Stay Ahead, Stay ONMINE

When Optimal is the Enemy of Good: High-Budget Differential Privacy for Medical AI

Imagine you’re building your dream home. Just about everything is ready. All that’s left to do is pick out a front door. Since the neighborhood has a low crime rate, you decide you want a door with a standard lock — nothing too fancy, but probably enough to deter 99.9% of would-be burglars. Unfortunately, the local homeowners’ association (HOA) has a rule stating that all front doors in the neighborhood must be bank vault doors. Their reasoning? Bank vault doors are the only doors that have been mathematically proven to be absolutely secure. As far as they’re concerned, any front door below that standard may as well not be there at all. You’re left with three options, none of which seems particularly appealing: Concede defeat and have a bank vault door installed. Not only is this expensive and cumbersome, but you’ll be left with a front door that bogs you down every single time you want to open or close it. At least burglars won’t be a problem! Leave your house doorless. The HOA rule imposes requirements on any front door in the neighborhood, but it doesn’t technically forbid you from not installing a door at all. That would save you a lot of time and money. The downside, of course, is that it would allow anyone to come and go as they please. On top of that, the HOA could always close the loophole, taking you back to square one. Opt out entirely. Faced with such a stark dilemma (all-in on either security or practicality), you choose not to play the game at all, selling your nearly-complete house and looking for someplace else to live. This scenario is obviously completely unrealistic. In real life, everybody strives to strike an appropriate balance between security and practicality. This balance is informed by everyone’s own circumstances and risk analysis, but it universally lands somewhere between the two extremes of bank vault door and no door at all. But what if instead of your dream home, you imagined a medical AI model that has the power to help doctors improve patient outcomes? Highly-sensitive training data points from patients are your valuables. The privacy protection measures you take are the front door you choose to install. Healthcare providers and the scientific community are the HOA.  Suddenly, the scenario is much closer to reality. In this article, we’ll explore why that is. After understanding the problem, we’ll consider a simple but empirically effective solution proposed in the paper Reconciling privacy and accuracy in AI for medical imaging [1]. The authors propose a balanced alternative to the three bad choices laid out above, much like the real-life approach of a typical front door. The State of Patient Privacy in Medical AI Over the past few years, artificial intelligence has become an ever more ubiquitous part of our day-to-day lives, proving its utility across a wide range of domains. The rising use of AI models has, however, raised questions and concerns about protecting the privacy of the data used to train them. You may remember the well-known case of ChatGPT, just months after its initial release, exposing proprietary code from Samsung [2]. Some of the privacy risks associated with AI models are obvious. For example, if the training data used for a model isn’t stored securely enough, bad actors could find ways to access it directly. Others are more insidious, such as the risk of reconstruction. As the name implies, in a reconstruction attack, a bad actor attempts to reconstruct a model’s training data without needing to gain direct access to the dataset. Medical records are one of the most sensitive kinds of personal information there are. Although specific regulation varies by jurisdiction, patient data is generally subject to stringent safeguards, with hefty fines for inadequate protection. Beyond the letter of the law, unintentionally exposing such data could irreparably damage our ability to use specialized AI to empower medical professionals.  As Ziller, Mueller, Stieger, et al. point out [1], fully taking advantage of medical AI requires rich datasets comprising information from actual patients. This information must be obtained with the full consent of the patient. Ethically acquiring medical data for research was challenging enough as it was before the unique challenges posed by AI came into play. But if proprietary code being exposed caused Samsung to ban the use of ChatGPT [2], what would happen if attackers managed to reconstruct MRI scans and identify the patients they belonged to? Even isolated instances of negligent protection against data reconstruction could end up being a monumental setback for medical AI as a whole. Tying this back into our front door metaphor, the HOA statute calling for bank vault doors starts to make a little bit more sense. When the cost of a single break-in could be so catastrophic for the entire neighborhood, it’s only natural to want to go to any lengths to prevent them.  Differential Privacy (DP) as a Theoretical Bank Vault Door Before we discuss what an appropriate balance between privacy and practicality might look like in the context of medical AI, we have to turn our attention to the inherent tradeoff between protecting an AI model’s training data and optimizing for quality of performance. This will set the stage for us to develop a basic understanding of Differential Privacy (DP), the theoretical gold standard of privacy protection. Although academic interest in training data privacy has increased significantly over the past four years, principles on which much of the conversation is based were pointed out by researchers well before the recent LLM boom, and even before OpenAI was founded in 2015. Though it doesn’t deal with reconstruction per se, the 2013 paper Hacking smart machines with smarter ones [3] demonstrates a generalizable attack methodology capable of accurately inferring statistical properties of machine learning classifiers, noting: “Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, […] we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers.” [3] Theoretical data reconstruction attacks were described even earlier, in a context not directly pertaining to machine learning. The landmark 2003 paper Revealing information while preserving privacy [4] demonstrates a polynomial-time reconstruction algorithm for statistical databases. (Such databases are intended to provide answers to questions about their data in aggregate while keeping individual data points anonymous.) The authors show that to mitigate the risk of reconstruction, a certain amount of noise needs to be introduced into the data. Needless to say, perturbing the original data in this way, while necessary for privacy, has implications for the quality of the responses to queries, i.e., the accuracy of the statistical database. In explaining the purpose of DP in the first chapter of their book The Algorithmic Foundations of Differential Privacy [5], Cynthia Dwork and Aaron Roth address this tradeoff between privacy and accuracy: “[T]he Fundamental Law of Information Recovery states that overly accurate answers to too many questions will destroy privacy in a spectacular way. The goal of algorithmic research on differential privacy is to postpone this inevitability as long as possible. Differential privacy addresses the paradox of learning nothing about an individual while learning useful information about a population.” [5] The notion of “learning nothing about an individual while learning useful information about a population” is captured by considering two datasets that differ by a single entry (one that includes the entry and one that doesn’t). An (ε, δ)-differentially private querying mechanism is one for which the probability of a certain output being returned when querying one dataset is at most a multiplicative factor of the probability when querying the other dataset. Denoting the mechanism by M, the set of possible outputs by S, and the datasets by x and y, we formalize this as [5]: Pr[M(x) ∈ S] ≤ exp(ε) ⋅ Pr[M(y) ∈ S] + δ Where ε is the privacy loss parameter and δ is the failure probability parameter. ε quantifies how much privacy is lost as a result of a query, while a positive δ allows for privacy to fail altogether for a query at a certain (usually very low) probability. Note that ε is an exponential parameter, meaning that even slightly increasing it can cause privacy to decay significantly. An important and useful property of DP is composition. Notice that the definition above only applies to cases where we run a single query. The composition property helps us generalize it to cover multiple queries based on the fact that privacy loss and failure probability accumulate predictably when we compose several queries, be they based on the same mechanism or different ones. This accumulation is easily proven to be (at most) linear [5]. What this means is that, rather than considering a privacy loss parameter for one query, we may view ε as a privacy budget that can be utilized across a number of queries. For example, when taken together, one query using a (1, 0)-DP mechanism and two queries using a (0.5, 0)-DP mechanism satisfy (2, 0)-DP. The value of DP comes from the theoretical privacy guarantees it promises. Setting ε = 1 and δ = 0, for example, we find that the probability of any given output occurring when querying dataset y is at most exp(1) = e ≈ 2.718 times greater than that same output occurring when querying dataset x. Why does this matter? Because the greater the discrepancy between the probabilities of certain outputs occurring, the easier it is to determine the contribution of the individual entry by which the two datasets differ, and the easier it is to ultimately reconstruct that individual entry. In practice, designing an (ε, δ)-differentially private randomized mechanism entails the addition of random noise drawn from a distribution dependent on ε and δ. The specifics are beyond the scope of this article. Shifting our focus back to machine learning, though, we find that the idea is the same: DP for ML hinges on introducing noise into the training data, which yields robust privacy guarantees in much the same way. Of course, this is where the tradeoff we mentioned comes into play. Adding noise to the training data comes at the cost of making learning more difficult. We could absolutely add enough noise to achieve ε = 0.01 and δ = 0, making the difference in output probabilities between x and y virtually nonexistent. This would be wonderful for privacy, but terrible for learning. A model trained on such a noisy dataset would perform very poorly on most tasks. There is no consensus on what constitutes a “good” ε value, or on universal methodologies or best practices for ε selection [6]. In many ways, ε embodies the privacy/accuracy tradeoff, and the “proper” value to aim for is highly context-dependent. ε = 1 is generally regarded as offering high privacy guarantees. Although privacy diminishes exponentially with respect to ε, values as high as ε = 32 are mentioned in literature and thought to provide moderately strong privacy guarantees [1].  The authors of Reconciling privacy and accuracy in AI for medical imaging [1] test the effects of DP on the accuracy of AI models on three real-world medical imaging datasets. They do so using various values of ε and comparing them to a non-private (non-DP) control. Table 1 provides a partial summary of their results for ε = 1 and ε = 8: Table 1: Comparison of AI model performance across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and privacy budgets of ε = 1, ε = 8, and without DP (non-private). A higher MCC/Dice score indicates higher accuracy. Although providing strong theoretical privacy guarantees in the face of a worst-case adversary, DP significantly degrades model accuracy. The negative impact on performance is especially noticeable in the latter two datasets, which are considered small datasets. Image by the author, based on image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). Even approaching the higher end of the typical ε values attested in literature, DP is still as cumbersome as a bank vault door for medical imaging tasks. The noise introduced into the training data is catastrophic for AI model accuracy, especially when the datasets at hand are small. Note, for example, the huge drop-off in Dice score on the MSD Liver dataset, even with the relatively high ε value of 8. Ziller, Mueller, Stieger, et al. suggest that the accuracy drawbacks of DP with typical ε values may contribute to the lack of widespread adoption of DP in the field of Medical Ai [1]. Yes, wanting mathematically-provable privacy guarantees is definitely sensible, but at what cost? Leaving so much of the diagnostic power of AI models on the table in the name of privacy is not an easy choice to make. Revisiting our dream home scenario armed with an understanding of DP, we find that the options we (seem to) have map neatly onto the three we had for our front door. DP with typical values of ε is like installing a bank vault door: costly, but effective for privacy. As we’ll see, it’s also complete overkill in this case. Not using DP is like not installing a door at all: much easier, but risky. As mentioned above, though, DP has yet to be widely applied in medical AI [1]. Passing up opportunities to use AI is like giving up and selling the house: it saves us the headache of dealing with privacy concerns weighed against incentives to maximize accuracy, but a lot of potential is lost in the process. It looks like we’re at an impasse… unless we think outside the box. High-Budget DP: Privacy and Accuracy Aren’t an Either/Or In Reconciling privacy and accuracy in AI for medical imaging [1], Ziller, Mueller, Stieger, et al. offer the medical AI equivalent of a regular front door — an approach that manages to protect privacy while giving up very little in the way of model performance. Granted, this protection is not theoretically optimal — far from it. However, as the authors show through a series of experiments, it is good enough to counter almost any realistic threat of reconstruction.  As the saying goes, “Perfect is the enemy of good.” In this case, it is the “optimal” — an insistence on arbitrarily low ε values — that locks us into the false dichotomy of total privacy versus total accuracy. Just as a bank vault door has its place in the real world, so does DP with ε ≤ 32. Still, the existence of the bank vault door doesn’t mean plain old front doors don’t also have a place in the world. The same goes for high-budget DP. The idea behind high-budget DP is straightforward: using privacy budgets (ε values) that are so high that they “are near-universally shunned as being meaningless” [1] — budgets ranging from ε = 10⁶ to as high as ε = 10¹⁵. In theory, these provide such weak privacy guarantees that it seems like common sense to dismiss them as no better than not using DP at all. In practice, though, this couldn’t be further from the truth. As we will see by looking at the results from the paper, high-budget DP shows significant promise in countering realistic threats. As Ziller, Mueller, Stieger, et al. put it [1]: “[E]ven a ‘pinch of privacy’ has drastic effects in practical scenarios.” First, though, we need to ask ourselves what we consider to be a “realistic” threat. Any discussion of the efficacy of high-budget DP is inextricably tied to the threat model under which we choose to evaluate it. In this context, a threat model is simply the set of assumptions we make about what a bad actor interested in obtaining our model’s training data is able to do. Table 2: Comparison of threat models. For all three, we also assume that the adversary has unbounded computational ability. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 1 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). The paper’s findings hinge on a calibration of the assumptions to better suit real-world threats to patient privacy. The authors argue that the worst-case model, which is the one typically used for DP, is far too pessimistic. For example, it assumes that the adversary has full access to each original image while attempting to reconstruct it based on the AI model (see Table 2) [1]. This pessimism explains the discrepancy between the reported “drastic effects in practical scenarios” of high privacy budgets and the very weak theoretical privacy guarantees that they offer. We may liken it to incorrectly assessing the security threats a typical house faces, wrongly assuming they are likely to be as sophisticated and enduring as those faced by a bank.  The authors therefore propose two alternative threat models, which they call the “relaxed” and “realistic” models. Under both of these, adversaries keep some core capabilities from the worst-case model: access to the AI model’s architecture and weights, the ability to manipulate its hyperparameters, and unbounded computational abilities (see Table 2). The realistic adversary is assumed to have no access to the original images and an imperfect reconstruction algorithm. Even these assumptions leave us with a rigorous threat model that may still be considered pessimistic for most real-world scenarios [1]. Having established the three relevant threat models to consider, Ziller, Mueller, Stieger, et al. compare AI model accuracy in conjunction with the reconstruction risk under each threat model at different values of ε. As we saw in Table 1, this is done for three exemplary Medical Imaging datasets. Their full results are presented in Table 3: Table 3: Comparison of AI model performance and reconstruction risk per threat model across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and various privacy budgets, including some as high as ε = 10⁹ and ε = 10¹². A higher MCC/Dice score indicates higher accuracy. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). Unsurprisingly, high privacy budgets (exceeding ε = 10⁶) significantly mitigate the loss of accuracy seen with lower (stricter) privacy budgets. Across all tested datasets, models trained with high-budget DP at ε = 10⁹ (HAM10000, MSD Liver) or ε = 10¹² (RadImageNet) perform nearly as well as their non-privately trained counterparts. This is in line with our understanding of the privacy/accuracy tradeoff: the less noise introduced into the training data, the better a model can learn. What is surprising is the degree of empirical protection afforded by high-budget DP against reconstruction under the realistic threat model. Remarkably, the realistic reconstruction risk is assessed to be 0% for each of the aforementioned models. The high efficacy of high-budget DP in defending medical AI training images against realistic reconstruction attacks is made even clearer by looking at the results of reconstruction attempts. Figure 1 below shows the five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵. Figure 1: The five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Figure 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license). Note that, at least to the naked eye, even the best reconstructions obtained when using the former two budgets are visually indistinguishable from random noise. This lends intuitive credence to the argument that budgets often deemed too high to provide any meaningful protection could be instrumental in protecting privacy without giving up accuracy when using AI for medical imaging. In contrast, the reconstructions when using ε = 10¹⁵ closely resemble the original images, showing that not all high budgets are created equal. Based on their findings, Ziller, Mueller, Stieger, et al. make the case for training medical imaging AI models using (at least) high-budget DP as the norm. They note the empirical efficacy of high-budget DP in countering realistic reconstruction risks at very little cost in terms of model accuracy. The authors go so far as to claim that “it seems negligent to train AI models without any form of formal privacy guarantee.” [1] Conclusion We started with a hypothetical scenario in which you were forced to decide between a bank vault door or no door at all for your dream home (or giving up and selling the incomplete house). After an exploration of the risks posed by inadequate privacy protection in medical AI, we looked into the privacy/accuracy tradeoff as well as the history and theory behind reconstruction attacks and differential privacy (DP). We then saw how DP with common privacy budgets (ε values) degrades medical AI model performance and compared it to the bank vault door in our hypothetical.  Finally, we examined empirical results from the paper Reconciling privacy and accuracy in AI for medical imaging to find out how high-budget differential privacy can be used to escape the false dichotomy of bank vault door vs. no door and protect Patient Privacy in the real world without sacrificing model accuracy in the process. If you enjoyed this article, please consider following me on LinkedIn to keep up with future articles and projects. References [1] Ziller, A., Mueller, T.T., Stieger, S. et al. Reconciling privacy and accuracy in AI for medical imaging. Nat Mach Intell 6, 764–774 (2024). https://doi.org/10.1038/s42256-024-00858-y. [2] Ray, S. Samsung bans ChatGPT and other chatbots for employees after sensitive code leak. Forbes (2023). https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/. [3] Ateniese, G., Mancini, L. V., Spognardi, A. et al. Hacking smart machines with smarter ones: how to extract meaningful data from machine learning classifiers. International Journal of Security and Networks 10, 137–150 (2015). https://doi.org/10.48550/arXiv.1306.4447. [4] Dinur, I. & Nissim, K. Revealing information while preserving privacy. Proc. 22nd ACM SIGMOD-SIGACT-SIGART Symp Principles Database Syst 202–210 (2003). https://doi.org/10.1145/773153.773173. [5] Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science 9, 211–407 (2014). https://doi.org/10.1561/0400000042. [6] Dwork, C., Kohli, N. & Mulligan, D. Differential privacy in practice: expose your epsilons! Journal of Privacy and Confidentiality 9 (2019). https://doi.org/10.29012/jpc.689. [7] Mei, X., Liu, Z., Robson, P.M. et al. RadImageNet: an open radiologic deep learning research dataset for effective transfer learning. Radiol Artif Intell 4.5, e210315 (2022). https://doi.org/10.1148/ryai.210315. [8] Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161. [9] Antonelli, M., Reinke, A., Bakas, S. et al. The Medical Segmentation Decathlon. Nat Commun 13, 4128 (2022). https://doi.org/10.1038/s41467-022-30695-9.

Imagine you’re building your dream home. Just about everything is ready. All that’s left to do is pick out a front door. Since the neighborhood has a low crime rate, you decide you want a door with a standard lock — nothing too fancy, but probably enough to deter 99.9% of would-be burglars.

Unfortunately, the local homeowners’ association (HOA) has a rule stating that all front doors in the neighborhood must be bank vault doors. Their reasoning? Bank vault doors are the only doors that have been mathematically proven to be absolutely secure. As far as they’re concerned, any front door below that standard may as well not be there at all.

You’re left with three options, none of which seems particularly appealing:

  • Concede defeat and have a bank vault door installed. Not only is this expensive and cumbersome, but you’ll be left with a front door that bogs you down every single time you want to open or close it. At least burglars won’t be a problem!
  • Leave your house doorless. The HOA rule imposes requirements on any front door in the neighborhood, but it doesn’t technically forbid you from not installing a door at all. That would save you a lot of time and money. The downside, of course, is that it would allow anyone to come and go as they please. On top of that, the HOA could always close the loophole, taking you back to square one.
  • Opt out entirely. Faced with such a stark dilemma (all-in on either security or practicality), you choose not to play the game at all, selling your nearly-complete house and looking for someplace else to live.

This scenario is obviously completely unrealistic. In real life, everybody strives to strike an appropriate balance between security and practicality. This balance is informed by everyone’s own circumstances and risk analysis, but it universally lands somewhere between the two extremes of bank vault door and no door at all.

But what if instead of your dream home, you imagined a medical AI model that has the power to help doctors improve patient outcomes? Highly-sensitive training data points from patients are your valuables. The privacy protection measures you take are the front door you choose to install. Healthcare providers and the scientific community are the HOA. 

Suddenly, the scenario is much closer to reality. In this article, we’ll explore why that is. After understanding the problem, we’ll consider a simple but empirically effective solution proposed in the paper Reconciling privacy and accuracy in AI for medical imaging [1]. The authors propose a balanced alternative to the three bad choices laid out above, much like the real-life approach of a typical front door.


The State of Patient Privacy in Medical AI

Over the past few years, artificial intelligence has become an ever more ubiquitous part of our day-to-day lives, proving its utility across a wide range of domains. The rising use of AI models has, however, raised questions and concerns about protecting the privacy of the data used to train them. You may remember the well-known case of ChatGPT, just months after its initial release, exposing proprietary code from Samsung [2].

Some of the privacy risks associated with AI models are obvious. For example, if the training data used for a model isn’t stored securely enough, bad actors could find ways to access it directly. Others are more insidious, such as the risk of reconstruction. As the name implies, in a reconstruction attack, a bad actor attempts to reconstruct a model’s training data without needing to gain direct access to the dataset.

Medical records are one of the most sensitive kinds of personal information there are. Although specific regulation varies by jurisdiction, patient data is generally subject to stringent safeguards, with hefty fines for inadequate protection. Beyond the letter of the law, unintentionally exposing such data could irreparably damage our ability to use specialized AI to empower medical professionals. 

As Ziller, Mueller, Stieger, et al. point out [1], fully taking advantage of medical AI requires rich datasets comprising information from actual patients. This information must be obtained with the full consent of the patient. Ethically acquiring medical data for research was challenging enough as it was before the unique challenges posed by AI came into play. But if proprietary code being exposed caused Samsung to ban the use of ChatGPT [2], what would happen if attackers managed to reconstruct MRI scans and identify the patients they belonged to? Even isolated instances of negligent protection against data reconstruction could end up being a monumental setback for medical AI as a whole.

Tying this back into our front door metaphor, the HOA statute calling for bank vault doors starts to make a little bit more sense. When the cost of a single break-in could be so catastrophic for the entire neighborhood, it’s only natural to want to go to any lengths to prevent them. 

Differential Privacy (DP) as a Theoretical Bank Vault Door

Before we discuss what an appropriate balance between privacy and practicality might look like in the context of medical AI, we have to turn our attention to the inherent tradeoff between protecting an AI model’s training data and optimizing for quality of performance. This will set the stage for us to develop a basic understanding of Differential Privacy (DP), the theoretical gold standard of privacy protection.

Although academic interest in training data privacy has increased significantly over the past four years, principles on which much of the conversation is based were pointed out by researchers well before the recent LLM boom, and even before OpenAI was founded in 2015. Though it doesn’t deal with reconstruction per se, the 2013 paper Hacking smart machines with smarter ones [3] demonstrates a generalizable attack methodology capable of accurately inferring statistical properties of machine learning classifiers, noting:

“Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, […] we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers.” [3]

Theoretical data reconstruction attacks were described even earlier, in a context not directly pertaining to machine learning. The landmark 2003 paper Revealing information while preserving privacy [4] demonstrates a polynomial-time reconstruction algorithm for statistical databases. (Such databases are intended to provide answers to questions about their data in aggregate while keeping individual data points anonymous.) The authors show that to mitigate the risk of reconstruction, a certain amount of noise needs to be introduced into the data. Needless to say, perturbing the original data in this way, while necessary for privacy, has implications for the quality of the responses to queries, i.e., the accuracy of the statistical database.

In explaining the purpose of DP in the first chapter of their book The Algorithmic Foundations of Differential Privacy [5], Cynthia Dwork and Aaron Roth address this tradeoff between privacy and accuracy:

“[T]he Fundamental Law of Information Recovery states that overly accurate answers to too many questions will destroy privacy in a spectacular way. The goal of algorithmic research on differential privacy is to postpone this inevitability as long as possible. Differential privacy addresses the paradox of learning nothing about an individual while learning useful information about a population.” [5]

The notion of “learning nothing about an individual while learning useful information about a population” is captured by considering two datasets that differ by a single entry (one that includes the entry and one that doesn’t). An (ε, δ)-differentially private querying mechanism is one for which the probability of a certain output being returned when querying one dataset is at most a multiplicative factor of the probability when querying the other dataset. Denoting the mechanism by M, the set of possible outputs by S, and the datasets by x and y, we formalize this as [5]:

Pr[M(x) S] ≤ exp(ε) Pr[M(y) S] + δ

Where ε is the privacy loss parameter and δ is the failure probability parameter. ε quantifies how much privacy is lost as a result of a query, while a positive δ allows for privacy to fail altogether for a query at a certain (usually very low) probability. Note that ε is an exponential parameter, meaning that even slightly increasing it can cause privacy to decay significantly.

An important and useful property of DP is composition. Notice that the definition above only applies to cases where we run a single query. The composition property helps us generalize it to cover multiple queries based on the fact that privacy loss and failure probability accumulate predictably when we compose several queries, be they based on the same mechanism or different ones. This accumulation is easily proven to be (at most) linear [5]. What this means is that, rather than considering a privacy loss parameter for one query, we may view ε as a privacy budget that can be utilized across a number of queries. For example, when taken together, one query using a (1, 0)-DP mechanism and two queries using a (0.5, 0)-DP mechanism satisfy (2, 0)-DP.

The value of DP comes from the theoretical privacy guarantees it promises. Setting ε = 1 and δ = 0, for example, we find that the probability of any given output occurring when querying dataset y is at most exp(1) = e ≈ 2.718 times greater than that same output occurring when querying dataset x. Why does this matter? Because the greater the discrepancy between the probabilities of certain outputs occurring, the easier it is to determine the contribution of the individual entry by which the two datasets differ, and the easier it is to ultimately reconstruct that individual entry.

In practice, designing an (ε, δ)-differentially private randomized mechanism entails the addition of random noise drawn from a distribution dependent on ε and δ. The specifics are beyond the scope of this article. Shifting our focus back to machine learning, though, we find that the idea is the same: DP for ML hinges on introducing noise into the training data, which yields robust privacy guarantees in much the same way.

Of course, this is where the tradeoff we mentioned comes into play. Adding noise to the training data comes at the cost of making learning more difficult. We could absolutely add enough noise to achieve ε = 0.01 and δ = 0, making the difference in output probabilities between x and y virtually nonexistent. This would be wonderful for privacy, but terrible for learning. A model trained on such a noisy dataset would perform very poorly on most tasks.

There is no consensus on what constitutes a “good” ε value, or on universal methodologies or best practices for ε selection [6]. In many ways, ε embodies the privacy/accuracy tradeoff, and the “proper” value to aim for is highly context-dependent. ε = 1 is generally regarded as offering high privacy guarantees. Although privacy diminishes exponentially with respect to ε, values as high as ε = 32 are mentioned in literature and thought to provide moderately strong privacy guarantees [1]. 

The authors of Reconciling privacy and accuracy in AI for medical imaging [1] test the effects of DP on the accuracy of AI models on three real-world medical imaging datasets. They do so using various values of ε and comparing them to a non-private (non-DP) control. Table 1 provides a partial summary of their results for ε = 1 and ε = 8:

Table 1: Comparison of AI model performance across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and privacy budgets of ε = 1, ε = 8, and without DP (non-private). A higher MCC/Dice score indicates higher accuracy. Although providing strong theoretical privacy guarantees in the face of a worst-case adversary, DP significantly degrades model accuracy. The negative impact on performance is especially noticeable in the latter two datasets, which are considered small datasets. Image by the author, based on image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

Even approaching the higher end of the typical ε values attested in literature, DP is still as cumbersome as a bank vault door for medical imaging tasks. The noise introduced into the training data is catastrophic for AI model accuracy, especially when the datasets at hand are small. Note, for example, the huge drop-off in Dice score on the MSD Liver dataset, even with the relatively high ε value of 8.

Ziller, Mueller, Stieger, et al. suggest that the accuracy drawbacks of DP with typical ε values may contribute to the lack of widespread adoption of DP in the field of Medical Ai [1]. Yes, wanting mathematically-provable privacy guarantees is definitely sensible, but at what cost? Leaving so much of the diagnostic power of AI models on the table in the name of privacy is not an easy choice to make.

Revisiting our dream home scenario armed with an understanding of DP, we find that the options we (seem to) have map neatly onto the three we had for our front door.

  • DP with typical values of ε is like installing a bank vault door: costly, but effective for privacy. As we’ll see, it’s also complete overkill in this case.
  • Not using DP is like not installing a door at all: much easier, but risky. As mentioned above, though, DP has yet to be widely applied in medical AI [1].
  • Passing up opportunities to use AI is like giving up and selling the house: it saves us the headache of dealing with privacy concerns weighed against incentives to maximize accuracy, but a lot of potential is lost in the process.

It looks like we’re at an impasse… unless we think outside the box.

High-Budget DP: Privacy and Accuracy Aren’t an Either/Or

In Reconciling privacy and accuracy in AI for medical imaging [1], Ziller, Mueller, Stieger, et al. offer the medical AI equivalent of a regular front door — an approach that manages to protect privacy while giving up very little in the way of model performance. Granted, this protection is not theoretically optimal — far from it. However, as the authors show through a series of experiments, it is good enough to counter almost any realistic threat of reconstruction. 

As the saying goes, “Perfect is the enemy of good.” In this case, it is the “optimal” — an insistence on arbitrarily low ε values — that locks us into the false dichotomy of total privacy versus total accuracy. Just as a bank vault door has its place in the real world, so does DP with ε ≤ 32. Still, the existence of the bank vault door doesn’t mean plain old front doors don’t also have a place in the world. The same goes for high-budget DP.

The idea behind high-budget DP is straightforward: using privacy budgets (ε values) that are so high that they “are near-universally shunned as being meaningless” [1] — budgets ranging from ε = 10⁶ to as high as ε = 10¹⁵. In theory, these provide such weak privacy guarantees that it seems like common sense to dismiss them as no better than not using DP at all. In practice, though, this couldn’t be further from the truth. As we will see by looking at the results from the paper, high-budget DP shows significant promise in countering realistic threats. As Ziller, Mueller, Stieger, et al. put it [1]:

“[E]ven a ‘pinch of privacy’ has drastic effects in practical scenarios.”

First, though, we need to ask ourselves what we consider to be a “realistic” threat. Any discussion of the efficacy of high-budget DP is inextricably tied to the threat model under which we choose to evaluate it. In this context, a threat model is simply the set of assumptions we make about what a bad actor interested in obtaining our model’s training data is able to do.

Table 2: Comparison of threat models. For all three, we also assume that the adversary has unbounded computational ability. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 1 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

The paper’s findings hinge on a calibration of the assumptions to better suit real-world threats to patient privacy. The authors argue that the worst-case model, which is the one typically used for DP, is far too pessimistic. For example, it assumes that the adversary has full access to each original image while attempting to reconstruct it based on the AI model (see Table 2) [1]. This pessimism explains the discrepancy between the reported “drastic effects in practical scenarios” of high privacy budgets and the very weak theoretical privacy guarantees that they offer. We may liken it to incorrectly assessing the security threats a typical house faces, wrongly assuming they are likely to be as sophisticated and enduring as those faced by a bank. 

The authors therefore propose two alternative threat models, which they call the “relaxed” and “realistic” models. Under both of these, adversaries keep some core capabilities from the worst-case model: access to the AI model’s architecture and weights, the ability to manipulate its hyperparameters, and unbounded computational abilities (see Table 2). The realistic adversary is assumed to have no access to the original images and an imperfect reconstruction algorithm. Even these assumptions leave us with a rigorous threat model that may still be considered pessimistic for most real-world scenarios [1].

Having established the three relevant threat models to consider, Ziller, Mueller, Stieger, et al. compare AI model accuracy in conjunction with the reconstruction risk under each threat model at different values of ε. As we saw in Table 1, this is done for three exemplary Medical Imaging datasets. Their full results are presented in Table 3:

Table 3: Comparison of AI model performance and reconstruction risk per threat model across the RadImageNet [7], HAM10000 [8], and MSD Liver [9] datasets with δ = 8⁻⁷⋅10 and various privacy budgets, including some as high as ε = 10⁹ and ε = 10¹². A higher MCC/Dice score indicates higher accuracy. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Table 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

Unsurprisingly, high privacy budgets (exceeding ε = 10⁶) significantly mitigate the loss of accuracy seen with lower (stricter) privacy budgets. Across all tested datasets, models trained with high-budget DP at ε = 10⁹ (HAM10000, MSD Liver) or ε = 10¹² (RadImageNet) perform nearly as well as their non-privately trained counterparts. This is in line with our understanding of the privacy/accuracy tradeoff: the less noise introduced into the training data, the better a model can learn.

What is surprising is the degree of empirical protection afforded by high-budget DP against reconstruction under the realistic threat model. Remarkably, the realistic reconstruction risk is assessed to be 0% for each of the aforementioned models. The high efficacy of high-budget DP in defending medical AI training images against realistic reconstruction attacks is made even clearer by looking at the results of reconstruction attempts. Figure 1 below shows the five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵.

Figure 1: The five most readily reconstructed images from the MSD Liver dataset [9] using DP with high privacy budgets of ε = 10⁶, ε = 10⁹, ε = 10¹², and ε = 10¹⁵. Image by A. Ziller, T.T. Mueller, S. Stieger, et al from Figure 3 in Reconciling privacy and accuracy in AI for medical imaging [1] (use under CC-BY 4.0 license).

Note that, at least to the naked eye, even the best reconstructions obtained when using the former two budgets are visually indistinguishable from random noise. This lends intuitive credence to the argument that budgets often deemed too high to provide any meaningful protection could be instrumental in protecting privacy without giving up accuracy when using AI for medical imaging. In contrast, the reconstructions when using ε = 10¹⁵ closely resemble the original images, showing that not all high budgets are created equal.

Based on their findings, Ziller, Mueller, Stieger, et al. make the case for training medical imaging AI models using (at least) high-budget DP as the norm. They note the empirical efficacy of high-budget DP in countering realistic reconstruction risks at very little cost in terms of model accuracy. The authors go so far as to claim that “it seems negligent to train AI models without any form of formal privacy guarantee.” [1]


Conclusion

We started with a hypothetical scenario in which you were forced to decide between a bank vault door or no door at all for your dream home (or giving up and selling the incomplete house). After an exploration of the risks posed by inadequate privacy protection in medical AI, we looked into the privacy/accuracy tradeoff as well as the history and theory behind reconstruction attacks and differential privacy (DP). We then saw how DP with common privacy budgets (ε values) degrades medical AI model performance and compared it to the bank vault door in our hypothetical. 

Finally, we examined empirical results from the paper Reconciling privacy and accuracy in AI for medical imaging to find out how high-budget differential privacy can be used to escape the false dichotomy of bank vault door vs. no door and protect Patient Privacy in the real world without sacrificing model accuracy in the process.

If you enjoyed this article, please consider following me on LinkedIn to keep up with future articles and projects.

References

[1] Ziller, A., Mueller, T.T., Stieger, S. et al. Reconciling privacy and accuracy in AI for medical imaging. Nat Mach Intell 6, 764–774 (2024). https://doi.org/10.1038/s42256-024-00858-y.

[2] Ray, S. Samsung bans ChatGPT and other chatbots for employees after sensitive code leak. Forbes (2023). https://www.forbes.com/sites/siladityaray/2023/05/02/samsung-bans-chatgpt-and-other-chatbots-for-employees-after-sensitive-code-leak/.

[3] Ateniese, G., Mancini, L. V., Spognardi, A. et al. Hacking smart machines with smarter ones: how to extract meaningful data from machine learning classifiers. International Journal of Security and Networks 10, 137–150 (2015). https://doi.org/10.48550/arXiv.1306.4447.

[4] Dinur, I. & Nissim, K. Revealing information while preserving privacy. Proc. 22nd ACM SIGMOD-SIGACT-SIGART Symp Principles Database Syst 202–210 (2003). https://doi.org/10.1145/773153.773173.

[5] Dwork, C. & Roth, A. The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science 9, 211–407 (2014). https://doi.org/10.1561/0400000042.

[6] Dwork, C., Kohli, N. & Mulligan, D. Differential privacy in practice: expose your epsilons! Journal of Privacy and Confidentiality 9 (2019). https://doi.org/10.29012/jpc.689.

[7] Mei, X., Liu, Z., Robson, P.M. et al. RadImageNet: an open radiologic deep learning research dataset for effective transfer learning. Radiol Artif Intell 4.5, e210315 (2022). https://doi.org/10.1148/ryai.210315.

[8] Tschandl, P., Rosendahl, C. & Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci Data 5, 180161 (2018). https://doi.org/10.1038/sdata.2018.161.

[9] Antonelli, M., Reinke, A., Bakas, S. et al. The Medical Segmentation Decathlon. Nat Commun 13, 4128 (2022). https://doi.org/10.1038/s41467-022-30695-9.

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Nutanix expands beyond HCI

The Pure Storage integration will also be supported within Cisco’s FlashStack offering, creating a “FlashStack with Nutanix” solution with storage provided by Pure, networking capabilities as well as UCS servers from Cisco, and then the common Nutanix Cloud Platform. Cloud Native AOS: Breaking free from hypervisors Another sharp departure from

Read More »

IBM introduces new generation of LinuxOne AI mainframe

In addition to generative AI applications, new multiple model AI approaches are engineered to enhance prediction and accuracy in many industry use cases like advanced fraud detection, image processing and retail automation, according to IBM. LinuxONE Emperor 5 also comes with advanced security features specifically designed for the AI threat

Read More »

USA Crude Oil Inventories Drop Week on Week

U.S. commercial crude oil inventories, excluding those in the Strategic Petroleum Reserve (SPR), decreased by two million barrels from the week ending April 25 to the week ending May 2, the U.S. Energy Information Administration (EIA) highlighted in its latest weekly petroleum status report. That EIA report was released on May 7 and included data for the week ending May 2. It showed that crude oil stocks, not including the SPR, stood at 438.4 million barrels on May 2, 440.4 million barrels on April 25, and 459.5 million barrels on May 3, 2024. Crude oil in the SPR stood at 399.1 million barrels on May 2, 398.5 million barrels on April 25, and 367.2 million barrels on May 3, 2024, the report outlined. Total petroleum stocks – including crude oil, total motor gasoline, fuel ethanol, kerosene type jet fuel, distillate fuel oil, residual fuel oil, propane/propylene, and other oils – stood at 1.612 billion barrels on May 2, the report showed. Total petroleum stocks were up 1.7 million barrels week on week and up 5.7 million barrels year on year, the report revealed. “At 438.4 million barrels, U.S. crude oil inventories are about seven percent below the five year average for this time of year,” the EIA said in its latest weekly petroleum status report. “Total motor gasoline inventories increased by 0.2 million barrels from last week and are about three percent below the five year average for this time of year. Finished gasoline inventories increased and blending components inventories decreased last week,” it added. “Distillate fuel inventories decreased by 1.1 million barrels last week and are about 13 percent below the five year average for this time of year. Propane/propylene inventories increased by one million barrels from last week and are 11 percent below the five year average for

Read More »

Oceaneering Secures Multi-Year GTA Job from BP

Oceaneering International Inc.’s Offshore Projects Group (OPG) has secured a multi-year deal from BP Mauritania Investments Ltd. Oceaneering said in a media release that the contract includes the provision of subsea inspection, maintenance, and repair (IMR) services and remotely operated vehicle (ROV) services in the Greater Tortue Ahmeyim (GTA) field. Oceaneering will provide support for this contract using a multi-purpose vessel equipped with two of its work-class ROVs. The project will also involve management, engineering, and integration services delivered by Oceaneering’s local and international teams. Engineering and pre-mobilization activities have started, and field operations are anticipated to begin in the second quarter of 2025. The contract is initially set for three years, with two additional one-year extension options available. “We believe that our expertise in delivering high-quality subsea solutions in harsh environments, utilizing our advanced products and services, was a key element to winning this contract. We look forward to supporting bp’s operations in this field”, Ben Laura, Oceaneering’s Chief Operating Officer, said. In mid-April, BP loaded the first cargo of liquefied natural gas (LNG) for export from the Greater Tortue Ahmeyim project. The initial shipment of LNG at GTA marks BP’s third major upstream project launch this year, the company said. These projects are among the first of 10 anticipated by the conclusion of 2027, aligning with BP’s strategy to expand its upstream oil and gas operations, it said in a media release announcing the first LNG shipment. GTA stands out as one of Africa’s most significant offshore ventures, hosting gas reserves at depths reaching 2,850 meters (9,350 feet), according to BP. The governments of Mauritania and Senegal have recognized it as “a project of strategic national importance”. Upon full commissioning, GTA Phase 1 is projected to generate approximately 2.4 million tonnes of LNG annually, catering to global energy

Read More »

China Teapots Make Rare Murban Oil Purchases

At least two independent Chinese refiners have made a rare foray into the broader international crude market, snapping up cargoes of Middle Eastern oil for delivery next month. Fuhai Group Co. and Shaanxi Yanchang Petroleum Group each purchased around 1 million barrels of Abu Dhabi’s Murban crude, according to people familiar with the matter who asked not to be identified because the information is private. The trades were handled by international and Chinese firms, they added. The current trading cycle is for crude loaded in July, and any cargoes bought now for June is considered prompt. Traders were mixed on the reason behind the purchase, with some pointing to a supply overhang in the Middle Eastern market – meaning cheaper barrels – and others flagging costlier fuel oil. The two refiners didn’t respond to a request for comment. China’s smaller processors, known as teapots, typically opt for discounted crude from Iran and Russia, and often use fuel oil as a feedstock. However, the dirty fuel is trading at an unusual premium to international benchmarks, while a tax crackdown by Beijing has added to costs. “Straight-run fuel oil is simply not an economic feedstock currently,” said June Goh, a senior oil market analyst at Sparta Commodities in Singapore. “With healthy simple margins, independent refineries in China are taking this opportunity to buy incremental crude to increase run rates.” Around 12 million barrels of heavy fuel oil and residual fuels flowed into China in April, the lowest since September 2023, according to Kpler. Processing rates by teapots in Shandong, meanwhile, have edged higher since the end of February ahead of peak summer demand, OilChem data shows. Fuhai and Yanchang purchased the Murban cargoes at a premium of around $5 a barrel to August ICE Brent futures, traders said. What do you think? We’d love

Read More »

All about All-Energy 2025

The All-Energy conference is set to return to Glasgow this month as it aims to top last year’s record-breaking show. The event, hosted by RX, aims to bring people from across the low-carbon energy sector together for one of the biggest dates in the industry’s calendar this year. All-Energy was initially set to be kicked off by first minister John Swinney. However, due to “an urgent matter”, he will no longer be in attendance. In his place, deputy first minister, Kate Forbes, will join the opening session alongside UK energy minister Michael Shanks, GB Energy chairman Juergen Maier and more as they discuss ‘Britain’s Clean Power Mission’ on 14 May. However, Shanks is also not set to appear in Glasgow due to Parliamentary commitments, instead he will dial in live via the internet. © Erikka Askeland/DCT MediaEnergy Minister Michael Shanks in a recorded message for day two of Floating Offshore Wind conference in Aberdeen. Unlike its contemporaries, All-Energy does not set itself a theme for each outing, instead, it continuously focuses on “Clean Power 2030 and after 2030,” an event spokesperson explained. All-Energy is a two-day event, running Wednesday 14 May and Thursday 15 May, taking place at Glasgow’s SEC. The organisers have also arranged an evening networking get-together at Glasgow Science Centre on the first night. The spokesperson told Energy Voice that it is important that the event touches on “topics for everyone and all the sectors we serve”, these include the move towards net zero, a just energy transition, and grid upgrades, among others. Last year’s conference saw All-Energy’s previous attendance record topped by 21% and although the event’s organisers don’t make predictions on head count, it said that signups for the year were “running 16% above this time last year”. The group behind the UK’s largest renewable

Read More »

Consultations look to energy market future

Paula Kidd and Philip Reid, Partners CMS discuss two major consultations that are poised to affect the energy industry in the UK.    About partnership content Some Energy Voice online content is funded by outside parties. The revenue from this helps to sustain our independent news gathering. You will always know if you are reading paid-for material as it will be clearly labelled as “Partnership” on the site and on social media channels, This can take two different forms. “Presented by”This means the content has been paid for and produced by the named advertiser. “In partnership with”This means the content has been paid for and approved by the named advertiser but written and edited by our own commercial content team. On March 5, two consultations in relation to the future of the energy market in the UK were launched by the UK Government – Oil and Gas Price Mechanism (the “Fiscal Consultation”) and Building the North Sea’s Energy Future (the “DESNZ Consultation”). These consultations have been seeking input from various stakeholders to develop robust frameworks that support economic growth, job security and environmental sustainability. DESNZ consultation The DESNZ Consultation set out the UK Government’s vision for transforming the North Sea into a leading offshore clean energy industry while continuing to manage the increasingly maturing offshore oil and gas industry. The overarching objective of the consultation was stated to be to ensure long-term jobs, growth and investment in North Sea communities. The consultation initially set out key policy considerations and outlined its plans to invest in various clean energy industries including offshore wind, carbon capture, usage and storage (CCUS), and hydrogen. Key initiatives include establishing Great British Energy (headquartered in Aberdeen) to drive clean energy jobs and investment, and supporting the development of floating offshore wind, CCUS and hydrogen projects. The

Read More »

Hornsea 4 cancellation puts pressure on AR7

The UK government has proposed changes to the way it procures offshore wind as it now needs to claw back capacity after the massive Hornsea 4 project ground to a halt. The Department for Energy Security and Net Zero (DESNZ) confirmed changes to the way it will run its contracts for difference (CfD) auctions, starting with the upcoming Allocation Round 7 (AR7), expected this year. Under the reforms, the government would no longer set a monetary budget for the various technologies across the auction, such as the £1.5 billion allocated for offshore wind in AR6, at the start of the auction. Instead, the government would publish a “capacity ambition,” stating instead the amount of power it aims to procure. However, it would still publish a budget for the auction after the process has run. In addition, the reforms envision allowing the secretary of state to see the anonymous bids, including price and capacity. They would use this information to determine how much capacity to procure and to set the final budget. AR7 The amendments will also end flexible bidding for fixed-bottom offshore wind applications. According to the proposals, flexible bids are no longer useful if the auction sets the budget after seeing the bids in advance. Finally, the proposed reforms also considered accelerating the offshore wind part of the auction if developers get their bids in on time and there are no appeals. However, the government said that legislation needed to make change could not be delivered before AR7 – though it did not rule it out for subsequent auctions. © Supplied by OrstedOrsted’s Hornsea One wind farm. It added that the government is exploring non-legislative routes to accelerate a fixed-bottom offshore wind auction in time for AR7. In comments to Energy Voice, Aegir Insights market analyst Signe Tellier Christensen

Read More »

Tech CEOs warn Senate: Outdated US power grid threatens AI ambitions

The implications are clear: without dramatic improvements to the US energy infrastructure, the nation’s AI ambitions could be significantly constrained by simple physical limitations – the inability to power the massive computing clusters necessary for advanced AI development and deployment. Streamlining permitting processes The tech executives have offered specific recommendations to address these challenges, with several focusing on the need to dramatically accelerate permitting processes for both energy generation and the transmission infrastructure needed to deliver that power to AI facilities, the report added. Intrator specifically called for efforts “to streamline the permitting process to enable the addition of new sources of generation and the transmission infrastructure to deliver it,” noting that current regulatory frameworks were not designed with the urgent timelines of the AI race in mind. This acceleration would help technology companies build and power the massive data centers needed for AI training and inference, which require enormous amounts of electricity delivered reliably and consistently. Beyond the cloud: bringing AI to everyday devices While much of the testimony focused on large-scale infrastructure needs, AMD CEO Lisa Su emphasized that true AI leadership requires “rapidly building data centers at scale and powering them with reliable, affordable, and clean energy sources.” Su also highlighted the importance of democratizing access to AI technologies: “Moving faster also means moving AI beyond the cloud. To ensure every American benefits, AI must be built into the devices we use every day and made as accessible and dependable as electricity.”

Read More »

Networking errors pose threat to data center reliability

Still, IT and networking issues increased in 2024, according to Uptime Institute. The analysis attributed the rise in outages due to increased IT and network complexity, specifically, change management and misconfigurations. “Particularly with distributed services, cloud services, we find that cascading failures often occur when networking equipment is replicated across an entire network,” Lawrence explained. “Sometimes the failure of one forces traffic to move in one direction, overloading capacity at another data center.” The most common causes of major network-related outages were cited as: Configuration/change management failure: 50% Third-party network provider failure: 34% Hardware failure: 31% Firmware/software error: 26% Line breakages: 17% Malicious cyberattack: 17% Network overload/congestion failure: 13% Corrupted firewall/routing tables issues: 8% Weather-related incident: 7% Configuration/change management issues also attributed for 62% of the most common causes of major IT system-/software-related outages. Change-related disruptions consistently are responsible for software-related outages. Human error continues to be one of the “most persistent challenges in data center operations,” according to Uptime’s analysis. The report found that the biggest cause of these failures is data center staff failing to follow established procedures, which has increased by about 10 percentage points compared to 2023. “These are things that were 100% under our control. I mean, we can’t control when the UPS module fails because it was either poorly manufactured, it had a flaw, or something else. This is 100% under our control,” Brown said. The most common causes of major human error-related outages were reported as:

Read More »

Liquid cooling technologies: reducing data center environmental impact

“Highly optimized cold-plate or one-phase immersion cooling technologies can perform on par with two-phase immersion, making all three liquid-cooling technologies desirable options,” the researchers wrote. Factors to consider There are numerous factors to consider when adopting liquid cooling technologies, according to Microsoft’s researchers. First, they advise performing a full environmental, health, and safety analysis, and end-to-end life cycle impact analysis. “Analyzing the full data center ecosystem to include systems interactions across software, chip, server, rack, tank, and cooling fluids allows decision makers to understand where savings in environmental impacts can be made,” they wrote. It is also important to engage with fluid vendors and regulators early, to understand chemical composition, disposal methods, and compliance risks. And associated socioeconomic, community, and business impacts are equally critical to assess. More specific environmental considerations include ozone depletion and global warming potential; the researchers emphasized that operators should only use fluids with low to zero ozone depletion potential (ODP) values, and not hydrofluorocarbons or carbon dioxide. It is also critical to analyze a fluid’s viscosity (thickness or stickiness), flammability, and overall volatility. And operators should only use fluids with minimal bioaccumulation (the buildup of chemicals in lifeforms, typically in fish) and terrestrial and aquatic toxicity. Finally, once up and running, data center operators should monitor server lifespan and failure rates, tracking performance uptime and adjusting IT refresh rates accordingly.

Read More »

Cisco unveils prototype quantum networking chip

Clock synchronization allows for coordinated time-dependent communications between end points that might be cloud databases or in large global databases that could be sitting across the country or across the world, he said. “We saw recently when we were visiting Lawrence Berkeley Labs where they have all of these data sources such as radio telescopes, optical telescopes, satellites, the James Webb platform. All of these end points are taking snapshots of a piece of space, and they need to synchronize those snapshots to the picosecond level, because you want to detect things like meteorites, something that is moving faster than the rotational speed of planet Earth. So the only way you can detect that quickly is if you synchronize these snapshots at the picosecond level,” Pandey said. For security use cases, the chip can ensure that if an eavesdropper tries to intercept the quantum signals carrying the key, they will likely disturb the state of the qubits, and this disturbance can be detected by the legitimate communicating parties and the link will be dropped, protecting the sender’s data. This feature is typically implemented in a Quantum Key Distribution system. Location information can serve as a critical credential for systems to authenticate control access, Pandey said. The prototype quantum entanglement chip is just part of the research Cisco is doing to accelerate practical quantum computing and the development of future quantum data centers.  The quantum data center that Cisco envisions would have the capability to execute numerous quantum circuits, feature dynamic network interconnection, and utilize various entanglement generation protocols. The idea is to build a network connecting a large number of smaller processors in a controlled environment, the data center warehouse, and provide them as a service to a larger user base, according to Cisco.  The challenges for quantum data center network fabric

Read More »

Zyxel launches 100GbE switch for enterprise networks

Port specifications include: 48 SFP28 ports supporting dual-rate 10GbE/25GbE connectivity 8 QSFP28 ports supporting 100GbE connections Console port for direct management access Layer 3 routing capabilities include static routing with support for access control lists (ACLs) and VLAN segmentation. The switch implements IEEE 802.1Q VLAN tagging, port isolation, and port mirroring for traffic analysis. For link aggregation, the switch supports IEEE 802.3ad for increased throughput and redundancy between switches or servers. Target applications and use cases The CX4800-56F targets multiple deployment scenarios where high-capacity backbone connectivity and flexible port configurations are required. “This will be for service providers initially or large deployments where they need a high capacity backbone to deliver a primarily 10G access layer to the end point,” explains Nguyen. “Now with Wi-Fi 7, more 10G/25G capable POE switches are being powered up and need interconnectivity without the bottleneck. We see this for data centers, campus, MDU (Multi-Dwelling Unit) buildings or community deployments.” Management is handled through Zyxel’s NebulaFlex Pro technology, which supports both standalone configuration and cloud management via the Nebula Control Center (NCC). The switch includes a one-year professional pack license providing IGMP technology and network analytics features. The SFP28 ports maintain backward compatibility between 10G and 25G standards, enabling phased migration paths for organizations transitioning between these speeds.

Read More »

Engineers rush to master new skills for AI-driven data centers

According to the Uptime Institute survey, 57% of data centers are increasing salary spending. Data center job roles that saw the highest increases were in operations management – 49% of data center operators said they saw highest increases in this category – followed by junior and mid-level operations staff at 45%, and senior management and strategy at 35%. Other job categories that saw salary growth were electrical, at 32% and mechanical, at 23%. Organizations are also paying premiums on top of salaries for particular skills and certifications. Foote Partners tracks pay premiums for more than 1,300 certified and non-certified skills for IT jobs in general. The company doesn’t segment the data based on whether the jobs themselves are data center jobs, but it does track 60 skills and certifications related to data center management, including skills such as storage area networking, LAN, and AIOps, and 24 data center-related certificates from Cisco, Juniper, VMware and other organizations. “Five of the eight data center-related skills recording market value gains in cash pay premiums in the last twelve months are all AI-related skills,” says David Foote, chief analyst at Foote Partners. “In fact, they are all among the highest-paying skills for all 723 non-certified skills we report.” These skills bring in 16% to 22% of base salary, he says. AIOps, for example, saw an 11% increase in market value over the past year, now bringing in a premium of 20% over base salary, according to Foote data. MLOps now brings in a 22% premium. “Again, these AI skills have many uses of which the data center is only one,” Foote adds. The percentage increase in the specific subset of these skills in data centers jobs may vary. The Uptime Institute survey suggests that the higher pay is motivating workers to stay in the

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »