put out after more than 50 units of firefighting equipment were deployed at the site, authorities said, but provided no details on the damage. Novorossiysk Mayor Andrey Kravchenko announced the state of emergency on Telegram. Transneft didn’t immediately respond to a request for comment on the situation at the facility. Global benchmark Brent spiked as much as 3 percent in a rapid move toward $65 a barrel, before paring gains. A container terminal located in the port of Novorossiysk was damaged by falling debris, but continued to operate normally, Delo Group, which runs that facility, said in a statement on Telegram. Russia’s largest grain terminal, also operated by Delo Group, was impacted by drone debris, but continues to function, the Interfax news service reported, citing the terminal’s chief executive officer. Drones hit an unidentified civilian ship in the port of Novorossiysk as well, regional emergency services said, without specifying the type of the vessel. The city’s mayor reported damage to at least three residential buildings in separate statements on Telegram.  In Ukraine, four people were killed after Russia launched about 430 drones and 18 missiles – including ballistic ones – in the strike, President Volodymyr Zelenskiy said on the X platform Friday. Dozens of apartment buildings were damaged in the capital Kyiv, he said. At least 26 people were injured, including two children, and several residential buildings were damaged,

Read More »

Arista, Palo Alto bolster AI data center security

“Based on this inspection, the NGFW creates a comprehensive, application-aware security policy. It then instructs the Arista fabric to enforce that policy at wire speed for all subsequent, similar flows,” Kotamraju wrote. “This ‘inspect-once, enforce-many’ model delivers granular zero trust security without the performance bottlenecks of hairpinning all traffic through a firewall or forcing a costly, disruptive network redesign.” The second capability is a dynamic quarantine feature that enables the Palo Alto NGFWs to identify evasive threats using Cloud-Delivered Security Services (CDSS). “These services, such as Advanced WildFire for zero-day malware and Advanced Threat Prevention for unknown exploits, leverage global threat intelligence to detect and block attacks that traditional security misses,” Kotamraju wrote. The Arista fabric can intelligently offload trusted, high-bandwidth “elephant flows” from the firewall after inspection, freeing it to focus on high-risk traffic. When a threat is detected, the NGFW signals Arista CloudVision, which programs the network switches to automatically quarantine the compromised workload at hardware line-rate, according to Kotamraju: “This immediate response halts the lateral spread of a threat without creating a performance bottleneck or requiring manual intervention.” The third feature is unified policy orchestration, where Palo Alto Networks’ management plane centralizes zone-based and microperimeter policies, and CloudVision MSS responds with the offload and enforcement of Arista switches. “This treats the entire geo-distributed network as a single logical switch, allowing workloads to be migrated freely across cloud networks and security domains,” Srikanta and Barbieri wrote. Lastly, the Arista Validated Design (AVD) data models enable network-as-a-code, integrating with CI/CD pipelines. AVDs can also be generated by Arista’s AVA (Autonomous Virtual Assist) AI agents that incorporate best practices, testing, guardrails, and generated configurations. “Our integration directly resolves this conflict by creating a clean architectural separation that decouples the network fabric from security policy. This allows the NetOps team (managing the Arista

Read More »

AMD outlines ambitious plan for AI-driven data centers

“There are very beefy workloads that you must have that performance for to run the enterprise,” he said. “The Fortune 500 mainstream enterprise customers are now … adopting Epyc faster than anyone. We’ve seen a 3x adoption this year. And what that does is drives back to the on-prem enterprise adoption, so that the hybrid multi-cloud is end-to-end on Epyc.” One of the key focus areas for AMD’s Epyc strategy has been our ecosystem build out. It has almost 180 platforms, from racks to blades to towers to edge devices, and 3,000 solutions in the market on top of those platforms. One of the areas where AMD pushes into the enterprise is what it calls industry or vertical workloads. “These are the workloads that drive the end business. So in semiconductors, that’s telco, it’s the network, and the goal there is to accelerate those workloads and either driving more throughput or drive faster time to market or faster time to results. And we almost double our competition in terms of faster time to results,” said McNamara. And it’s paying off. McNamara noted that over 60% of the Fortune 100 are using AMD, and that’s growing quarterly. “We track that very, very closely,” he said. The other question is are they getting new customer acquisitions, customers with Epyc for the first time? “We’ve doubled that year on year.” AMD didn’t just brag, it laid out a road map for the next two years, and 2026 is going to be a very busy year. That will be the year that new CPUs, both client and server, built on the Zen 6 architecture begin to appear. On the server side, that means the Venice generation of Epyc server processors. Zen 6 processors will be built on 2 nanometer design generated by (you guessed

Read More »

Building the Regional Edge: DartPoints CEO Scott Willis on High-Density AI Workloads in Non-Tier-One Markets

When DartPoints CEO Scott Willis took the stage on “the Distributed Edge” panel at the 2025 Data Center Frontier Trends Summit, his message resonated across a room full of developers, operators, and hyperscale strategists: the future of AI infrastructure will be built far beyond the nation’s tier-one metros. On the latest episode of the Data Center Frontier Show, Willis expands on that thesis, mapping out how DartPoints has positioned itself for a moment when digital infrastructure inevitably becomes more distributed, and why that moment has now arrived. DartPoints’ strategy centers on what Willis calls the “regional edge”—markets in the Midwest, Southeast, and South Central regions that sit outside traditional cloud hubs but are increasingly essential to the evolving AI economy. These are not tower-edge micro-nodes, nor hyperscale mega-campuses. Instead, they are regional data centers designed to serve enterprises with colocation, cloud, hybrid cloud, multi-tenant cloud, DRaaS, and backup workloads, while increasingly accommodating the AI-driven use cases shaping the next phase of digital infrastructure. As inference expands and latency-sensitive applications proliferate, Willis sees the industry’s momentum bending toward the very markets DartPoints has spent years cultivating. Interconnection as Foundation for Regional AI Growth A key part of the company’s differentiation is its interconnection strategy. Every DartPoints facility is built to operate as a deeply interconnected environment, drawing in all available carriers within a market and stitching sites together through a regional fiber fabric. Willis describes fiber as the “nervous system” of the modern data center, and for DartPoints that means creating an interconnection model robust enough to support a mix of enterprise cloud, multi-site disaster recovery, and emerging AI inference workloads. The company is already hosting latency-sensitive deployments in select facilities—particularly inference AI and specialized healthcare applications—and Willis expects such deployments to expand significantly as regional AI architectures become more widely

Read More »

Key takeaways from Cisco Partner Summit

Brian Ortbals, senior vice president from World Wide Technology, which is one of Cisco’s biggest and most important partners stated: “Cisco engaged partners early in the process and took our feedback along the way. We believe now is the right time for these changes as it will enable us to capitalize on the changes in the market.” The reality is, the more successful its more-than-half-a-million partners are, the more successful Cisco will be. Platform approach is coming together When Jeetu Patel took the reigns as chief product officer, one of his goals was to make the Cisco portfolio a “force multiple.” Patel has stated repeatedly that, historically, Cisco acted more as a technology holding company with good products in networking, security, collaboration, data center and other areas. In this case, product breadth was not an advantage, as everything must be sold as “best of breed,” which is a tough ask of the salesforce and partner community. Since then, there have been many examples of the coming together of the portfolio to create products that leverage the breadth of the platform. The latest is the Unified Edge appliance, an all-in-one solution that brings together compute, networking, storage and security. Cisco has been aggressive with AI products in the data center, and Cisco Unified Edge compliments that work with a device designed to bring AI to edge locations. This is ideally suited for retail, manufacturing, healthcare, factories and other industries where it’s more cost effecting and performative to run AI where the data lives.

Read More »

AI networking demand fueled Cisco’s upbeat Q1 financials

Customers are very focused on modernizing their network infrastructure in the enterprise in preparation for inferencing and AI workloads, Robbins said. “These things are always multi-year efforts,” and this is only the beginning, Robbins said. The AI opportunity “As we look at the AI opportunity, we see customer use cases growing across training, inferencing, and connectivity, with secure networking increasingly critical as workloads move from the data center to end users, devices, and agents at the edge,” Robbins said. “Agents are transforming network traffic from predictable bursts to persistent high-intensity loads, with agentic AI queries generating up to 25 times more network traffic than chatbots.” “Instead of pulling data to and from the data center, AI workloads require models and infrastructure to be closer to where data is created and decisions are made, particularly in industries such as retail, healthcare, and manufacturing.” Robbins pointed to last week’s introduction of Cisco Unified Edge, a converged platform that integrates networking, compute and storage to help enterprise customers more efficiently handle data from AI and other workloads at the edge. “Unified Edge enables real-time inferencing for agentic and physical AI workloads, so enterprises can confidently deploy and manage AI at scale,” Robbins said. On the hyperscaler front, “we see a lot of solid pipeline throughout the rest of the year. The use cases, we see it expanding,” Robbins said. “Obviously, we’ve been selling networking infrastructure under the training models. We’ve been selling scale-out. We launched the P200-based router that will begin to address some of the scale-across opportunities.” Cisco has also seen great success with its pluggable optics, Robbins said. “All of the hyperscalers now are officially customers of our pluggable optics, so we feel like that’s a great opportunity. They not only plug into our products, but they can be used with other companies’

Read More »

When the Cloud Leaves Earth: Google and NVIDIA Test Space Data Centers for the Orbital AI Era

On November 4, 2025, Google unveiled Project Suncatcher, a moonshot research initiative exploring the feasibility of AI data centers in space. The concept envisions constellations of solar-powered satellites in Low Earth Orbit (LEO), each equipped with Tensor Processing Units (TPUs) and interconnected via free-space optical laser links. Google’s stated objective is to launch prototype satellites by early 2027 to test the idea and evaluate scaling paths if the technology proves viable. Rather than a commitment to move production AI workloads off-planet, Suncatcher represents a time-bound research program designed to validate whether solar-powered, laser-linked LEO constellations can augment terrestrial AI factories, particularly for power-intensive, latency-tolerant tasks. The 2025–2027 window effectively serves as a go/no-go phase to assess key technical hurdles including thermal management, radiation resilience, launch economics, and optical-link reliability. If these milestones are met, Suncatcher could signal the emergence of a new cloud tier: one that scales AI with solar energy rather than substations. Inside Google’s Suncatcher Vision Google has released a detailed technical paper titled “Towards a Future Space-Based, Highly Scalable AI Infrastructure Design.” The accompanying Google Research blog describes Project Suncatcher as “a moonshot exploring a new frontier” – an early-stage effort to test whether AI compute clusters in orbit can become a viable complement to terrestrial data centers. The paper outlines several foundational design concepts: Orbit and Power Project Suncatcher targets Low Earth Orbit (LEO), where solar irradiance is significantly higher and can remain continuous in specific orbital paths. Google emphasizes that space-based solar generation will serve as the primary power source for the TPU-equipped satellites. Compute and Interconnect Each satellite would host Tensor Processing Unit (TPU) accelerators, forming a constellation connected through free-space optical inter-satellite links (ISLs). Together, these would function as a disaggregated orbital AI cluster, capable of executing large-scale batch and training workloads. Downlink

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »