Stay Ahead, Stay ONMINE

An Earthling’s guide to planet hunting

The pendant on Rebecca Jensen-Clem’s necklace is only about an inch wide, composed of 36 silver hexagons entwined in a honeycomb mosaic. At the Keck Observatory, in Hawaii, just as many segments make up a mirror that spans 33 feet, reflecting images of uncharted worlds for her to study.  Jensen-Clem, an astronomer at the University of California, Santa Cruz, works with the Keck Observatory to figure out how to detect new planets without leaving our own. Typically, this pursuit faces an array of obstacles: Wind, fluctuations in atmospheric density and temperature, or even a misaligned telescope mirror can create a glare from a star’s light that obscures the view of what’s around it, rendering any planets orbiting the star effectively invisible. And what light Earth’s atmosphere doesn’t obscure, it absorbs. That’s why researchers who study these distant worlds often work with space telescopes that circumvent Earth’s pesky atmosphere entirely, such as the $10 billion James Webb Space Telescope.  But there’s another way over these hurdles. At her lab among the redwoods, Jensen-Clem and her students experiment with new technologies and software to help Keck’s primary honeycomb mirror and its smaller, “deformable” mirror see more clearly. Using measurements from atmospheric sensors, deformable mirrors are designed to adjust shape rapidly, so they can correct for distortions caused by Earth’s atmosphere on the fly.  This general imaging technique, called adaptive optics, has been common practice since the 1990s. But Jensen-Clem is looking to level up the game with extreme adaptive optics technologies, which are aimed to create the highest image quality over a small field of view. Her group, in particular, does so by tackling issues involving wind or the primary mirror itself. The goal is to focus starlight so precisely that a planet can be visible even if its host star is a million to a billion times brighter. In April, she and her former collaborator Maaike van Kooten were named co-recipients of the Breakthrough Prize Foundation’s New Horizons in Physics Prize. The prize announcement says they earned this early-career research award for their potential “to enable the direct detection of the smallest exo­planets” through a repertoire of methods the two women have spent their careers developing.  In July, Jensen-Clem was also announced as a member of a new committee for the Habitable Worlds Observatory, a concept for a NASA space telescope that would spend its career on the prowl for signs of life in the universe. She’s tasked with defining the mission’s scientific goals by the end of the decade. The Keck Observatory’s 10-meter primary mirror features a honeycomb structure with 36 individual mirror segments.ETHAN TWEEDIE “In adaptive optics, we spend a lot of time on simulations, or in the lab,” Jensen-Clem says. “It’s been a long road to see that I’ve actually made things better at the observatory in the past few years.” Jensen-Clem has long appreciated astronomy for its more mind-bending qualities. In seventh grade, she became fascinated by how time slows down near a black hole when her dad, an aerospace engineer, explained that concept to her. After starting her bachelor’s degree at MIT in 2008, she became taken with how a distant star can seem to disappear—either suddenly winking out or gently fading away, depending on the kind of object that passes in front of it. “It wasn’t quite exoplanet science, but there was a lot of overlap,” she says. “If you just look up at the night sky and see stars twinkling, it’s happening fast. So we have to go fast too.” During this time, Jensen-Clem began sowing the seeds for one of her prize-winning methods after her teaching assistant recommended that she apply for an internship at NASA’s Jet Propulsion Laboratory. There, she worked on a setup that could perfect the orientation of a large mirror. Such mirrors are more difficult to realign than the smaller, deformable ones, whose shape-changing segments cater to Earth’s fluctuating atmosphere. “At the time, we were saying, ‘Oh, wouldn’t it be really cool to install one of these at Keck Observatory?’” Jensen-Clem says. The idea stuck around. She even wrote about it in a fellowship application when she was gearing up to start her graduate work at Caltech. And after years of touch-and-go development, Jensen-Clem succeeded in installing the system—which uses a technology called a Zernike wavefront sensor—on Keck’s primary mirror about a year ago. “My work as a college intern is finally done,” she says.  The system, which is currently used for occasional recalibrations rather than continuous adjustments, includes a special kind of glass plate that bends the light rays from the mirror to reveal a specific pattern. The detector can pick up a hairbreadth misalignment in that picture: If one hexagon is pushed too far back or forward, its brightness changes. Even the tiniest misalignment is important to correct, because “when you’re studying a faint object, suddenly you’re much more susceptible to little mistakes,” Jensen-Clem says. She has also been working to perfect the craft of molding Keck’s deformable mirror. This instrument, which reflects light that’s been rerouted from the primary mirror, is much smaller—only six inches wide—and is designed to reposition as often as 2,000 times a second to combat atmospheric turbulence and create the clearest picture possible. “If you just look up at the night sky and see stars twinkling, it’s happening fast. So we have to go fast too,” Jensen-Clem says.  Even at this rapid rate of readjustment, there’s still a lag. The deformable mirror is usually about one millisecond behind the actual outdoor conditions at any given time. “When the [adaptive optics] system can’t keep up, then you aren’t going to get the best resolution,” says van Kooten, Jensen-Clem’s former collaborator, who is now at the National Research Council Canada. This lag has proved especially troublesome on windy nights.  Jensen-Clem thought it was an unsolvable problem. “The reason we have that delay is because we need to run computations and then move the deformable mirror,” she says. “You’re never going to do those things instantaneously.” But while she was still a postdoc at UC Berkeley, she came across a paper that posited a solution. Its authors proposed that using previous measurements and simple algebra to predict how the atmosphere will change, rather than trying to keep up with it in real time, would yield better results. She wasn’t able to test the idea at the time, but coming to UCSC and working with Keck presented the perfect opportunity.  Around this time, Jensen-Clem invited van Kooten to join her team at UCSC as a postdoc because of their shared interest in the predictive software. “I didn’t have a place to live at first, so she put me up in her guest room,” van Kooten says. “She’s just so supportive at every level.” After creating experimental software to try out at Keck, the team compared the predictive version with the more standard adaptive optics, examining how well each imaged an exoplanet without its drowning in starlight. They found that the predictive software could image even faint exoplanets two to three times more clearly. The results, which Jensen-Clem published in 2022, were part of what earned her the New Horizons in Physics Prize.  Thayne Currie, an astronomer at the University of Texas, San Antonio, says that these new techniques will become especially vital as researchers build bigger and bigger ground-based facilities to capture images of exoplanets—including upcoming projects such as the Extremely Large Telescope at the European Southern Observatory and the Giant Magellan Telescope in Chile. “There’s an incredible amount that we’re learning about the universe, and it is really driven by technology advances that are very, very new,” Currie says. “Dr. Jensen-Clem’s work is an example of that kind of innovation.” In May, one of Jensen-Clem’s graduate students went back to Hawaii to reinstall the predictive software at Keck. This time, the program isn’t just a trial run; it’s there to stay. The new software has shown it can refocus artificial starlight. Next, it will have to prove it can handle the real thing.  And in about a year, Jensen-Clem and her students and colleagues will brace themselves for a flood of observations from the European Space Agency’s Gaia mission, which recently finished measuring the motion, temperature, and composition of billions of stars over more than a decade.  When the project releases its next set of data—slated for December 2026—Jensen-Clem’s team aims to hunt for new exoplanetary systems using clues like the wobbles in a star’s motion caused by the gravitational tugs of planets orbiting around it. Once a system has been identified, exoplanet photographers will then be able to shoot the hidden planets using a new instrument at Keck that can reveal more about their atmospheres and temperatures.  There will be a mountain of data to sort through, and an even steeper supply of starlight to refocus. Thankfully, Jensen-Clem has spent more than a decade refining just the techniques she’ll need: “This time next year,” she says, “we’ll be racing to throw all our adaptive optics tricks at these systems and detect as many of these objects as possible.” Jenna Ahart is a science journalist specializing in the physical sciences. 

The pendant on Rebecca Jensen-Clem’s necklace is only about an inch wide, composed of 36 silver hexagons entwined in a honeycomb mosaic. At the Keck Observatory, in Hawaii, just as many segments make up a mirror that spans 33 feet, reflecting images of uncharted worlds for her to study. 

Jensen-Clem, an astronomer at the University of California, Santa Cruz, works with the Keck Observatory to figure out how to detect new planets without leaving our own. Typically, this pursuit faces an array of obstacles: Wind, fluctuations in atmospheric density and temperature, or even a misaligned telescope mirror can create a glare from a star’s light that obscures the view of what’s around it, rendering any planets orbiting the star effectively invisible. And what light Earth’s atmosphere doesn’t obscure, it absorbs. That’s why researchers who study these distant worlds often work with space telescopes that circumvent Earth’s pesky atmosphere entirely, such as the $10 billion James Webb Space Telescope. 

But there’s another way over these hurdles. At her lab among the redwoods, Jensen-Clem and her students experiment with new technologies and software to help Keck’s primary honeycomb mirror and its smaller, “deformable” mirror see more clearly. Using measurements from atmospheric sensors, deformable mirrors are designed to adjust shape rapidly, so they can correct for distortions caused by Earth’s atmosphere on the fly. 

This general imaging technique, called adaptive optics, has been common practice since the 1990s. But Jensen-Clem is looking to level up the game with extreme adaptive optics technologies, which are aimed to create the highest image quality over a small field of view. Her group, in particular, does so by tackling issues involving wind or the primary mirror itself. The goal is to focus starlight so precisely that a planet can be visible even if its host star is a million to a billion times brighter.

In April, she and her former collaborator Maaike van Kooten were named co-recipients of the Breakthrough Prize Foundation’s New Horizons in Physics Prize. The prize announcement says they earned this early-career research award for their potential “to enable the direct detection of the smallest exo­planets” through a repertoire of methods the two women have spent their careers developing. 

In July, Jensen-Clem was also announced as a member of a new committee for the Habitable Worlds Observatory, a concept for a NASA space telescope that would spend its career on the prowl for signs of life in the universe. She’s tasked with defining the mission’s scientific goals by the end of the decade.

The Keck Observatory’s 10-meter primary mirror features a honeycomb structure with 36 individual mirror segments.
The Keck Observatory’s 10-meter primary mirror features a honeycomb structure with 36 individual mirror segments.
ETHAN TWEEDIE

“In adaptive optics, we spend a lot of time on simulations, or in the lab,” Jensen-Clem says. “It’s been a long road to see that I’ve actually made things better at the observatory in the past few years.”

Jensen-Clem has long appreciated astronomy for its more mind-bending qualities. In seventh grade, she became fascinated by how time slows down near a black hole when her dad, an aerospace engineer, explained that concept to her. After starting her bachelor’s degree at MIT in 2008, she became taken with how a distant star can seem to disappear—either suddenly winking out or gently fading away, depending on the kind of object that passes in front of it. “It wasn’t quite exoplanet science, but there was a lot of overlap,” she says.

“If you just look up at the night sky and see stars twinkling, it’s happening fast. So we have to go fast too.”

During this time, Jensen-Clem began sowing the seeds for one of her prize-winning methods after her teaching assistant recommended that she apply for an internship at NASA’s Jet Propulsion Laboratory. There, she worked on a setup that could perfect the orientation of a large mirror. Such mirrors are more difficult to realign than the smaller, deformable ones, whose shape-changing segments cater to Earth’s fluctuating atmosphere.

“At the time, we were saying, ‘Oh, wouldn’t it be really cool to install one of these at Keck Observatory?’” Jensen-Clem says. The idea stuck around. She even wrote about it in a fellowship application when she was gearing up to start her graduate work at Caltech. And after years of touch-and-go development, Jensen-Clem succeeded in installing the system—which uses a technology called a Zernike wavefront sensor—on Keck’s primary mirror about a year ago. “My work as a college intern is finally done,” she says. 

The system, which is currently used for occasional recalibrations rather than continuous adjustments, includes a special kind of glass plate that bends the light rays from the mirror to reveal a specific pattern. The detector can pick up a hairbreadth misalignment in that picture: If one hexagon is pushed too far back or forward, its brightness changes. Even the tiniest misalignment is important to correct, because “when you’re studying a faint object, suddenly you’re much more susceptible to little mistakes,” Jensen-Clem says.

She has also been working to perfect the craft of molding Keck’s deformable mirror. This instrument, which reflects light that’s been rerouted from the primary mirror, is much smaller—only six inches wide—and is designed to reposition as often as 2,000 times a second to combat atmospheric turbulence and create the clearest picture possible. “If you just look up at the night sky and see stars twinkling, it’s happening fast. So we have to go fast too,” Jensen-Clem says. 

Even at this rapid rate of readjustment, there’s still a lag. The deformable mirror is usually about one millisecond behind the actual outdoor conditions at any given time. “When the [adaptive optics] system can’t keep up, then you aren’t going to get the best resolution,” says van Kooten, Jensen-Clem’s former collaborator, who is now at the National Research Council Canada. This lag has proved especially troublesome on windy nights. 

Jensen-Clem thought it was an unsolvable problem. “The reason we have that delay is because we need to run computations and then move the deformable mirror,” she says. “You’re never going to do those things instantaneously.”

But while she was still a postdoc at UC Berkeley, she came across a paper that posited a solution. Its authors proposed that using previous measurements and simple algebra to predict how the atmosphere will change, rather than trying to keep up with it in real time, would yield better results. She wasn’t able to test the idea at the time, but coming to UCSC and working with Keck presented the perfect opportunity. 

Around this time, Jensen-Clem invited van Kooten to join her team at UCSC as a postdoc because of their shared interest in the predictive software. “I didn’t have a place to live at first, so she put me up in her guest room,” van Kooten says. “She’s just so supportive at every level.”

After creating experimental software to try out at Keck, the team compared the predictive version with the more standard adaptive optics, examining how well each imaged an exoplanet without its drowning in starlight. They found that the predictive software could image even faint exoplanets two to three times more clearly. The results, which Jensen-Clem published in 2022, were part of what earned her the New Horizons in Physics Prize. 

Thayne Currie, an astronomer at the University of Texas, San Antonio, says that these new techniques will become especially vital as researchers build bigger and bigger ground-based facilities to capture images of exoplanets—including upcoming projects such as the Extremely Large Telescope at the European Southern Observatory and the Giant Magellan Telescope in Chile. “There’s an incredible amount that we’re learning about the universe, and it is really driven by technology advances that are very, very new,” Currie says. “Dr. Jensen-Clem’s work is an example of that kind of innovation.”

In May, one of Jensen-Clem’s graduate students went back to Hawaii to reinstall the predictive software at Keck. This time, the program isn’t just a trial run; it’s there to stay. The new software has shown it can refocus artificial starlight. Next, it will have to prove it can handle the real thing. 

And in about a year, Jensen-Clem and her students and colleagues will brace themselves for a flood of observations from the European Space Agency’s Gaia mission, which recently finished measuring the motion, temperature, and composition of billions of stars over more than a decade. 

When the project releases its next set of data—slated for December 2026—Jensen-Clem’s team aims to hunt for new exoplanetary systems using clues like the wobbles in a star’s motion caused by the gravitational tugs of planets orbiting around it. Once a system has been identified, exoplanet photographers will then be able to shoot the hidden planets using a new instrument at Keck that can reveal more about their atmospheres and temperatures. 

There will be a mountain of data to sort through, and an even steeper supply of starlight to refocus. Thankfully, Jensen-Clem has spent more than a decade refining just the techniques she’ll need: “This time next year,” she says, “we’ll be racing to throw all our adaptive optics tricks at these systems and detect as many of these objects as possible.”

Jenna Ahart is a science journalist specializing in the physical sciences. 

Shape
Shape
Stay Ahead

Explore More Insights

Stay ahead with more perspectives on cutting-edge power, infrastructure, energy,  bitcoin and AI solutions. Explore these articles to uncover strategies and insights shaping the future of industries.

Shape

Chinese cyberspies target VMware vSphere for long-term persistence

Designed to work in virtualized environments The CISA, NSA, and Canadian Cyber Center analysts note that some of the BRICKSTORM samples are virtualization-aware and they create a virtual socket (VSOCK) interface that enables inter-VM communication and data exfiltration. The malware also checks the environment upon execution to ensure it’s running

Read More »

IBM boosts DNS protection for multicloud operations

“In addition to this DNS synchronization, you can publish DNS configurations to your Amazon Simple Storage Service (S3) bucket. As you implement DNS changes, the S3 bucket will automatically update. The ability to store multiple configurations in your S3 bucket allows you to choose the most appropriate restore point if

Read More »

Cloudflare firewall reacts badly to React exploit mitigation

During the same window, Downdetector saw a spike in problem reports for enterprise services including Shopify, Zoom, Claude AI, and Amazon Web Services, and a host of consumer services from games to dating apps. Cloudflare explained the outage on its service status page: “A change made to how Cloudflare’s Web

Read More »

New Fortress Energy Seals Deal to Continue Supplying Gas to Puerto Rico

New Fortress Energy Inc (NFE) has received approval from local authorities to continue delivering natural gas for Puerto Rico’s power system for seven more years. The consent from the Financial Oversight and Management Board for Puerto Rico provides for the supply of about 75 trillion British thermal units (TBtu), New York City-based NFE said in an online statement. “Under the terms of the agreement, NFE will supply reliable, lower-emission natural gas to help enhance grid stability and support cleaner power generation across Puerto Rico’s energy system”, NFE said. According to NFE’s September 16 announcement about the agreed contract terms, the agreement involved “minimum annual take-or-pay volumes of 40 TBtu, increasing to up to 50 TBtu if certain conditions are met”. “This landmark agreement provides two critical benefits to the island. First, it establishes security of supply in San Juan for the next seven years for power plants currently running on LNG”, NFE chief executive Wes Edens said then. “Second, it provides for incremental LNG volumes to be delivered, allowing for the conversion of additional gas-ready plants currently burning diesel, resulting in hundreds of millions of dollars in energy savings for Puerto Ricans”. NFE said at the time, “Pricing of the volumes supplied through the GSA [Gas Supply Agreement] is set at a blend of 115 percent of Henry Hub plus $7.95/million Btu, excluding natural gas supplied to the units at San Juan 5 & 6 (which has historically consumed ~20 TBtu per year). Instead, these volumes are priced at 115 percent of Henry Hub plus $6.50/MMBtu”. According to the September statement, NFE expects to source the LNG under the new GSA from its Fast LNG facility in Altamira, Mexico. With a capacity of 1.4 million metric tons per annum, the project started operations in the fourth quarter of 2024, according to NFE. On March 17 NFE said it had amended the

Read More »

BGN Plans Global Gas Push Ahead of New Supplies

Energy trader BGN is set to expand its fledgling natural gas business into a global portfolio with stakes in plants, vessels and pipelines.  The push comes as the market for liquefied natural gas is set to boom, with US exports ramping up and Qatar, another major producer, also adding output. While that’s likely to push prices lower, the wave of extra supplies is poised to create new trading opportunities. The firm is in talks to buy LNG on contracts as long as 15 years, as well as equity in U.S. export plants, the company’s co-heads of LNG, Ruben Mosquera Arias and Maria Eugenia Suardiaz, said in an interview in Istanbul on Thursday. BGN got its start in the market for liquefied petroleum gas and has amassed a fleet of about 40 ships. In recent years, it has expanded rapidly into crude, oil products and metals.    “In LNG, we would like to be present globally as well, from the Atlantic basin to Asia Pacific,” said Suardiaz, declining to provide details on the volume they plan to handle.  Producers are set to add a record 300 billion cubic meters of annual export capacity by 2030, the International Energy Agency wrote last month in a report. That’s poised to reshape the market after years of scarcity. “We want to capture this wave,” said Mosquera Arias.  The company is also applying for licenses to buy capacity in European pipelines. It expects to take delivery of its first newbuild LNG carriers in the next two years, although the executives declined to provide more details.  BGN started its LNG team in 2024 and sold spot cargoes to both Egypt and Germany earlier this year. In the summer, it struck a deal to supply as many as 42 shipments to the North African country, where it’s already a major

Read More »

Crude Finishes Higher on Short Covering

Oil gained, finishing the week positive as investors assessed the murky outlook for a cease-fire in Ukraine and as the commodity pushed past an important technical level. West Texas Intermediate rose 0.7% to settle above $60 a barrel, signaling that a risk premium persists as a peace deal between Russia and Ukraine remains elusive. Ukrainian negotiators continued talks with US officials in Florida for a second day, with Russia objecting to some of the points in a US-backed plan. The market is watching for progress on a settlement that could lower prices by potentially easing sanctions and boosting Russian oil flows just as an expected oversupply in the market starts to materialize. But an agreement appears distant: Ukraine took credit for an overnight attack on Russia’s Syzran refinery and the Temryuk seaport. Meanwhile, Washington reportedly lobbied European countries in an effort to block a plan to use Moscow’s frozen assets to back a massive loan for Ukraine. Adding to bullish momentum, WTI on Friday settled above its 50-day moving average, a key level of support for the commodity. Prices have also received a boost from algorithmic traders covering some of their bearish positions in recent sessions — and analysts say more buying could materialize in coming weeks. “This session should mark the first notable short covering program since algo selling activity exhausted itself, and the bar is low for subsequent CTA buying activity to hit the tapes over the coming week,” said Dan Ghali, a commodity strategist at TD Securities. Countering geopolitical risks, oversupply is putting downward pressure on prices globally. Saudi Aramco will reduce the price of its flagship Arab Light crude grade to the lowest level since 2021 for January, while Canadian oil has tumbled. And the number of crude oil rigs in the US rose by 6

Read More »

ITT Agrees to Buy Lone Star’s SPX Flow in $4.8B Deal

ITT Inc. has agreed to acquire industrial equipment manufacturer SPX Flow Inc. from Lone Star Funds in a $4.775 billion cash and stock deal. The deal will will consist of a combination of cash and $700 million in ITT common stock issued to Lone Star, according to a statement confirming an earlier report by Bloomberg News that the companies were nearing a deal. Charlotte, North Carolina-based SPX Flow makes products including valves and pumps under brands such as APV and Johnson Pump, as well as food processing equipment such as its Gerstenberg Schröder-branded butter maker. Lone Star Funds agreed in 2021 to take SPX Flow private for $3.8 billion including debt.  The SPX Flow acquisition is the largest ever by Stamford, Connecticut-based ITT, according to data compiled by Bloomberg. ITT’s shares have gained 28% this year, giving it a market value of $14.3 billion. ITT’s history dates to 1920, with its genesis as International Telephone and Telegraph, a provider of telephone switching equipment and services, according to the company’s website. In 1995, that conglomerate was split into three divisions, including the company that became the current manufacturer of components and technology for a range of transportation, industrial and energy markets. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

Energy Department Launches Breakthrough AI-Driven Biotechnology Platform at PNNL

Richland, Wash.—U.S. Secretary of Energy Chris Wright launched a new chapter to secure American leadership in autonomous biological discovery yesterday alongside scientists and private partners at Pacific Northwest National Laboratory (PNNL). As part of his visit to PNNL, Secretary Wright commissioned and signed the Anaerobic Microbial Phenotyping Platform (AMP2). PNNL scientists believe AMP2 will be the world’s largest autonomous-capable science system for anaerobic microbial experimentation. The platform supports the Trump Administration’s recently announced Genesis Mission, which calls on the Department of Energy (DOE) to transform American leadership in science and innovation with the development of artificial intelligence (AI). Built by Gingko Bioworks, AMP2 gives DOE scientists an unprecedented capability to explore the world of microbes—an invisible yet powerful workforce poised to boost biotech manufacturing as well as provide insights into basic life science questions. This first-of-its-kind capability will transform how the U.S. identifies, grows, and optimizes the use of microbes in days and weeks instead of years using automation and AI.  “President Trump launched the Genesis Mission to ensure American leadership in science and innovation,” said Secretary Chris Wright. “This ongoing public-private partnership at PNNL will help do exactly that in the field of biotechnology. By launching AI-enabled, autonomous platforms like AMP2, our DOE National Laboratories are driving scientific breakthroughs faster than ever before and ensuring the United States leads the world in technologies that will better human lives and secure our future.”  The AMP2 platform will serve as a prototype for DOE’s planned development of the larger Microbial Molecular Phenotyping Capability (M2PC). Together, the systems will establish the world’s largest autonomous microbial research infrastructure, and position the U.S. to lead in biotechnology, biomanufacturing, and next-generation materials innovation for decades to come. Secretary Wright visited PNNL as part of his ongoing tour of all 17 DOE National Laboratories. PNNL marks

Read More »

Chevron, Gorgon Partners OK $2B to Drill for More Gas

Chevron Corp’s Australian unit and its joint venture partners have reached a final investment decision to further develop the massive Gorgon natural gas project in Western Australia, it said in a statement on Friday. Chevron Australia and its partners — including Exxon Mobil Corp. and Shell Plc — will spend A$3 billion ($2 billion) connecting two offshore natural gas fields to existing infrastructure and processing facilities on Barrow Island as part of the Gorgon Stage 3 development, it said in the statement. Six wells will also be drilled.  Gorgon, on the remote Barrow Island in northwestern Australia, is the largest resource development in Australia’s history, and produces about 15.6 million tons of liquefied natural gas a year. WHAT DO YOU THINK? Generated by readers, the comments included herein do not reflect the views and opinions of Rigzone. All comments are subject to editorial review. Off-topic, inappropriate or insulting comments will be removed.

Read More »

At the Crossroads of AI and the Edge: Inside 1623 Farnam’s Rising Role as a Midwest Interconnection Powerhouse

That was the thread that carried through our recent conversation for the DCF Show podcast, where Severn walked through the role Farnam now plays in AI-driven networking, multi-cloud connectivity, and the resurgence of regional interconnection as a core part of U.S. digital infrastructure. Aggregation, Not Proximity: The Practical Edge Severn is clear-eyed about what makes the edge work and what doesn’t. The idea that real content delivery could aggregate at the base of cell towers, he noted, has never been realistic. The traffic simply isn’t there. Content goes where the network already concentrates, and the network concentrates where carriers, broadband providers, cloud onramps, and CDNs have amassed critical mass. In Farnam’s case, that density has grown steadily since the building changed hands in 2018. At the time an “underappreciated asset,” the facility has since become a meeting point for more than 40 broadband providers and over 60 carriers, with major content operators and hyperscale platforms routing traffic directly through its MMRs. That aggregation effect feeds on itself; as more carrier and content traffic converges, more participants anchor themselves to the hub, increasing its gravitational pull. Geography only reinforces that position. Located on the 41st parallel, the building sits at the historical shortest-distance path for early transcontinental fiber routes. It also lies at the crossroads of major east–west and north–south paths that have made Omaha a natural meeting point for backhaul routes and hyperscale expansions across the Midwest. AI and the New Interconnection Economy Perhaps the clearest sign of Farnam’s changing role is the sheer volume of fiber entering the building. More than 5,000 new strands are being brought into the property, with another 5,000 strands being added internally within the Meet-Me Rooms in 2025 alone. These are not incremental upgrades—they are hyperscale-grade expansions driven by the demands of AI traffic,

Read More »

Schneider Electric’s $2.3 Billion in AI Power and Cooling Deals Sends Message to Data Center Sector

When Schneider Electric emerged from its 2025 North American Innovation Summit in Las Vegas last week with nearly $2.3 billion in fresh U.S. data center commitments, it didn’t just notch a big sales win. It arguably put a stake in the ground about who controls the AI power-and-cooling stack over the rest of this decade. Within a single news cycle, Schneider announced: Together, the deals total about $2.27 billion in U.S. data center infrastructure, a number Schneider confirmed in background with multiple outlets and which Reuters highlighted as a bellwether for AI-driven demand.  For the AI data center ecosystem, these contracts function like early-stage fuel supply deals for the power and cooling systems that underpin the “AI factory.” Supply Capacity Agreements: Locking in the AI Supply Chain Significantly, both deals are structured as supply capacity agreements, not traditional one-off equipment purchase orders. Under the SCA model, Schneider is committing dedicated manufacturing lines and inventory to these customers, guaranteeing output of power and cooling systems over a multi-year horizon. In return, Switch and Digital Realty are providing Schneider with forecastable volume and visibility at the scale of gigawatt-class campus build-outs.  A Schneider spokesperson told Reuters that the two contracts are phased across 2025 and 2026, underscoring that this arrangement is about pipeline, as opposed to a one-time backlog spike.  That structure does three important things for the market: Signals confidence that AI demand is durable.You don’t ring-fence billions of dollars of factory output for two customers unless you’re highly confident the AI load curve runs beyond the current GPU cycle. Pre-allocates power & cooling the way the industry pre-allocated GPUs.Hyperscalers and neoclouds have already spent two years locking up Nvidia and AMD capacity. These SCAs suggest power trains and thermal systems are joining chips on the list of constrained strategic resources.

Read More »

The Data Center Power Squeeze: Mapping the Real Limits of AI-Scale Growth

As we all know, the data center industry is at a crossroads. As artificial intelligence reshapes the already insatiable digital landscape, the demand for computing power is surging at a pace that outstrips the growth of the US electric grid. As engines of the AI economy, an estimated 1,000 new data centers1 are needed to process, store, and analyze the vast datasets that run everything from generative models to autonomous systems. But this transformation comes with a steep price and the new defining criteria for real estate: power. Our appetite for electricity is now the single greatest constraint on our expansion, threatening to stall the very innovation we enable. In 2024, US data centers consumed roughly 4% of the nation’s total electricity, a figure that is projected to triple by 2030, reaching 12% or more.2 For AI-driven hyperscale facilities, the numbers are even more staggering. With the largest planned data centers requiring gigawatts of power, enough to supply entire cities, the cumulative demand from all data centers is expected to reach 134 gigawatts by 2030, nearly three times the current load.​3 This presents a systemic challenge. The U.S. power grid, built for a different era, is struggling to keep pace. Utilities are reporting record interconnection requests, with some regions seeing demand projections that exceed their total system capacity by fivefold.4 In Virginia and Texas, the epicenters of data center expansion, grid operators are warning of tight supply-demand balances and the risk of blackouts during peak periods.5 The problem is not just the sheer volume of power needed, but the speed at which it must be delivered. Data center operators are racing to secure power for projects that could be online in as little as 18 months, but grid upgrades and new generation can take years, if not decades. The result

Read More »

The Future of Hyperscale: Neoverse Joins NVLink Fusion as SC25 Accelerates Rack-Scale AI Architectures

Neoverse’s Expanding Footprint and the Power-Efficiency Imperative With Neoverse deployments now approaching roughly 50% of all compute shipped into top hyperscalers in 2025 (representing more than a billion Arm cores) and with nation-scale AI campuses such as the Stargate project already anchored on Arm compute, the addition of NVLink Fusion becomes a pivotal extension of the Neoverse roadmap. Partners can now connect custom Arm CPUs to their preferred NVIDIA accelerators across a coherent, high-bandwidth, rack-scale fabric. Arm characterized the shift as a generational inflection point in data-center architecture, noting that “power—not FLOPs—is the bottleneck,” and that future design priorities hinge on maximizing “intelligence per watt.” Ian Buck, vice president and general manager of accelerated computing at NVIDIA, underscored the practical impact: “Folks building their own Arm CPU, or using an Arm IP, can actually have access to NVLink Fusion—be able to connect that Arm CPU to an NVIDIA GPU or to the rest of the NVLink ecosystem—and that’s happening at the racks and scale-up infrastructure.” Despite the expanded design flexibility, this is not being positioned as an open interconnect ecosystem. NVIDIA continues to control the NVLink Fusion fabric, and all connections ultimately run through NVIDIA’s architecture. For data-center planners, the SC25 announcement translates into several concrete implications: 1.   NVIDIA “Grace-style” Racks Without Buying Grace With NVLink Fusion now baked into Neoverse, hyperscalers and sovereign operators can design their own Arm-based control-plane or pre-processing CPUs that attach coherently to NVIDIA GPU domains—such as NVL72 racks or HGX B200/B300 systems—without relying on Grace CPUs. A rack-level architecture might now resemble: Custom Neoverse SoC for ingest, orchestration, agent logic, and pre/post-processing NVLink Fusion fabric Blackwell GPU islands and/or NVLink-attached custom accelerators (Marvell, MediaTek, others) This decouples CPU choice from NVIDIA’s GPU roadmap while retaining the full NVLink fabric. In practice, it also opens

Read More »

Flex’s Integrated Data Center Bet: How a Manufacturing Giant Plans to Reshape AI-Scale Infrastructure

At this year’s OCP Global Summit, Flex made a declaration that resonated across the industry: the era of slow, bespoke data center construction is over. AI isn’t just stressing the grid or forcing new cooling techniques—it’s overwhelming the entire design-build process. To meet this moment, Flex introduced a globally manufactured, fully integrated data center platform aimed directly at multi-gigawatt AI campuses. The company claims it can cut deployment timelines by as much as 30 percent by shifting integration upstream into the factory and unifying power, cooling, compute, and lifecycle services into pre-engineered modules. This is not a repositioning on the margins. Flex is effectively asserting that the future hyperscale data center will be manufactured like a complex industrial system, not built like a construction project. On the latest episode of The Data Center Frontier Show, we spoke with Rob Campbell, President of Flex Communications, Enterprise & Cloud, and Chris Butler, President of Flex Power, about why Flex believes this new approach is not only viable but necessary in the age of AI. The discussion revealed a company leaning heavily on its global manufacturing footprint, its cross-industry experience, and its expanding cooling and power technology stack to redefine what deployment speed and integration can look like at scale. AI Has Broken the Old Data Center Model From the outset, Campbell and Butler made clear that Flex’s strategy is a response to a structural shift. AI workloads no longer allow power, cooling, and compute to evolve independently. Densities have jumped so quickly—and thermals have risen so sharply—that the white space, gray space, and power yard are now interdependent engineering challenges. Higher chip TDPs, liquid-cooled racks approaching one to two megawatts, and the need to assemble entire campuses in record time have revealed deep fragility in traditional workflows. As Butler put it, AI

Read More »

Data Center Jobs: Engineering, Construction, Commissioning, Sales, Field Service and Facility Tech Jobs Available in Major Data Center Hotspots

Each month Data Center Frontier, in partnership with Pkaza, posts some of the hottest data center career opportunities in the market. Here’s a look at some of the latest data center jobs posted on the Data Center Frontier jobs board, powered by Pkaza Critical Facilities Recruiting. Looking for Data Center Candidates? Check out Pkaza’s Active Candidate / Featured Candidate Hotlist Data Center Facility Technician (All Shifts Available) Impact, TX This position is also available in: Ashburn, VA; Abilene, TX; Needham, MA and New York, NY. Navy Nuke / Military Vets leaving service accepted!  This opportunity is working with a leading mission-critical data center provider. This firm provides data center solutions custom-fit to the requirements of their client’s mission-critical operational facilities. They provide reliability of mission-critical facilities for many of the world’s largest organizations facilities supporting enterprise clients, colo providers and hyperscale companies. This opportunity provides a career-growth minded role with exciting projects with leading-edge technology and innovation as well as competitive salaries and benefits. Electrical Commissioning Engineer Montvale, NJ This traveling position is also available in: New York, NY; White Plains, NY;  Richmond, VA; Ashburn, VA; Charlotte, NC; Atlanta, GA; Hampton, GA; Fayetteville, GA; New Albany, OH; Cedar Rapids, IA; Phoenix, AZ; Salt Lake City, UT; Dallas, TX or Chicago, IL. *** ALSO looking for a LEAD EE and ME CxA Agents and CxA PMs. *** Our client is an engineering design and commissioning company that has a national footprint and specializes in MEP critical facilities design. They provide design, commissioning, consulting and management expertise in the critical facilities space. They have a mindset to provide reliability, energy efficiency, sustainable design and LEED expertise when providing these consulting services for enterprise, colocation and hyperscale companies. This career-growth minded opportunity offers exciting projects with leading-edge technology and innovation as well as competitive salaries and

Read More »

Microsoft will invest $80B in AI data centers in fiscal 2025

And Microsoft isn’t the only one that is ramping up its investments into AI-enabled data centers. Rival cloud service providers are all investing in either upgrading or opening new data centers to capture a larger chunk of business from developers and users of large language models (LLMs).  In a report published in October 2024, Bloomberg Intelligence estimated that demand for generative AI would push Microsoft, AWS, Google, Oracle, Meta, and Apple would between them devote $200 billion to capex in 2025, up from $110 billion in 2023. Microsoft is one of the biggest spenders, followed closely by Google and AWS, Bloomberg Intelligence said. Its estimate of Microsoft’s capital spending on AI, at $62.4 billion for calendar 2025, is lower than Smith’s claim that the company will invest $80 billion in the fiscal year to June 30, 2025. Both figures, though, are way higher than Microsoft’s 2020 capital expenditure of “just” $17.6 billion. The majority of the increased spending is tied to cloud services and the expansion of AI infrastructure needed to provide compute capacity for OpenAI workloads. Separately, last October Amazon CEO Andy Jassy said his company planned total capex spend of $75 billion in 2024 and even more in 2025, with much of it going to AWS, its cloud computing division.

Read More »

John Deere unveils more autonomous farm machines to address skill labor shortage

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More Self-driving tractors might be the path to self-driving cars. John Deere has revealed a new line of autonomous machines and tech across agriculture, construction and commercial landscaping. The Moline, Illinois-based John Deere has been in business for 187 years, yet it’s been a regular as a non-tech company showing off technology at the big tech trade show in Las Vegas and is back at CES 2025 with more autonomous tractors and other vehicles. This is not something we usually cover, but John Deere has a lot of data that is interesting in the big picture of tech. The message from the company is that there aren’t enough skilled farm laborers to do the work that its customers need. It’s been a challenge for most of the last two decades, said Jahmy Hindman, CTO at John Deere, in a briefing. Much of the tech will come this fall and after that. He noted that the average farmer in the U.S. is over 58 and works 12 to 18 hours a day to grow food for us. And he said the American Farm Bureau Federation estimates there are roughly 2.4 million farm jobs that need to be filled annually; and the agricultural work force continues to shrink. (This is my hint to the anti-immigration crowd). John Deere’s autonomous 9RX Tractor. Farmers can oversee it using an app. While each of these industries experiences their own set of challenges, a commonality across all is skilled labor availability. In construction, about 80% percent of contractors struggle to find skilled labor. And in commercial landscaping, 86% of landscaping business owners can’t find labor to fill open positions, he said. “They have to figure out how to do

Read More »

2025 playbook for enterprise AI success, from agents to evals

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More 2025 is poised to be a pivotal year for enterprise AI. The past year has seen rapid innovation, and this year will see the same. This has made it more critical than ever to revisit your AI strategy to stay competitive and create value for your customers. From scaling AI agents to optimizing costs, here are the five critical areas enterprises should prioritize for their AI strategy this year. 1. Agents: the next generation of automation AI agents are no longer theoretical. In 2025, they’re indispensable tools for enterprises looking to streamline operations and enhance customer interactions. Unlike traditional software, agents powered by large language models (LLMs) can make nuanced decisions, navigate complex multi-step tasks, and integrate seamlessly with tools and APIs. At the start of 2024, agents were not ready for prime time, making frustrating mistakes like hallucinating URLs. They started getting better as frontier large language models themselves improved. “Let me put it this way,” said Sam Witteveen, cofounder of Red Dragon, a company that develops agents for companies, and that recently reviewed the 48 agents it built last year. “Interestingly, the ones that we built at the start of the year, a lot of those worked way better at the end of the year just because the models got better.” Witteveen shared this in the video podcast we filmed to discuss these five big trends in detail. Models are getting better and hallucinating less, and they’re also being trained to do agentic tasks. Another feature that the model providers are researching is a way to use the LLM as a judge, and as models get cheaper (something we’ll cover below), companies can use three or more models to

Read More »

OpenAI’s red teaming innovations define new essentials for security leaders in the AI era

Join our daily and weekly newsletters for the latest updates and exclusive content on industry-leading AI coverage. Learn More OpenAI has taken a more aggressive approach to red teaming than its AI competitors, demonstrating its security teams’ advanced capabilities in two areas: multi-step reinforcement and external red teaming. OpenAI recently released two papers that set a new competitive standard for improving the quality, reliability and safety of AI models in these two techniques and more. The first paper, “OpenAI’s Approach to External Red Teaming for AI Models and Systems,” reports that specialized teams outside the company have proven effective in uncovering vulnerabilities that might otherwise have made it into a released model because in-house testing techniques may have missed them. In the second paper, “Diverse and Effective Red Teaming with Auto-Generated Rewards and Multi-Step Reinforcement Learning,” OpenAI introduces an automated framework that relies on iterative reinforcement learning to generate a broad spectrum of novel, wide-ranging attacks. Going all-in on red teaming pays practical, competitive dividends It’s encouraging to see competitive intensity in red teaming growing among AI companies. When Anthropic released its AI red team guidelines in June of last year, it joined AI providers including Google, Microsoft, Nvidia, OpenAI, and even the U.S.’s National Institute of Standards and Technology (NIST), which all had released red teaming frameworks. Investing heavily in red teaming yields tangible benefits for security leaders in any organization. OpenAI’s paper on external red teaming provides a detailed analysis of how the company strives to create specialized external teams that include cybersecurity and subject matter experts. The goal is to see if knowledgeable external teams can defeat models’ security perimeters and find gaps in their security, biases and controls that prompt-based testing couldn’t find. What makes OpenAI’s recent papers noteworthy is how well they define using human-in-the-middle

Read More »