Stay Ahead, Stay ONMINE

How aging clocks can help us understand why we age—and if we can reverse it

Be honest: Have you ever looked up someone from your childhood on social media with the sole intention of seeing how they’ve aged?  One of my colleagues, who shall remain nameless, certainly has. He recently shared a photo of a former classmate. “Can you believe we’re the same age?” he asked, with a hint of glee in his voice. A relative also delights in this pastime. “Wow, she looks like an old woman,” she’ll say when looking at a picture of someone she has known since childhood. The years certainly are kinder to some of us than others. But wrinkles and gray hairs aside, it can be difficult to know how well—or poorly—someone’s body is truly aging, under the hood. A person who develops age-related diseases earlier in life, or has other biological changes associated with aging (such as elevated cholesterol or markers of inflammation), might be considered “biologically older” than a similar-age person who doesn’t have those changes. Some 80-year-olds will be weak and frail, while others are fit and active.  Doctors have long used functional tests that measure their patients’ strength or the distance they can walk, for example, or simply “eyeball” them to guess whether they look fit enough to survive some treatment regimen, says Tamir Chandra, who studies aging at the Mayo Clinic.  But over the past decade, scientists have been uncovering new methods of looking at the hidden ways our bodies are aging. What they’ve found is changing our understanding of aging itself.  “Aging clocks” are new scientific tools that can measure how our organs are wearing out, giving us insight into our mortality and health. They hint at our biological age. While chronological age is simply how many birthdays we’ve had, biological age is meant to reflect something deeper. It measures how our bodies are handling the passing of time and—perhaps—lets us know how much more of it we have left. And while you can’t change your chronological age, you just might be able to influence your biological age. It’s not just scientists who are using these clocks. Longevity influencers like Bryan Johnson often use them to make the case that they are aging backwards. “My telomeres say I’m 10 years old,” Johnson posted on X in April. The Kardashians have tried them too (Khloé was told on TV that her biological age was 12 years below her chronological age). Even my local health-food store offers biological age testing. Some are pushing the use of clocks even further, using them to sell unproven “anti-aging” supplements. The science is still new, and few experts in the field—some of whom affectionately refer to it as “clock world”—would argue that an aging clock can definitively reveal an individual’s biological age.  But their work is revealing that aging clocks can offer so much more than an insta-brag, a snake-oil pitch—or even just an eye-catching number. In fact, they are helping scientists unravel some of the deepest mysteries in biology: Why do we age? How do we age? When does aging begin? What does it even mean to age? Ultimately, and most importantly, they might soon tell us whether we can reverse the whole process. Clocks kick off The way your genes work can change. Molecules called methyl groups can attach to DNA, controlling the way genes make proteins. This process is called methylation, and it can potentially occur at millions of points along the genome. These epigenetic markers, as they are known, can switch genes on or off, or increase or decrease how much protein they make. They’re not part of our DNA, but they influence how it works. In 2011, Steve Horvath, then a biostatistician at the University of California, Los Angeles, took part in a study that was looking for links between sexual orientation and these epigenetic markers. Steve is straight; he says his twin brother, Markus, who also volunteered, is gay. That study didn’t find a link between DNA methyl­ation and sexual orientation. But when Horvath looked at the data, he noticed a different trend—a very strong link between age and methylation at around 88 points on the genome. He once told me he fell off his chair when he saw it.  Many of the affected genes had already been linked to age-related brain and cardiovascular diseases, but it wasn’t clear how methylation might be related to those diseases.  If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all. In 2013, Horvath collected methylation data from 8,000 tissue and cell samples to create what he called the Horvath clock—essentially a mathematical model that could estimate age on the basis of DNA methylation at 353 points on the genome. From a tissue sample, it was able to detect a person’s age within a range of 2.9 years. That clock changed everything. Its publication in 2013 marked the birth of “clock world.” To some, the possibilities were almost endless. If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all. The epigenetic clock was a success story in “a field that, frankly, doesn’t have a lot of success stories,” says João Pedro de Magalhães, who researches aging at the University of Birmingham, UK. It took a few years, but as more aging researchers heard about the clock, they began incorporating it into their research and even developing their own clocks. Horvath became a bit of a celebrity. Scientists started asking for selfies with him at conferences, he says. Some researchers even made T-shirts bearing the front page of his 2013 paper. Some of the many other aging clocks developed since have become notable in their own right. Examples include the PhenoAge clock, which incorporates health data such as blood cell counts and signs of inflammation along with methyl­ation, and the Dunedin Pace of Aging clock, which tells you how quickly or slowly a person is aging rather than pointing to a specific age. Many of the clocks measure methylation, but some look at other variables, such as proteins in blood or certain carbohydrate molecules that attach to such proteins. Today, there are hundreds or even thousands of clocks out there, says Chiara Herzog, who researches aging at King’s College London and is a member of the Biomarkers of Aging Consortium. Everyone has a favorite. Horvath himself favors his GrimAge clock, which was named after the Grim Reaper because it is designed to predict time to death. That clock was trained on data collected from people who were monitored for decades, many of whom died in that period. Horvath won’t use it to tell people when they might die of old age, he stresses, saying that it wouldn’t be ethical. Instead, it can be used to deliver a biological age that hints at how long a person might expect to live. Someone who is 50 but has a GrimAge of 60 can assume that, compared with the average 50-year-old, they might be a bit closer to the end. GrimAge is not perfect. While it can strongly predict time to death given the health trajectory someone is on, no aging clock can predict if someone will start smoking or get a divorce (which generally speeds aging) or suddenly take up running (which can generally slow it). “People are complicated,” Horvath tells MIT Technology Review. “There’s a huge error bar.” On the whole, the clocks are pretty good at making predictions about health and lifespan. They’ve been able to predict that people over the age of 105 have lower biological ages, which tracks given how rare it is for people to make it past that age. A higher epigenetic age has been linked to declining cognitive function and signs of Alzheimer’s disease, while better physical and cognitive fitness has been linked to a lower epigenetic age. Black-box clocks But accuracy is a challenge for all aging clocks. Part of the problem lies in how they were designed. Most of the clocks were trained to link age with methylation. The best clocks will deliver an estimate that reflects how far a person’s biology deviates from the average. Aging clocks are still judged on how well they can predict a person’s chronological age, but you don’t want them to be too close, says Lucas Paulo de Lima Camillo, head of machine learning at Shift Bioscience, who was awarded $10,000 by the Biomarkers of Aging Consortium for developing a clock that could estimate age within a range of 2.55 years. None of the clocks are precise enough to predict the biological age of a single person. Putting the same biological sample through five different clocks will give you five wildly different results.LEON EDLER “There’s this paradox,” says Camillo. If a clock is really good at predicting chronological age, that’s all it will tell you—and it probably won’t reveal much about your biological age. No one needs an aging clock to tell them how many birthdays they’ve had. Camillo says he’s noticed that when the clocks get too close to “perfect” age prediction, they actually become less accurate at predicting mortality. Therein lies the other central issue for scientists who develop and use aging clocks: What is the thing they are really measuring? It is a difficult question for a field whose members notoriously fail to agree on the basics. (Everything from the definition of aging to how it occurs and why is up for debate among the experts.) They do agree that aging is incredibly complex. A methylation-based aging clock might tell you about how that collection of chemical markers compares across individuals, but at best, it’s only giving you an idea of their “epigenetic age,” says Chandra. There are probably plenty of other biological markers that might reveal other aspects of aging, he says: “None of the clocks measure everything.”  We don’t know why some methyl groups appear or disappear with age, either. Are these changes causing damage? Or are they a by-product of it? Are the epigenetic patterns seen in a 90-year-old a sign of deterioration? Or have they been responsible for keeping that person alive into very old age? To make matters even more complicated, two different clocks can give similar answers by measuring methylation at entirely different regions of the genome. No one knows why, or which regions might be the best ones to focus on. “The biomarkers have this black-box quality,” says Jesse Poganik at Brigham and Women’s Hospital in Boston. “Some of them are probably causal, some of them may be adaptive … and some of them may just be neutral”: either “there’s no reason for them not to happen” or “they just happen by random chance.” What we know is that, as things stand, none of the clocks are precise enough to predict the biological age of a single person (sorry, Khloé). Putting the same biological sample through five different clocks will give you five wildly different results. Even the same clock can give you different answers if you put a sample through it more than once. “They’re not yet individually predictive,” says Herzog. “We don’t know what [a clock result] means for a person, [or if] they’re more or less likely to develop disease.” And it’s why plenty of aging researchers—even those who regularly use the clocks in their work—haven’t bothered to measure their own epigenetic age. “Let’s say I do a clock and it says that my biological age … is five years older than it should be,” says Magalhães. “So what?” He shrugs. “I don’t see much point in it.” You might think this lack of clarity would make aging clocks pretty useless in a clinical setting. But plenty of clinics are offering them anyway. Some longevity clinics are more careful, and will regularly test their patients with a range of clocks, noting their results and tracking them over time. Others will simply offer an estimate of biological age as part of a longevity treatment package. And then there are the people who use aging clocks to sell supplements. While no drug or supplement has been definitively shown to make people live longer, that hasn’t stopped the lightly regulated wellness industry from pushing a range of “treatments” that range from lotions to herbal pills all the way through to stem-cell injections. Some of these people come to aging meetings. I was in the audience at an event when one CEO took to the stage to claim he had reversed his own biological age by 18 years—thanks to the supplement he was selling. Tom Weldon of Ponce de Leon Health told us his gray hair was turning brown. His biological age was supposedly reversing so rapidly that he had reached “longevity escape velocity.” But if the people who buy his supplements expect some kind of Benjamin Button effect, they might be disappointed. His company hasn’t yet conducted a randomized controlled trial to demonstrate any anti-aging effects of that supplement, called Rejuvant. Weldon says that such a trial would take years and cost millions of dollars, and that he’d “have to increase the price of our product more than four times” to pay for one. (The company has so far tested the active ingredient in mice and carried out a provisional trial in people.) More generally, Horvath says he “gets a bad taste in [his] mouth” when people use the clocks to sell products and “make a quick buck.” But he thinks that most of those sellers have genuine faith in both the clocks and their products. “People truly believe their own nonsense,” he says. “They are so passionate about what they discovered, they fall into this trap of believing [their] own prejudices.”  The accuracy of the clocks is at a level that makes them useful for research, but not for individual predictions. Even if a clock did tell someone they were five years younger than their chronological age, that wouldn’t necessarily mean the person could expect to live five years longer, says Magalhães. “The field of aging has long been a rich ground for snake-oil salesmen and hype,” he says. “It comes with the territory.” (Weldon, for his part, says Rejuvant is the only product that has “clinically meaningful” claims.)  In any case, Magalhães adds that he thinks any publicity is better than no publicity. And there’s the rub. Most people in the longevity field seem to have mixed feelings about the trendiness of aging clocks and how they are being used. They’ll agree that the clocks aren’t ready for consumer prime time, but they tend to appreciate the attention. Longevity research is expensive, after all. With a surge in funding and an explosion in the number of biotech companies working on longevity, aging scientists are hopeful that innovation and progress will follow.  So they want to be sure that the reputation of aging clocks doesn’t end up being tarnished by association. Because while influencers and supplement sellers are using their “biological ages” to garner attention, scientists are now using these clocks to make some remarkable discoveries. Discoveries that are changing the way we think about aging. How to be young again Two little mice lie side by side, anesthetized and unconscious, as Jim White prepares his scalpel. The animals are of the same breed but look decidedly different. One is a youthful three-month-old, its fur thick, black, and glossy. By comparison, the second mouse, a 20-month-old, looks a little the worse for wear. Its fur is graying and patchy. Its whiskers are short, and it generally looks kind of frail. But the two mice are about to have a lot more in common. White, with some help from a colleague, makes incisions along the side of each mouse’s body and into the upper part of an arm and leg on the same side. He then carefully stitches the two animals together—membranes, fascia, and skin.  The procedure takes around an hour, and the mice are then roused from their anesthesia. At first, the two still-groggy animals pull away from each other. But within a few days, they seem to have accepted that they now share their bodies. Soon their circulatory systems will fuse, and the animals will share a blood flow too. “People are complicated. There’s a huge error bar.” — Steve Horvath, former biostatistician at the University of California, Los AngelesLEON EDLER White, who studies aging at Duke University, has been stitching mice together for years; he has performed this strange procedure, known as heterochronic parabiosis, more than a hundred times. And he’s seen a curious phenomenon occur. The older mice appear to benefit from the arrangement. They seem to get younger. Experiments with heterochronic parabiosis have been performed for decades, but typically scientists keep the mice attached to each other for only a few weeks, says White. In their experiment, he and his colleagues left the mice attached for three months—equivalent to around 10 human years. The team then carefully separated the animals to assess how each of them had fared. “You’d think that they’d want to separate immediately,” says White. “But when you detach them … they kind of follow each other around.” The most striking result of that experiment was that the older mice who had been attached to a younger mouse ended up living longer than other mice of a similar age. “[They lived] around 10% longer, but [they] also maintained a lot of [their] function,” says White. They were more active and maintained their strength for longer, he adds. When his colleagues, including Poganik, applied aging clocks to the mice, they found that their epigenetic ages were lower than expected. “The young circulation slowed aging in the old mice,” says White. The effect seemed to last, too—at least for a little while. “It preserved that youthful state for longer than we expected,” he says. The young mice went the other way and appeared biologically older, both while they were attached to the old mice and shortly after they were detached. But in their case, the effect seemed to be short-lived, says White: “The young mice went back to being young again.”  To White, this suggests that something about the “youthful state” might be programmed in some way. That perhaps it is written into our DNA. Maybe we don’t have to go through the biological process of aging.  This gets at a central debate in the aging field: What is aging, and why does it happen? Some believe it’s simply a result of accumulated damage. Some believe that the aging process is programmed; just as we grow limbs, develop a brain, reach puberty, and experience menopause, we are destined to deteriorate. Others think programs that play an important role in our early development just turn out to be harmful later in life by chance. And there are some scientists who agree with all of the above. White’s theory is that being old is just “a loss of youth,” he says. If that’s the case, there’s a silver lining: Knowing how youth is lost might point toward a way to somehow regain it, perhaps by restoring those youthful programs in some way.  Dogs and dolphins Horvath’s eponymous clock was developed by measuring methylation in DNA samples taken from tissues around the body. It seems to represent aging in all these tissues, which is why Horvath calls it a pan-tissue clock. Given that our organs are thought to age differently, it was remarkable that a single clock could measure aging in so many of them. But Horvath had ambitious plans for an even more universal clock: a pan-species model that could measure aging in all mammals. He started out, in 2017, with an email campaign that involved asking hundreds of scientists around the world to share samples of tissues from animals they had worked with. He tried zoos, too.    The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it. “I learned that people had spent careers collecting [animal] tissues,” he says. “They had freezers full of [them].” Amenable scientists would ship those frozen tissues, or just DNA, to Horvath’s lab in California, where he would use them to train a new model. Horvath says he initially set out to profile 30 different species. But he ended up receiving around 15,000 samples from 200 scientists, representing 348 species—including everything from dogs to dolphins. Could a single clock really predict age in all of them? “I truly felt it would fail,” says Horvath. “But it turned out that I was completely wrong.” He and his colleagues developed a clock that assessed methylation at 36,000 locations on the genome. The result, which was published in 2023 as the pan-mammalian clock, can estimate the age of any mammal and even the maximum lifespan of the species. The data set is open to anyone who wants to download it, he adds: “I hope people will mine the data to find the secret of how to extend a healthy lifespan.” The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it. Comparisons between mammals also support the idea that the slower methylation changes occur, the longer the lifespan of the animal, says Nelly Olova, an epigeneticist who researches aging at the University of Edinburgh in the UK. “DNA methylation slowly erodes with age,” she says. “We still have the instructions in place, but they become a little messier.” The research in different mammals suggests that cells can take only so much change before they stop functioning. “There’s a finite amount of change that the cell can tolerate,” she says. “If the instructions become too messy and noisy … it cannot support life.” Olova has been investigating exactly when aging clocks first begin to tick—in other words, the point at which aging starts. Clocks can be trained on data from volunteers, and by matching the patterns of methylation on their DNA to their chronological age. The trained clocks are then typically used to estimate the biological age of adults. But they can also be used on samples from children. Or babies. They can be used to work out the biological age of cells that make up embryos.  In her research, Olova used adult skin cells, which—thanks to Nobel Prize–winning research in the 2000s—can be “reprogrammed” back to a state resembling that of the pluripotent stem cells found in embryos. When Olova and her colleagues used a “partial reprogramming” approach to take cells close to that state, they found that the closer they got to the entirely reprogrammed state, the “younger” the cells were.  It was around 20 days after the cells had been reprogrammed into stem cells that they reached the biological age of zero according to the clock used, says Olova. “It was a bit surreal,” she says. “The pluripotent cells measure as minus 0.5; they’re slightly below zero.” Vadim Gladyshev, a prominent aging researcher at Harvard University, has since proposed that the same negative level of aging might apply to embryos. After all, some kind of rejuvenation happens during the early stages of embryo formation—an aged egg cell and an aged sperm cell somehow create a brand-new cell. The slate is wiped clean. Gladyshev calls this point “ground zero.” He posits that it’s reached sometime during the “mid-embryonic state.” At this point, aging begins. And so does “organismal life,” he argues. “It’s interesting how this coincides with philosophical questions about when life starts,” says Olova.  Some have argued that life begins when sperm meets egg, while others have suggested that the point when embryonic cells start to form some kind of unified structure is what counts. The ground zero point is when the body plan is set out and cells begin to organize accordingly, she says. “Before that, it’s just a bunch of cells.” This doesn’t mean that life begins at the embryonic state, but it does suggest that this is when aging begins—perhaps as the result of “a generational clearance of damage,” says Poganik. It is early days—no pun intended—for this research, and the science is far from settled. But knowing when aging begins could help inform attempts to rewind the clock. If scientists can pinpoint an ideal biological age for cells, perhaps they can find ways to get old cells back to that state. There might be a way to slow aging once cells reach a certain biological age, too.  “Presumably, there may be opportunities for targeting aging before … you’re full of gray hair,” says Poganik. “It could mean that there is an ideal window for intervention which is much earlier than our current geriatrics-based approach.” When young meets old When White first started stitching mice together, he would sit and watch them for hours. “I was like, look at them go! They’re together, and they don’t even care!” he says. Since then, he’s learned a few tricks. He tends to work with female mice, for instance—the males tend to bicker and nip at each other, he says. The females, on the other hand, seem to get on well.  The effect their partnership appears to have on their biological ages, if only temporarily, is among the ways aging clocks are helping us understand that biological age is plastic to some degree. White and his colleagues have also found, for instance, that stress seems to increase biological age, but that the effect can be reversed once the stress stops. Both pregnancy and covid-19 infections have a similar reversible effect. Poganik wonders if this finding might have applications for human organ transplants. Perhaps there’s a way to measure the biological age of an organ before it is transplanted and somehow rejuvenate organs before surgery.  But new data from aging clocks suggests that this might be more complicated than it sounds. Poganik and his colleagues have been using methylation clocks to measure the biological age of samples taken from recently transplanted hearts in living people.  If being old is simply a case of losing our youthfulness, then that might give us a clue to how we can somehow regain it. Young hearts do well in older bodies, but the biological age of these organs eventually creeps up to match that of their recipient. The same is true for older hearts in younger bodies, says Poganik, who has not yet published his findings. “After a few months, the tissue may assimilate the biological age of the organism,” he says.  If that’s the case, the benefits of young organs might be short-lived. It also suggests that scientists working on ways to rejuvenate individual organs may need to focus their anti-aging efforts on more systemic means of rejuvenation—for example, stem cells that repopulate the blood. Reprogramming these cells to a youthful state, perhaps one a little closer to “ground zero,” might be the way to go. Whole-body rejuvenation might be some way off, but scientists are still hopeful that aging clocks might help them find a way to reverse aging in people. “We have the machinery to reset our epigenetic clock to a more youthful state,” says White. “That means we have the ability to turn the clock backwards.” 

Be honest: Have you ever looked up someone from your childhood on social media with the sole intention of seeing how they’ve aged? 

One of my colleagues, who shall remain nameless, certainly has. He recently shared a photo of a former classmate. “Can you believe we’re the same age?” he asked, with a hint of glee in his voice. A relative also delights in this pastime. “Wow, she looks like an old woman,” she’ll say when looking at a picture of someone she has known since childhood. The years certainly are kinder to some of us than others.

But wrinkles and gray hairs aside, it can be difficult to know how well—or poorly—someone’s body is truly aging, under the hood. A person who develops age-related diseases earlier in life, or has other biological changes associated with aging (such as elevated cholesterol or markers of inflammation), might be considered “biologically older” than a similar-age person who doesn’t have those changes. Some 80-year-olds will be weak and frail, while others are fit and active. 

Doctors have long used functional tests that measure their patients’ strength or the distance they can walk, for example, or simply “eyeball” them to guess whether they look fit enough to survive some treatment regimen, says Tamir Chandra, who studies aging at the Mayo Clinic. 

But over the past decade, scientists have been uncovering new methods of looking at the hidden ways our bodies are aging. What they’ve found is changing our understanding of aging itself. 

“Aging clocks” are new scientific tools that can measure how our organs are wearing out, giving us insight into our mortality and health. They hint at our biological age. While chronological age is simply how many birthdays we’ve had, biological age is meant to reflect something deeper. It measures how our bodies are handling the passing of time and—perhaps—lets us know how much more of it we have left. And while you can’t change your chronological age, you just might be able to influence your biological age.

It’s not just scientists who are using these clocks. Longevity influencers like Bryan Johnson often use them to make the case that they are aging backwards. “My telomeres say I’m 10 years old,” Johnson posted on X in April. The Kardashians have tried them too (Khloé was told on TV that her biological age was 12 years below her chronological age). Even my local health-food store offers biological age testing. Some are pushing the use of clocks even further, using them to sell unproven “anti-aging” supplements.

The science is still new, and few experts in the field—some of whom affectionately refer to it as “clock world”—would argue that an aging clock can definitively reveal an individual’s biological age. 

But their work is revealing that aging clocks can offer so much more than an insta-brag, a snake-oil pitch—or even just an eye-catching number. In fact, they are helping scientists unravel some of the deepest mysteries in biology: Why do we age? How do we age? When does aging begin? What does it even mean to age?

Ultimately, and most importantly, they might soon tell us whether we can reverse the whole process.

Clocks kick off

The way your genes work can change. Molecules called methyl groups can attach to DNA, controlling the way genes make proteins. This process is called methylation, and it can potentially occur at millions of points along the genome. These epigenetic markers, as they are known, can switch genes on or off, or increase or decrease how much protein they make. They’re not part of our DNA, but they influence how it works.

In 2011, Steve Horvath, then a biostatistician at the University of California, Los Angeles, took part in a study that was looking for links between sexual orientation and these epigenetic markers. Steve is straight; he says his twin brother, Markus, who also volunteered, is gay.

That study didn’t find a link between DNA methyl­ation and sexual orientation. But when Horvath looked at the data, he noticed a different trend—a very strong link between age and methylation at around 88 points on the genome. He once told me he fell off his chair when he saw it

Many of the affected genes had already been linked to age-related brain and cardiovascular diseases, but it wasn’t clear how methylation might be related to those diseases. 

If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all.

In 2013, Horvath collected methylation data from 8,000 tissue and cell samples to create what he called the Horvath clock—essentially a mathematical model that could estimate age on the basis of DNA methylation at 353 points on the genome. From a tissue sample, it was able to detect a person’s age within a range of 2.9 years.

That clock changed everything. Its publication in 2013 marked the birth of “clock world.” To some, the possibilities were almost endless. If a model could work out what average aging looks like, it could potentially estimate whether someone was aging unusually fast or slowly. It could transform medicine and fast-track the search for an anti-aging drug. It could help us understand what aging is, and why it happens at all.

The epigenetic clock was a success story in “a field that, frankly, doesn’t have a lot of success stories,” says João Pedro de Magalhães, who researches aging at the University of Birmingham, UK.

It took a few years, but as more aging researchers heard about the clock, they began incorporating it into their research and even developing their own clocks. Horvath became a bit of a celebrity. Scientists started asking for selfies with him at conferences, he says. Some researchers even made T-shirts bearing the front page of his 2013 paper.

Some of the many other aging clocks developed since have become notable in their own right. Examples include the PhenoAge clock, which incorporates health data such as blood cell counts and signs of inflammation along with methyl­ation, and the Dunedin Pace of Aging clock, which tells you how quickly or slowly a person is aging rather than pointing to a specific age. Many of the clocks measure methylation, but some look at other variables, such as proteins in blood or certain carbohydrate molecules that attach to such proteins.

Today, there are hundreds or even thousands of clocks out there, says Chiara Herzog, who researches aging at King’s College London and is a member of the Biomarkers of Aging Consortium. Everyone has a favorite. Horvath himself favors his GrimAge clock, which was named after the Grim Reaper because it is designed to predict time to death.

That clock was trained on data collected from people who were monitored for decades, many of whom died in that period. Horvath won’t use it to tell people when they might die of old age, he stresses, saying that it wouldn’t be ethical. Instead, it can be used to deliver a biological age that hints at how long a person might expect to live. Someone who is 50 but has a GrimAge of 60 can assume that, compared with the average 50-year-old, they might be a bit closer to the end.

GrimAge is not perfect. While it can strongly predict time to death given the health trajectory someone is on, no aging clock can predict if someone will start smoking or get a divorce (which generally speeds aging) or suddenly take up running (which can generally slow it). “People are complicated,” Horvath tells MIT Technology Review. “There’s a huge error bar.”

On the whole, the clocks are pretty good at making predictions about health and lifespan. They’ve been able to predict that people over the age of 105 have lower biological ages, which tracks given how rare it is for people to make it past that age. A higher epigenetic age has been linked to declining cognitive function and signs of Alzheimer’s disease, while better physical and cognitive fitness has been linked to a lower epigenetic age.

Black-box clocks

But accuracy is a challenge for all aging clocks. Part of the problem lies in how they were designed. Most of the clocks were trained to link age with methylation. The best clocks will deliver an estimate that reflects how far a person’s biology deviates from the average. Aging clocks are still judged on how well they can predict a person’s chronological age, but you don’t want them to be too close, says Lucas Paulo de Lima Camillo, head of machine learning at Shift Bioscience, who was awarded $10,000 by the Biomarkers of Aging Consortium for developing a clock that could estimate age within a range of 2.55 years.

a cartoon alarm clock shrugging
None of the clocks are precise enough to predict the biological age of a single person. Putting the same biological sample through five different clocks will give you five wildly different results.
LEON EDLER

“There’s this paradox,” says Camillo. If a clock is really good at predicting chronological age, that’s all it will tell you—and it probably won’t reveal much about your biological age. No one needs an aging clock to tell them how many birthdays they’ve had. Camillo says he’s noticed that when the clocks get too close to “perfect” age prediction, they actually become less accurate at predicting mortality.

Therein lies the other central issue for scientists who develop and use aging clocks: What is the thing they are really measuring? It is a difficult question for a field whose members notoriously fail to agree on the basics. (Everything from the definition of aging to how it occurs and why is up for debate among the experts.)

They do agree that aging is incredibly complex. A methylation-based aging clock might tell you about how that collection of chemical markers compares across individuals, but at best, it’s only giving you an idea of their “epigenetic age,” says Chandra. There are probably plenty of other biological markers that might reveal other aspects of aging, he says: “None of the clocks measure everything.” 

We don’t know why some methyl groups appear or disappear with age, either. Are these changes causing damage? Or are they a by-product of it? Are the epigenetic patterns seen in a 90-year-old a sign of deterioration? Or have they been responsible for keeping that person alive into very old age?

To make matters even more complicated, two different clocks can give similar answers by measuring methylation at entirely different regions of the genome. No one knows why, or which regions might be the best ones to focus on.

“The biomarkers have this black-box quality,” says Jesse Poganik at Brigham and Women’s Hospital in Boston. “Some of them are probably causal, some of them may be adaptive … and some of them may just be neutral”: either “there’s no reason for them not to happen” or “they just happen by random chance.”

What we know is that, as things stand, none of the clocks are precise enough to predict the biological age of a single person (sorry, Khloé). Putting the same biological sample through five different clocks will give you five wildly different results.

Even the same clock can give you different answers if you put a sample through it more than once. “They’re not yet individually predictive,” says Herzog. “We don’t know what [a clock result] means for a person, [or if] they’re more or less likely to develop disease.”

And it’s why plenty of aging researchers—even those who regularly use the clocks in their work—haven’t bothered to measure their own epigenetic age. “Let’s say I do a clock and it says that my biological age … is five years older than it should be,” says Magalhães. “So what?” He shrugs. “I don’t see much point in it.”

You might think this lack of clarity would make aging clocks pretty useless in a clinical setting. But plenty of clinics are offering them anyway. Some longevity clinics are more careful, and will regularly test their patients with a range of clocks, noting their results and tracking them over time. Others will simply offer an estimate of biological age as part of a longevity treatment package.

And then there are the people who use aging clocks to sell supplements. While no drug or supplement has been definitively shown to make people live longer, that hasn’t stopped the lightly regulated wellness industry from pushing a range of “treatments” that range from lotions to herbal pills all the way through to stem-cell injections.

Some of these people come to aging meetings. I was in the audience at an event when one CEO took to the stage to claim he had reversed his own biological age by 18 years—thanks to the supplement he was selling. Tom Weldon of Ponce de Leon Health told us his gray hair was turning brown. His biological age was supposedly reversing so rapidly that he had reached “longevity escape velocity.”

But if the people who buy his supplements expect some kind of Benjamin Button effect, they might be disappointed. His company hasn’t yet conducted a randomized controlled trial to demonstrate any anti-aging effects of that supplement, called Rejuvant. Weldon says that such a trial would take years and cost millions of dollars, and that he’d “have to increase the price of our product more than four times” to pay for one. (The company has so far tested the active ingredient in mice and carried out a provisional trial in people.)

More generally, Horvath says he “gets a bad taste in [his] mouth” when people use the clocks to sell products and “make a quick buck.” But he thinks that most of those sellers have genuine faith in both the clocks and their products. “People truly believe their own nonsense,” he says. “They are so passionate about what they discovered, they fall into this trap of believing [their] own prejudices.” 

The accuracy of the clocks is at a level that makes them useful for research, but not for individual predictions. Even if a clock did tell someone they were five years younger than their chronological age, that wouldn’t necessarily mean the person could expect to live five years longer, says Magalhães. “The field of aging has long been a rich ground for snake-oil salesmen and hype,” he says. “It comes with the territory.” (Weldon, for his part, says Rejuvant is the only product that has “clinically meaningful” claims.) 

In any case, Magalhães adds that he thinks any publicity is better than no publicity.

And there’s the rub. Most people in the longevity field seem to have mixed feelings about the trendiness of aging clocks and how they are being used. They’ll agree that the clocks aren’t ready for consumer prime time, but they tend to appreciate the attention. Longevity research is expensive, after all. With a surge in funding and an explosion in the number of biotech companies working on longevity, aging scientists are hopeful that innovation and progress will follow. 

So they want to be sure that the reputation of aging clocks doesn’t end up being tarnished by association. Because while influencers and supplement sellers are using their “biological ages” to garner attention, scientists are now using these clocks to make some remarkable discoveries. Discoveries that are changing the way we think about aging.

How to be young again

Two little mice lie side by side, anesthetized and unconscious, as Jim White prepares his scalpel. The animals are of the same breed but look decidedly different. One is a youthful three-month-old, its fur thick, black, and glossy. By comparison, the second mouse, a 20-month-old, looks a little the worse for wear. Its fur is graying and patchy. Its whiskers are short, and it generally looks kind of frail.

But the two mice are about to have a lot more in common. White, with some help from a colleague, makes incisions along the side of each mouse’s body and into the upper part of an arm and leg on the same side. He then carefully stitches the two animals together—membranes, fascia, and skin. 

The procedure takes around an hour, and the mice are then roused from their anesthesia. At first, the two still-groggy animals pull away from each other. But within a few days, they seem to have accepted that they now share their bodies. Soon their circulatory systems will fuse, and the animals will share a blood flow too.

cartoon man in profile with a stick of a wrist watch around a lit stick of dynamite in his mouth
“People are complicated. There’s a huge error bar.” — Steve Horvath, former biostatistician at the University of California, Los Angeles
LEON EDLER

White, who studies aging at Duke University, has been stitching mice together for years; he has performed this strange procedure, known as heterochronic parabiosis, more than a hundred times. And he’s seen a curious phenomenon occur. The older mice appear to benefit from the arrangement. They seem to get younger.

Experiments with heterochronic parabiosis have been performed for decades, but typically scientists keep the mice attached to each other for only a few weeks, says White. In their experiment, he and his colleagues left the mice attached for three months—equivalent to around 10 human years. The team then carefully separated the animals to assess how each of them had fared. “You’d think that they’d want to separate immediately,” says White. “But when you detach them … they kind of follow each other around.”

The most striking result of that experiment was that the older mice who had been attached to a younger mouse ended up living longer than other mice of a similar age. “[They lived] around 10% longer, but [they] also maintained a lot of [their] function,” says White. They were more active and maintained their strength for longer, he adds.

When his colleagues, including Poganik, applied aging clocks to the mice, they found that their epigenetic ages were lower than expected. “The young circulation slowed aging in the old mice,” says White. The effect seemed to last, too—at least for a little while. “It preserved that youthful state for longer than we expected,” he says.

The young mice went the other way and appeared biologically older, both while they were attached to the old mice and shortly after they were detached. But in their case, the effect seemed to be short-lived, says White: “The young mice went back to being young again.” 

To White, this suggests that something about the “youthful state” might be programmed in some way. That perhaps it is written into our DNA. Maybe we don’t have to go through the biological process of aging. 

This gets at a central debate in the aging field: What is aging, and why does it happen? Some believe it’s simply a result of accumulated damage. Some believe that the aging process is programmed; just as we grow limbs, develop a brain, reach puberty, and experience menopause, we are destined to deteriorate. Others think programs that play an important role in our early development just turn out to be harmful later in life by chance. And there are some scientists who agree with all of the above.

White’s theory is that being old is just “a loss of youth,” he says. If that’s the case, there’s a silver lining: Knowing how youth is lost might point toward a way to somehow regain it, perhaps by restoring those youthful programs in some way. 

Dogs and dolphins

Horvath’s eponymous clock was developed by measuring methylation in DNA samples taken from tissues around the body. It seems to represent aging in all these tissues, which is why Horvath calls it a pan-tissue clock. Given that our organs are thought to age differently, it was remarkable that a single clock could measure aging in so many of them.

But Horvath had ambitious plans for an even more universal clock: a pan-species model that could measure aging in all mammals. He started out, in 2017, with an email campaign that involved asking hundreds of scientists around the world to share samples of tissues from animals they had worked with. He tried zoos, too.   

The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it.

“I learned that people had spent careers collecting [animal] tissues,” he says. “They had freezers full of [them].” Amenable scientists would ship those frozen tissues, or just DNA, to Horvath’s lab in California, where he would use them to train a new model.

Horvath says he initially set out to profile 30 different species. But he ended up receiving around 15,000 samples from 200 scientists, representing 348 species—including everything from dogs to dolphins. Could a single clock really predict age in all of them?

“I truly felt it would fail,” says Horvath. “But it turned out that I was completely wrong.” He and his colleagues developed a clock that assessed methylation at 36,000 locations on the genome. The result, which was published in 2023 as the pan-mammalian clock, can estimate the age of any mammal and even the maximum lifespan of the species. The data set is open to anyone who wants to download it, he adds: “I hope people will mine the data to find the secret of how to extend a healthy lifespan.”

The pan-mammalian clock suggests that there is something universal about aging—not just that all mammals experience it in a similar way, but that a similar set of genetic or epigenetic factors might be responsible for it.

Comparisons between mammals also support the idea that the slower methylation changes occur, the longer the lifespan of the animal, says Nelly Olova, an epigeneticist who researches aging at the University of Edinburgh in the UK. “DNA methylation slowly erodes with age,” she says. “We still have the instructions in place, but they become a little messier.” The research in different mammals suggests that cells can take only so much change before they stop functioning.

“There’s a finite amount of change that the cell can tolerate,” she says. “If the instructions become too messy and noisy … it cannot support life.”

Olova has been investigating exactly when aging clocks first begin to tick—in other words, the point at which aging starts. Clocks can be trained on data from volunteers, and by matching the patterns of methylation on their DNA to their chronological age. The trained clocks are then typically used to estimate the biological age of adults. But they can also be used on samples from children. Or babies. They can be used to work out the biological age of cells that make up embryos. 

In her research, Olova used adult skin cells, which—thanks to Nobel Prize–winning research in the 2000s—can be “reprogrammed” back to a state resembling that of the pluripotent stem cells found in embryos. When Olova and her colleagues used a “partial reprogramming” approach to take cells close to that state, they found that the closer they got to the entirely reprogrammed state, the “younger” the cells were. 

It was around 20 days after the cells had been reprogrammed into stem cells that they reached the biological age of zero according to the clock used, says Olova. “It was a bit surreal,” she says. “The pluripotent cells measure as minus 0.5; they’re slightly below zero.”

Vadim Gladyshev, a prominent aging researcher at Harvard University, has since proposed that the same negative level of aging might apply to embryos. After all, some kind of rejuvenation happens during the early stages of embryo formation—an aged egg cell and an aged sperm cell somehow create a brand-new cell. The slate is wiped clean.

Gladyshev calls this point “ground zero.” He posits that it’s reached sometime during the “mid-embryonic state.” At this point, aging begins. And so does “organismal life,” he argues. “It’s interesting how this coincides with philosophical questions about when life starts,” says Olova. 

Some have argued that life begins when sperm meets egg, while others have suggested that the point when embryonic cells start to form some kind of unified structure is what counts. The ground zero point is when the body plan is set out and cells begin to organize accordingly, she says. “Before that, it’s just a bunch of cells.”

This doesn’t mean that life begins at the embryonic state, but it does suggest that this is when aging begins—perhaps as the result of “a generational clearance of damage,” says Poganik.

It is early days—no pun intended—for this research, and the science is far from settled. But knowing when aging begins could help inform attempts to rewind the clock. If scientists can pinpoint an ideal biological age for cells, perhaps they can find ways to get old cells back to that state. There might be a way to slow aging once cells reach a certain biological age, too. 

“Presumably, there may be opportunities for targeting aging before … you’re full of gray hair,” says Poganik. “It could mean that there is an ideal window for intervention which is much earlier than our current geriatrics-based approach.”

When young meets old

When White first started stitching mice together, he would sit and watch them for hours. “I was like, look at them go! They’re together, and they don’t even care!” he says. Since then, he’s learned a few tricks. He tends to work with female mice, for instance—the males tend to bicker and nip at each other, he says. The females, on the other hand, seem to get on well. 

The effect their partnership appears to have on their biological ages, if only temporarily, is among the ways aging clocks are helping us understand that biological age is plastic to some degree. White and his colleagues have also found, for instance, that stress seems to increase biological age, but that the effect can be reversed once the stress stops. Both pregnancy and covid-19 infections have a similar reversible effect.

Poganik wonders if this finding might have applications for human organ transplants. Perhaps there’s a way to measure the biological age of an organ before it is transplanted and somehow rejuvenate organs before surgery. 

But new data from aging clocks suggests that this might be more complicated than it sounds. Poganik and his colleagues have been using methylation clocks to measure the biological age of samples taken from recently transplanted hearts in living people. 

If being old is simply a case of losing our youthfulness, then that might give us a clue to how we can somehow regain it.

Young hearts do well in older bodies, but the biological age of these organs eventually creeps up to match that of their recipient. The same is true for older hearts in younger bodies, says Poganik, who has not yet published his findings. “After a few months, the tissue may assimilate the biological age of the organism,” he says. 

If that’s the case, the benefits of young organs might be short-lived. It also suggests that scientists working on ways to rejuvenate individual organs may need to focus their anti-aging efforts on more systemic means of rejuvenation—for example, stem cells that repopulate the blood. Reprogramming these cells to a youthful state, perhaps one a little closer to “ground zero,” might be the way to go.

Whole-body rejuvenation might be some way off, but scientists are still hopeful that aging clocks might help them find a way to reverse aging in people.

“We have the machinery to reset our epigenetic clock to a more youthful state,” says White. “That means we have the ability to turn the clock backwards.” 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Intel details new efficient Xeon processor line

The new chips will be able to support up to 12-channel DDR5 memory with speeds of up to 8000 MT/s, a substantial increase over the 8 channels of 6400MT/s in the prior generation. In addition to that, the platform will support up to 6 UPI 2.0 links with up to

Read More »

Shell Approves New Upstream Project for Nigeria LNG

Shell PLC on Tuesday announced a final investment decision (FID) to develop the HI field to supply up to 350 million standard cubic feet of natural gas a day to Nigeria LNG. The project is part of a joint venture in which Shell owns 40 percent through Shell Nigeria Exploration and Production Co Ltd and Sunlink Energies and Resources Ltd holds 60 percent. At Nigeria LNG, which has a declared capacity of 22 million metric tons of liquefied natural gas a year, Shell owns 25.6 percent. “The increase in feedstock to NLNG, via the train VII project that aims to expand the Bonny Island terminal’s production capacity, is in line with Shell’s plans to grow its global LNG volumes by an average of four to five percent per year until 2030”, Shell said in a statement on its website. HI also supports Shell’s plan announced on Capital Market Day 2025 to start up upstream and integrated gas projects with a total capacity of one million barrels of oil equivalent per day between 2025 and 2030. It also contributes to the company’s target to grow top line production across its upstream and integrated gas business by one percent per year through the end of the decade, Shell said. HI is estimated to hold about 285 million barrels of oil equivalent, Shell said. The field, discovered 1985, lies 50 kilometers (31.07 miles) from shore in waters 100 meters (328.08 feet) deep, according to Shell. The development consists of a wellhead platform with four wells, a pipeline to transport the gas to Bonny and a gas processing plant on the island, from where the processed gas will be transported to Nigeria LNG and the condensate to the Bonny Oil and Gas Export Terminal, Shell said. “Following recent investment decisions related to the Bonga

Read More »

Oil Prices Fall to Lowest Point in 5 Months

Oil prices fell to their lowest point in five months on Tuesday, extending their downward trend. That’s what Daniel Takieddine, Co-founder and CEO of Sky Links Capital Group, said in a market analysis sent to Rigzone today. “Mounting concerns of a global supply surplus weighed on the market, compounded by renewed trade tensions between the U.S. and China,” Takieddine stated in the analysis. “The latest International Energy Agency (IEA) market report added to the concerns and forecasts a growing oversupply of oil,” he added. “The IEA has increased its global supply growth projections to three million barrels per day for this year and 2.4 million for 2026, pointing to production hikes from OPEC+ and robust output from the Americas,” he continued. “In contrast, the agency has lowered its demand growth estimates to approximately 700,000 barrels per day for both years, reinforcing expectations of a significant surplus,” Takieddine warned. The Sky Links Capital Group CEO went on to state in the analysis that trade tensions are injecting fresh uncertainty into the market. “A brief rebound in prices on Monday, sparked by hopes for de-escalation in U.S.-China trade talks, quickly faded,” he said. “The market was further affected by a reduced geopolitical risk premium as hopes for stability in the Middle East grew,” he added. Looking ahead, Takieddine noted in the analysis that markets could closely monitor U.S.-China relations, OPEC+ supply, and upcoming inventory data from the EIA (Energy Information Administration) “to determine the market’s next direction”. “Without a positive surprise from inventory reports or broader macroeconomic data, prices could remain under pressure,” he warned. In a separate statement sent to Rigzone this morning, Naeem Aslam, Chief Market Analyst at Zay Capital Markets, highlighted that the Brent and West Texas Intermediate oil prices were “reflecting the balance between geopolitical tensions, economic policies, and

Read More »

Repsol Starts Renewable Gasoline Production at Tarragona Complex

Repsol SA has declared a “technological milestone” with the start of “industrial-scale” production of 100 percent renewable gasoline at its complex in Tarragona, Spain, making a case for combustion engines. “This new product, made entirely from renewable sources, is fully compatible with gasoline vehicles without the need for any modifications”, the Spanish energy company said in a press release. “Its use reduces net CO2 emissions by more than 70 percent compared to conventional gasoline. “Nexa 95 Gasoline of 100 percent renewable origin – Repsol’s highest-quality 95-octane product – is already available at 20 service stations in Spain, in the Madrid and Catalonia regions”. Repsol expects to deploy the product at 30 stations by yearend by expanding in other parts of the country including the cities of Bilbao, Tarragona, Valencia and Zaragoza. The formulation was developed with Honeywell, according to Repsol. In 2024 Repsol launched Nexa 100 Percent Renewable Diesel, which it says is designed for all diesel engines. Repsol said the development of the products demonstrate that “decarbonizing transport with renewable liquid fuels is a viable solution for combustion engine vehicles, whether gasoline, diesel or hybrid”. “These vehicles today represent 97 percent of the Spanish and European vehicle fleet, and 87 percent of sales in Spain so far this year”, it said. “To meet the climate targets set by Spain and the European Union, it is essential to recognize the role of 100 percent renewable fuels and, consequently, to reconsider the EU regulation on CO2 emission standards, which proposes a ban on combustion engines by 2035. The uncertainty caused by this measure has led to considerable aging of Spain’s vehicle fleet, with an average age of 14.5 years and 8.5 million vehicles – nearly one-third of the total fleet – over 20 years old. “To accelerate the development of renewable fuels, it is essential to establish

Read More »

North America Adds 1 Rig Week on Week

North America added one rig week on week, according to Baker Hughes’ latest North America rotary rig count, which was released on October 10. The total U.S. rig count dropped by two week on week and the total Canada rig count increased by three during the same period, taking the total North America rig count up to 740, comprising 547 rigs from the U.S. and 193 rigs from Canada, the count outlined. Of the total U.S. rig count of 547, 529 rigs are categorized as land rigs, 15 are categorized as offshore rigs, and three are categorized as inland water rigs. The total U.S. rig count is made up of 418 oil rigs, 120 gas rigs, and nine miscellaneous rigs, according to Baker Hughes’ count, which revealed that the U.S. total comprises 480 horizontal rigs, 55 directional rigs, and 12 vertical rigs. Week on week, the U.S. offshore and inland water rig counts remained unchanged, and the country’s land rig count dropped by two, Baker Hughes highlighted. The U.S. oil rig count dropped by four, its gas rig count increased by two, and miscellaneous rig count remained unchanged, week on week, the count showed. The U.S. directional rig count dropped by three week on week, while the country’s horizontal rig count increased by one and its vertical rig count remained unchanged, the count revealed. A major state variances subcategory included in the rig count showed that, week on week, Texas dropped six rigs, Oklahoma dropped three rigs, Wyoming dropped one rig, New Mexico added four rigs, Utah added two rigs, and Louisiana and North Dakota each added one rig. A major basin variances subcategory included in Baker Hughes’ rig count showed that, week on week, the Granite Wash basin dropped two rigs and the Eagle Ford, DJ-Niobrara and Permian basins

Read More »

Midad to Invest $5.4B in Algerian Production Sharing Contract

Sonatrach signed a production sharing contract (PSC) with Midad Energy for the Illizi South area, nearly 100 kilometers (62.14 miles) south of In Amenas, Algeria’s national oil and gas company said Monday. The Saudi company, through its Netherlands-based subsidiary Midad Energy North Africa BV, agreed to shoulder the full exploration and development cost. That is expected to be $5.4 billion, including $288 million for exploration, Sonatrach said in a statement on its website. The PSC is expected to produce, according to Sonatrach, a total of 993 million barrels of oil equivalent consisting of 125 billion cubic meters (4.41 trillion cubic feet) of gas for marketing and 204 million barrels of liquids, including 103 million barrels of liquefied petroleum gas and 101 million barrels of condensate. The contract lasts 30 years, including seven years for exploration, Sonatrach said. The contract is extendable by 10 years, it said. “This program includes also the use of the latest technological and digital solutions”, Sonatrach said. “Furthermore, calling on local content and subcontracting with national supplier under the execution of this contract will be prioritized”. Sonatrach chair and chief executive Rachid Hachichi and Midad Energy North Africa counterpart Sheikh Abdulelah Bin Mohammed Bin Abdullah Al-Aiban signed the PSC in the presence of Algerian Hydrocarbons and Mines Minister Mohamed Arkab and Saudi Ambassador to Algeria Abdullah Bin Nasser Abdullah Al-Busairi, according to Sonatrach. On July 21 Sonatrach announced it has entered five hydrocarbon contracts under Algeria’s 2024 bidding round. Ahara in Illizi province was signed with QatarEnergy and France’s TotalEnergies SE. Guern El Guessa II in the provinces of Bechar, Beni Abbes, El Bayadh and Timimoun was signed with China Petroleum and Chemical Corp (Sinopec). Toual II in the provinces of Ouargla and Illizi was signed with Austria’s Zangas Hoch- und Tiefbau GmbH and Switzerland’s Filada AG.

Read More »

Valeura Raises Production at Nong Yao in Gulf of Thailand

Valeura Energy Inc has completed a 10-well infill drilling campaign at the Nong Yao oilfield in the Gulf of Thailand, increasing the company’s net production before royalties to 24,800 barrels per day (bpd) in the last seven days of the third quarter. “The campaign was primarily production-oriented and resulted in the company’s working interest share oil production before royalties from the Nong Yao field increasing from approximately 7,996 bpd prior to the first new wells coming on stream, to a recent rate of 11,562 bpd, over the seven-day period ending September 30, 2025”, Canada’s Valeura said in an operations update on its website. “The company anticipates that the reservoirs encountered may add to the ultimate production potential of the Nong Yao field and can thereby further extend its economic life”. The campaign involved all three wellhead infrastructure facilities in Nong Yao, Valeura said. The Nong Yao B segment of the campaign “included some of the most technically challenging wells ever drilled in the Gulf of Thailand basin, influenced by both geological complexity and also their extended reach from the wellhead platform, in one instance measuring a total drilled length of over 9,800′”, Valeura noted. Valeura operates Nong Yao with a 90 percent stake through License G11/48, in which Palang Sophon Co Ltd owns the remaining 10 percent. Nong Yao held proven and probable gross pre-royalties reserves of 16.9 million as of yearend 2024, according to Valuera. The field produces medium sweet crude from Miocene-age reservoirs, according to the company. Elsewhere in the Gulf of Thailand, work is progressing on the Wassana oilfield redevelopment project. Wassana’s newbuild wellhead production facility is on track to start up in the second quarter of 2027, Valeura added. “The Wassana redevelopment project is intended to increase production, reduce unit costs and create a hub for

Read More »

OpenAI–Broadcom alliance signals a shift to open infrastructure for AI

The decision also reflects a future of AI workloads running on heterogeneous computing and networking infrastructure, said Lian Jye Su, chief analyst at Omdia. “While it makes sense for enterprises to first rely on Nvidia’s full stack solution to roll out AI, they will generally integrate alternative solutions such as AMD and self-developed chips for cost efficiency, supply chain diversity, and chip availability,” Su said. “This means data center networking vendors will need to consider interoperability and open standards as ways to address the diversification of AI chip architecture.” Hyperscalers and enterprise CIOs are increasingly focused on how to efficiently scale up or scale out AI servers as workloads expand. Nvidia’s GPUs still underpin most large-scale AI training, but companies are looking for ways to integrate them with other accelerators. Neil Shah, VP for research at Counterpoint Research, said that Nvidia’s recent decision to open its NVLink interconnect to ecosystem players earlier this year gives hyperscalers more flexibility to pair Nvidia GPUs with custom accelerators from vendors such as Broadcom or Marvell. “While this reduces the dependence on Nvidia for a complete solution, it actually increases the total addressable market for Nvidia to be the most preferred solution to be tightly paired with the hyperscaler’s custom compute,” Shah said. Most hyperscalers have moved toward custom compute architectures to diversify beyond x86-based Intel or AMD processors, Shah added. Many are exploring Arm or RISC-V designs that can be tailored to specific workloads for greater power efficiency and lower infrastructure costs. Shifting AI infrastructure strategies The collaboration also highlights how networking choices are becoming as strategic as chip design itself, suggesting a change in how AI workloads are powered and connected.

Read More »

Inside Nvidia’s ‘grid-to-chip’ vision: How Vera Rubin and Spectrum-XGS push toward AI giga-factories

Vera Rubin MGX brings together Nvidia’s Vera CPUs and Rubin CPX GPUs, all using the same open MGX rack footprint as Blackwell. The system allows for numerous configurations and integrations. “MGX is a flexible, modular building block-based approach to server and rack scale design,” Delaere said. “It allows our ecosystem to create a wide range of configurations, and do so very quickly.” Vera Rubin MGX will deliver almost eight times more performance than Nvidia’s GB 300 for certain types of calculation, he said. The architecture is liquid-cooled and cable-free, allowing for faster assembly and serviceability. Operators can quickly mix and match components such as CPUs, GPUs, or storage, supporting interoperability, Nvidia said. Matt Kimball, principal data center analyst at Moor Insights and Strategy, highlighted the modularity and cleanness of the MGX tray design. “This simplifies the manufacturing process significantly,” he said. For enterprises managing tens or even hundreds of thousands of racks, “this design enables a level of operational efficiency that can deliver real savings in time and cost.” Nvidia is also showing innovation with cooling, Kimball said. “Running cooling to the midplane is a very clean design and more efficient.”

Read More »

Cisco seriously amps-up Silicon One chip, router for AI data center connectivity

Some say deep buffers shouldn’t be used to handle this type of traffic; the contention is that these buffers fill and drain, creating jitter in the workloads, and that slows things down, Chopra told Network World. “But the real source of that challenge is not the buffers. It’s a poor congestion management scheme and poor load balancing with AI workloads, which are completely deterministic and predictable. You can actually proactively figure out how to place flows across the network and avoid the congestion,” he said. The 8223’s deep-buffer design provides ample memory to temporarily store packets during congestion or traffic bursts, an essential feature for AI networks where inter-GPU communication can create unpredictable, high-volume data flows, according to Gurudatt Shenoy, vice president of Cisco Provider Connectivity. “Combined with its high-radix architecture, the 8223 allows more devices to connect directly, reducing latency, saving rack space, and further lowering power consumption. The result is a flatter, more efficient network topology supporting high-bandwidth, low-latency communication that is critical for AI workloads,” Shenoy wrote in a blog post. NOS options Notably, the first operating systems that the 8223 supports are the Linux Foundation’s Software for Open Networking in the Cloud (SONiC) and Facebook open switching system (FBOSS) – not Cisco’s own IOS XR.  IXR will be supported, too, but at a later date, according to Cisco.  SONiC decouples network software from the underlying hardware and lets it run on hundreds of switches and ASICs from multiple vendors while supporting a full suite of network features such as Border Gateway Protocol (BGP), remote direct memory access (RDMA), QoS, and Ethernet/IP. One of the keys to SONiC is its switch-abstraction interface, which defines an API to provide a vendor-independent way of controlling forwarding elements such as a switching ASIC, an NPU, or a software switch in a uniform

Read More »

Utilities Race to Meet Surging Data Center Demand With New Power Models

Over the last 18 months or so, the energy generation industry and its public utilities have been significantly impacted by the AI data center boom. It has been demonstrated across North America that the increase in demand for power, as driven by the demand for hyperscale and AI data centers, greatly exceeds the ability of the industry to actually generate and deliver power to meet the demand. We have covered many of the efforts being made to control the availability of power. In response, utilities and regulators have begun rethinking how to manage power availability through means such as: temporary moratoriums on new data center interconnections; the creation of new rate classes; cogeneration and load-sharing agreements; renewable integration; and power-driven site selection strategies.  But the bottom line is that in many locations utilities will need to change the way they work and how and where they spend their CAPEX budgets. The industry has already realized that their demand forecast models are hugely out of date, and that has had a ripple effect on much of the planning done by public utilities to meet the next generation of power demand. Most utilities now acknowledge that their demand forecasting models have fallen behind reality, triggering revisions to Integrated Resource Plans (IRPs) and transmission buildouts nationwide. This mismatch between forecast and actual demand is forcing a fundamental rethink of capital expenditure priorities and long-term grid planning. Spend More, Build Faster Utilities are sharply increasing CAPEX and rebalancing their resource portfolios—not just for decarbonization, but to keep pace with multi-hundred-megawatt data center interconnects. This trend is spreading across the industry, not confined to a few isolated utilities. Notable examples include: Duke Energy raised its five-year CAPEX plan to $83 billion (a 13.7% increase) and plans to add roughly 5 GW of natural gas capacity

Read More »

Duos Pairs Mobile Power and Modular Edge Data Centers for Rapid Texas Rollout

Duos Technology Group has launched the fifth of its AI edge data centers, part of a plan to deploy 15 units by the end of 2025. The projects are executed through Duos Edge AI, a subsidiary focused on modular, rapidly installed edge data centers (EDCs) in underserved markets, beginning with school districts and regional carrier hubs across Texas. The newest site is being deployed on-premises with the Dumas Independent School District in Dumas, Texas. High-Density Edge Design Duos’ EDCs emphasize very high rack densities (100 kW+ per rack), SOC 2 Type II compliance, N+1 power with dual generators, and a 90-day build/turn-up cycle. Each site is positioned approximately 12 miles from end users, cutting latency for real-time workloads. To meet the power demands of these edge deployments, Duos formed Duos Energy and partnered with Fortress/APR Energy to deliver behind-the-meter mobile gas turbines. This approach allows compute to go live in 90 days without waiting years for utility interconnection upgrades. The goal is straightforward: move power and compute close to demand, with rapid deployment. Duos’ modular pods are designed for exurban and rural locations as localized compute hubs for carriers, schools, healthcare systems, and municipal users. The rugged design pairs high-density racks with the short deployment cycle and proximity targeting, enabling a wide range of applications. With Dumas ISD now live, Duos has five sites in Texas, including Amarillo/Region 16, Victoria/Region 3, Dumas ISD, and multiple Corpus Christi locations. Mobile Power vs. Modular Compute While Duos doesn’t consistently describe its data center units as “mobile,” they are modular and containerized, engineered for rapid, site-agnostic deployment. The “mobile” label more explicitly applies to Duos’ power strategy—a turbine fleet that can be fielded or re-fielded to match demand. From an operator’s perspective, the combined proposition functions like a mobile platform: pre-integrated compute pods

Read More »

Report: AMD could be Intel’s next foundry customer

[ Related: More Intel news and insights ] AMD has lagged behind Nvidia in the AI business but has done well in the federal supercomputing business, holding numerous top spots with supercomputers like El Capitan and Frontier. Manufacturing its chips in the United States would be a good way to get the Trump administration off its back given its push for domestic manufacturing of semiconductors. The Trump administration is pushing for 50% of chips sold in America to be manufactured domestically, and tariffs on chips that are not. It also faces outbound restrictions. Earlier this year, AMD faced export restrictions GPUs meant for China as part of U.S. export controls against China’s AI business. “I believe this is a smart move by AMD to secure capacity in the local market without fighting against Nvidia and Apple and their deeper pockets for the limited capacity at TSMC,” said Alvi Nguyen, senior analyst with Forrester Research.” With the US investment in Intel, followed by Nvidia, this is can be seen as diversifying their supply chain and providing cheaper, locally sourced parts.” For Intel, this will continue a streak of good news it has enjoyed recently. “Having customers take up capacity at their foundries will go a long way in legitimizing their semiconductor processes and hopefully create the snowball effect of getting even more US-based customers,” said Nguyen. In recent weeks, Intel has partnered with Nvidia to jointly make PC and data center chips. Nvidia also took a $5B stake in Intel. Earlier the Trump administration made a $11.1B, or 10%, stake in Intel.

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »

Can we repair the internet?

From addictive algorithms to exploitative apps, data mining to misinformation, the internet today can be a hazardous place. Books by three influential figures—the intellect behind

Read More »